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ABSTRACT

A distributed automatic speech recognition (ASR)
system is considered where features of the speech
signal are extracted at the wireless terminal and
transmitted to a centralized ASR server. An un-
equal error protection scheme is used for the quan-
tized ASR feature stream. At the receiver, coher-
ent demodulation is performed and the probability
of error for each bit is computed using the Max-Log
MAP algorithm [5]. A ‘soft-feature’ decoding strat-
egy is introduced at the ASR server that uses the
marginal distribution of only the reliable features
during likelihood computation. Alternatively, the
confidence of each feature is computed from the bit
error probabilities and each feature in the probabil-
ity computation is weighted as a function of the fea-
ture confidence. The performance of the proposed
soft-feature algorithms is evaluated over typical cel-
lular wireless channels and it is shown to reduce
ASR error rate by over 50% for certain channels at
a small additional computational cost.

1. INTRODUCTION

Automatic speech recognition (ASR) over wireless networks
is important for next generation wireless multimedia sys-
tems [3]. A variety of spoken dialogue systems exist to-
day that utilize ASR technology, e.g., personal assistants,
speech portals, travel reservation, stock quotes. The num-
ber of applications being written specifically for the car and
for wireless devices is also increasing. Introducing a ro-
bust spoken dialogue interface to wireless terminals will en-
hance existing applications and help create new ones. High
speech recognition accuracy for a variety of channel and
noise conditions is essential for the success of ASR appli-
cations and services. Our goal in this paper is to inves-
tigate the degradation in speech recognition performance
under typical wireless channel conditions and propose error
protection and concealment strategies that improve per-
formance. In addition to channel errors, adverse speech
recording conditions can also degrade ASR performance,
e.g., hands-free operation of end-devices or ambient noise
[6], and are not treated in this paper.

In a distributed speech recognition system, a small client
program running in the device extracts and transmits rep-
resentative parameters of the speech signal from the mobile
terminal over the wireless network to a multiuser speech
recognition server. The alternative approach of perform-
ing speech recognition locally on the device significantly in-
creases computation, power, and memory requirements for

the device, and limits portability across languages and ap-
plication domains. In this paper, we adopt the distributed
approach to wireless ASR. Parameters that are optimized
for speech recognition are extracted at the terminal, quan-
tized at a source bit rate of 6 kb/s, and transmitted over
the channel.

In [2], severe ASR performance degradation was ob-
served for a distributed wireless speech recognition system,
especially in the case of bursty transmission errors. In [7],
specialized channel coding schemes for the transmission of
ASR parameters were proposed. Specifically, a robust un-
equal error protection scheme with both forward error cor-
rection and detection capabilities to give a total bit rate
of 9.6 kb/s was proposed. The error protection scheme
was shown to significantly improve ASR performance over
a wide variety of noisy wireless channels without the addi-
tional delay and bandwidth needed to retransmit the speech
parameters.

In this paper, “soft-outputs” from the channel decoder
are used to improve the performance of the speech recogni-
tion system. Specifically, the confidence level for each de-
coded bit is obtained using the Max-Log MAP algorithm
and is used to estimate the confidence in ASR features
and weight the contribution of each feature in the likeli-
hood computation formula applied during decoding. This
novel “soft-feature” decision is shown to significantly im-
prove ASR performance.

2. SPEECH PARAMETERS AND
QUANTIZATION

The acoustic features for speech recognition used in this
study are the signal energy, e, and the 12 cepstral coeffi-
cients, ¢1, ¢2, ..., c12, calculated every 10 ms based on a LPC
analysis of order 10. The signal sampling rate is 8000 Hz
and a Hamming window with 240 samples is used. These
features form a 13-dimensional vector every 10 ms, which
is the acoustic input to the automatic speech recognition
system.

In order to transmit from the wireless handset to the
network based recognition server, all 13 features are scalar-
quantized. A simple non-uniform quantizer is used to de-
termine the quantization cells. The quantizer uses the em-
pirical distribution function as the companding function,
so that samples are uniformly distributed in the quanti-
zation cells. Empirical tests showed no noticeable perfor-
mance degradation when ci2 is not transmitted. Therefore,
we transmit only 12 feature components: energy, e, and
c1 — c11. The bit allocation scheme for these feature com-
ponents is shown in Table 1. The total number of bits for
this bit allocation scheme is 60 bits per 10 ms frame. This



Feature Component | e,c1,c2,c¢3 g, C7,Cs C12
Cq,C5 C9, €10, C11
Bits per Feature 6 4 0

Table 1: Bits Allocation for Different Feature Components

requires an uncoded data rate of 6 kb/s to be transmitted
over the wireless channel which will be the data rate used
throughout this paper.

