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ABSTRACT

In this work, we combine recent theoertical and algorithmic
advances in the area of information-hiding with the current
mature knowledge-base in the human audio perception sys-
tem to propose a novel audio data-hiding technique that sig-
nificantly pushes the state-of-the-art in the field. Our work
is based on a combination of advances in two disjoint fields:
information-hiding and human auditory masking. The field
of information-hiding has recently seen a resurgence due to
advances in the understanding of fundamental bounds from
information theory. By integrating this with the human per-
ceptual system knowledge that has been successfully ex-
ploited for several years in the audio compression commu-
nity, we derive a new and improved audio data-hiding tech-
nique that finds application in a number of exciting sce-
narios like music enhancement and digital communications
over analog data channels. Our preliminary results show
that we can embed data at an order of magnitude higher rate
than existing audio data hiding systems, while being robust
to channel noise.

1. INTRODUCTION

It is a well known fact in the audio compression commu-
nity that only a few bits per sample are needed to represent
compact disk (CD) quality music. In fact, [1] pointed