3. TRANSMISSION SYSTEM

In [7], several unequal error protection (UEP) schemes were
proposed for the transmission of the quantized ASR fea-
tures over noisy wireless channels. The performance of the
speech recognizer under the proposed UEPs was evaluated
for various channel types and conditions. In this paper, we
concentrate on a single UEP scheme described below. Fea-
tures from each 10ms speech frame are quantized into 60
source bits; with the addition of error protection bits the
UEP coded data rate becomes 9.6 kbits/s. Binary phase
shift keying (BPSK) is used. To provide better time diver-
sity and improve performance in slow fading channels coded
data is interleaved over 8 speech frames or 80 ms. The inter-
leaving and deinterleaving delay associated with this is 160
ms and is tolerable for our application. The total number
of coded bits in an 80 ms channel encoded frame is 768.
The UEP scheme consists of 3 levels denoted by .1, 1.2,
and L3; furthermore, L1 is separated to two levels [.L1_1 and
L1.2. The assignment of the bits for different UEP lev-
els is shown in Table 2. In this notation, €® denotes the
MSB of e. As seen from the table the number of bits per
speech frame in L1, L2, and L3 are 13, 24 and 23, respec-
tively. .1_1 contains the bits that are determined to be the
most important 7 bits. L1_2 contains the next 6 important
bits. A rate 1/2 memory 5 convolutional code is used on
L1 and L2 bits. Channel coding is done so that L1_1 bits
are followed by L1_2 and then L2. Note that because of the
punctured code used with L2 bits those bits of L1_2 that are
within a decoding depth of L2 bits will not be subjected to
the usual rate 1/2 mother code. The L.1_2 bits, in a channel
coded frame of 80 ms, are arran%ed in the follovvmg manner:
e2(n),e*(n+1),...,e*(n +7); ci(n),ci(n + 1), ..., ci(n +7);
e(n),c(n 4+ 1), . ci(n + 7). We have determined exper-
imentally that the coefficients cl(n) are more significant
than cs(n) and, therefore, this bit arrangement will assign
a gradually decreasing error protection level to those coeffi-
cients that are toward the end of the L1_2 frame. The total
coded bits in 8 speech frames from L1 bits is 208. For the

Level Speech Bits Error Protection
L11 e?, el el e, e8, e, 2 rate 1/2 conv. code
L12 e el el el el el rate 1/2 conv. code
L2 e et 2 el ... et rate 1/2 conv. code
S e S, er, 8, el and puncturing
L3 e’ el e, ..., e e no code
cé; Cga 6363; - C11,C11

Table 2: Speech bit assignment for different UEP levels in
UEP1.

ERROR RATE (%)

197 L2 bits (including the 5-bit tail) we use a rate 1/2 code
with 18 bits punctured to give 376 coded bits. Then, with
the 184 L3 uncoded bits the total coded bits in 8 speech
frames is 768.

3.1. Bit Error Probabilities

At the receiver we employ coherent demodulation with per-
fect channel state information and use an algorithm that
gives the a posteriori probability (APP) for each decoded
bit. The Max-Log-MAP algorithm [5] gives the approx-

imate APPs or the log likelihood A(n) = In Zredatm)=1)

prob(a(n)=0)?
where d(n) is the channel decoder output. Note that larger
values of [A(n)| increases the reliability measure of the chan-
nel decoder output, d(n). In this work, we employ a one-bit

quantization of the likelihood (A(n)) to a reliability measure
of d@(n) and the source decoder receives the decoded data
symbol together with its one-bit reliability measure. This
reliability is derived as follows. Denote by AT(> 0) a pre-

determined threshold, then, if |A(n)| < Ar A(n) = 1; else

A( ) = 0. That is, A( n) = 1 signifies a potential error and
therefore signals the source decoder to consider the relevant
decoded bit as an erasure. In Figure 1, the ‘false accept’ and
‘false reject’ rates (a) and absolute number (b) are shown
for various thresholds. ‘False accept’ signifies accepting as
correct a bit that was decoded erroneously and ‘false reject’
denotes erroneously rejecting a correctly decoded bit. Note
that the equal error rate is achieved around Ar = 3, while
the equal number of errors point is around A7 = 1. Similar
results were obtained for channel conditions different than
the ones used for Fig. 1.

4. SOFT-FEATURE DECODING

To overcome the detrimental effects of transmission errors,
common error concealment strategies include the repetition
of previously received frames or parameter interpolation.
These techniques may help to repair random bit errors but
may fail for errors occurring in bursts, which are very likely
in fading channels. In this section, we consider a novel er-
ror concealment technique which is based on “soft-outputs”
from the channel decoder The a posteriori probability of
each decoded bit is produced at the channel decoder as dis-
cussed in the previous section, and is then utilized by the
ASR decoder to improve performance.
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Figure 1: The percent (a) and absolute number (b) of type
I and type II errors for various likelihood ratio thresholds
Ar. A 3 dB SNR Rayleigh fading channel at 10 km/h was

used for this simulation.



4.1. Marginalize Unreliable Features

The first proposed error concealment strategy discards the
transmitted features which are most probably erroneous
and uses only the reliable ones for likelihood computations
at the speech recognizer. A reduced feature vector is used
based only on the components that have a high confidence
level. In an hidden Markov model (HMM) based speech
recognition system, the observed feature vectors are mod-
eled by state-specific probability distributions p(z|s), where
x 1s the feature vector and is the state of the model. Usu-
ally a mixture of Gaussian densities is used for each state
of the phoneme (or triphone) specific HMM. In this case,
the reduced distribution for the reliable part of the feature
vector is the marginal determined by integrating over all
unreliable components:

p(zrer|s) = /p(z|s)dzumel. (1)

where Zrei, Tunrer are the reliable and unreliable compo-
nents of the feature vector. Using the distribution of only
the reliable components for HMM likelihood computation is
one of the techniques for improving robustness of speech rec-
ognizers in noisy conditions, often labeled as the “missing
feature theory” [1]. For speech recognition in noise, labeling
unreliable spectral features can be a challenging task, while
in our application the reliability of each feature is provided
by the channel decoder. With diagonal covariance Gaussian
mixture modeling, the reduced likelihood function can be
easily calculated by dropping unreliable components from
the full likelihood computation [1]. This approach requires
little modification in existing speech recognition systems.
Alternatively, feature components in the likelihood com-
putation can also be weighted by their confidence values.
In this case, continuous confidence values between 0 and 1
would be used and the contribution of each feature to the
likelihood computation would be scaled by its confidence as
discussed in Section 4.2.

The soft-feature decoding algorithm that computes like-
lihood using the marginal distribution over unreliable fea-
tures will be henceforth refered to as SoftFeatl and is im-
plemented as follows: (i) for energy and cepstrum features,
if the first or the second bit of the decoded symbol has ab-
solute likelihood ratio |A(n)| below the threshold Ar it is
labeled as ‘unreliable’ and not used in the likelihood com-
putation (marginalize according to Eq. (1)), (ii) for ‘delta’
and ‘delta-delta’ features (smooth first and second deriva-
tives of the energy and cepstrum features), if the first or
the second bit of any of the symbols in the window used for
the delta computation has |[A(n)| < Ar, then, do not use
the delta feature in the likelihood computation. Five and
seven frame windows are used for the delta and delta-delta
computation, respectively. The likelihood ratio threshold
A7 that minimizes recognition error can be computed from
held out data.

4.2. Exponential Feature Weights

An alternative soft-feature decoding algorithm, labeled Soft-
FeatIl applies exponential weights to each feature in the
probability computation at the decoder. Specifically, as-
suming that the state observation probability density func-
tion (pdf) is a mixture of Gaussian pdfs with diagonal co-
variance the observation probability computation formula

is modified as follows:

= 1
o T1
1 n=1

TOnm

M

(Tn—ftnm)? )]f(cn)

exp(— 572
nm

plzls) =
m= N
(2)
where z is the feature vector, N is the size of the feature
vector, M is the number of Gaussian mixtures per state and
Wy, fbm, Om are the mixture weight, mean and standard de-
viation, respectively, of the mth Gaussian for HMM state
s. C), 1s the confidence associated with the nth feature and
f(Cy) is a function of the confidence C,. Note that C is
a function of time and is updated at the frame rate, i.e.,
as often as z is updated. Assuming that the confidence is
normalized to a number between 0 and 1, then one possi-
ble form of the function f(C)is f(C) = (@ + C)/(a + 1)
where o 1s a smoothing constant that is experimentally de-
termined so that error is minimized on a held-out data set.
For very large values of «, all features are more or less
weighted equally (confidence C is practically ignored), while
for very small values of o, only features with high confidence
(Cr & 1) are considered in the observation probability com-
putation. All other aspects of the decoding process, apart
from the feature weighting in the state observation proba-
bility computation, remain unchanged.

To compute the feature confidence the symbol bit prob-
abilities computed at the channel decoder are translated
into feature confidence scores. In our case, the mapping
from feature value to sequence of bits (quantization) is non-
linear. The feature confidence score is thus computed nu-
merically as follows. Assuming that the most probable sym-

bol obtained at the channel decoder is 5’, and P(Sk) is the

probability that the decoder produces the kth symbol!, the
expected mean square error E for that feature is computed
as:

E=Y Pyl -7 G)

where Q7! is the inverse of the quantization mapping. The
expected mean square error is normalized by the feature
variance and subtracted from 1 to produce the feature con-

fidence C.

5. EXPERIMENTAL RESULTS

The performance of the ASR system for various transmis-
sion channel conditions and error protection schemes was
evaluated on an isolated word speech recognition task, where
people were asked to spontaneously answer questions about
their mother language, country of birth etc. The database
was collected over the public telephone network. A total of
4387 utterances were used for the system evaluation. The
vocabulary size was 23 different words. This test set con-
sists of speakers from all over the United States with large
dialect diversity and a significant number of non-native
speakers.

The 12 LPC-derived cepstral coefficients, the signal en-
ergy, and their 1st and 2nd order time derivatives were used
as acoustic features for speech recognition. The acoustic
models for speech recognition were trained on a collection
of speech databases collected over the public telephone net-
work. The speech recognizer is based on continuous density

1 Assuming independence among bits, P(S) is simply com-
puted as the product of the decoder probabilities for each of the
bits in the symbol.



HMMs and the Bell Labs recognition engine. The acous-
tic units are state-clustered triphone models, having three
emitting states and a left-to-right topology.

5.1. Quantization

The baseline word error rate for this task (on the unquan-
tized data) was 6.8 %. The relatively high error rate is
due to the noisy conditions, the usage of speaker-phones,
and hesitations and filled pauses in the data (spontaneous
speech). Using the proposed 60 bits per speech frame bit
allocation scheme the error rate increases slightly to 7.2 %.
More complex quantization schemes can achieve loss-less
(for speech recognition purposes) compression of the ASR
feature set at bit rates lower than 6 kb/s. For example in
[4], a loss-less vector quantization scheme is proposed that
operates at 4 kb/s. Note that soft-feature decoding can also
be used with a vector quantization scheme.

5.2. Speech Recognition Results

In the first set of experiments, we study the choice of the
likelihood ratio threshold A7 for the SoftFeatl algorithm.
In Table 3, word error rate is shown as a function of the
threshold. It is clear from the table that SoftFeatl gives
optimum performance for A7 around 1, which is the same
region where equal number of false accept and false reject
errors is achieved in Fig 1(b). Note that when the threshold
is 0 all features are assumed to be correctly transmitted
and used in the likelihood computation (this is the baseline
performance). Also as the threshold reaches the equal error
rate region (around 3 in Fig 1(a)) results become worse than
the baseline. Overall, a choice of the threshold that achieves
an equal number of accept and reject errors produces the
best recognition results for the SoftFeatl algorithm.

In the next set of experiments, we evaluate soft-feature
decoding performance for a simulated correlated fading chan-
nel with the channel correlation given by the mobile speed.
Word error rates for channels with various mobile speeds
and SNRs are listed in Table 4. Results are shown with and
without soft-feature decoding. Both SoftFeatl and Soft-
Featll algorithms are evaluated. A likelihood ratio thresh-
old of 1 is used for the SoftFeatl experiments. Significant
improvements are shown over baseline for both SoftFeatl
and SoftFeatll algorithms. Specifically for the SoftFeatl al-
gorithm, relative error rate reduction of 20-30% is shown for
noisy channel conditions. In general, higher improvement
is shown for faster speed and lower SNR channels. The
improvements are impressive and are achieved at nominal
additional computational cost. The SoftFeatll algorithm
further improves recognition performance and reduces er-
ror rate by 30-50% over the baseline. The improvement is
substantial and is equivalent to enhancing the channel SNR
by about 1.5 dB. Similar results have been obtained for a
Gaussian wireless channel, e.g., at -2 dB SNR for a Gaus-
sian channel ASR error rate reduces from 26.6% to 12.5%
using the SoftFeatll algorithm. More research is underway

Likelihood Ratio Threshold
0 1 2 3 5
word error rate (%) | 32.5 | 23.9 | 29.9 [ 36.3 | 47.7

Table 3: SoftFeatl word error rates (%) for various thresh-
olds (0 dB SNR Rayleigh fading channel at 50 km/h). Note
that A7 = 0 is the baseline ASR performance.

Speed Decoding SNR

[km/h] | Scheme 5dB | 3dB | 1.5dB | 0 dB

10 baseline 11.2 17.2 24.8 37.7
SoftFeatl 9.9 14.6 19.4 30.3
SoftFeatlIl 9.2 11.8 16.2 25.6

50 baseline 8.1 11.4 17.6 32.5
SoftFeatl 7.8 9.7 13.1 23.9
SoftFeatIl 7.6 8.5 10.5 16.7

100 baseline 7.5 9.3 14.1 30.7
SoftFeatl 7.4 8.5 12.0 21.4
SoftFeatIl 7.7 8.0 9.1 14.5

Table 4: Word error rates with and without soft-feature de-
coding for a Rayleigh fading channel with different speeds
and SNRs. “SoftFeat]” denotes marginalizing over unre-
liable feature (likelihood ratio threshold is 1) while “Soft-
FeatI” denotes weighting by feature confidence (a = 0).
Bit error probabilities are estimated at the channel decoder
using the Max-Log-MAP algorithm.

to tune the parameters of the SoftFeatll algorithm on held-
out data to further improve performance.

6. CONCLUSIONS

A novel soft-feature decoding algorithm was proposed for
speech recognition over wireless channels. The algorithm
employs the bit probabilities at the channel decoder to as-
sign confidence on the ASR features. This information is
used during decoding to improve recognition performance.
Up to 50% relative error rate reduction is shown for cer-
tain channel conditions. Improvements are shown under all
channel conditions with minimal additional computational
load. The proposed algorithms can enhance speech recog-
nition performance for any wireless channel, ASR feature
encoding scheme and channel protection scheme.

7. REFERENCES

[1] M. Cooke, P. Green, L. Josifovski, and A. Vizinho, “Ro-
bust ASR with Unreliable Data and Minimal Assumption,”
in Proceedings, Robust Methods for Speech Recognition in
Adverse Conditions, (Tampere, Finland), pp. 195-198, 1999.

[2] A. Gallardo-Antolin, F. D. de Maria, and F. Valverde-
Albacete, “Avoiding Distortions Due to Speech Coding and
Transmission Errors in GSM ASR Tasks,” in 1999 Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, (Phoenix, Arizona), 1999.

[3] P. Haavisto, “Speech Recognition for Mobile Communica-
tions,” in Proceedings, Robust Methods for Speech Recogni-
tion in Adverse Conditions, (Tampere, Finland), pp. 15-18,
1999.

[4] G.N. Ramaswamy and P. S. Gopalakrishnan, “Compression
of Acoustic Features for Speech Recognition in Network En-
vironments,” in 1998 International Conference on Acoustics,
Speech and Signal Processing, (Seattle, Washington), 1998.

[5] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and
Sub-Optimal Maximum A Posterior: Algorithms Suitable
for Turbo-Decoding,” European Trans. Telecommun. (ETT),
vol. 8, pp. 119-125, March/April 1997.

[6] F. Soong and E. Woodenberg, “Hands-Free Human-Machine
Dialogue, Corpora, Technology and Evaluation, in 2000 In-
ternational Conference on Speech and Language Processing,
(Beijing, China), 2000.

[7] V. Weerackody, W. Reichl, and A. Potamianos, “An Error-
Protected Speech Recognition System for Wireless Commu-
nications,” submitted to IEEE JSAC: Wireless Communica-
t1oms, 2000.



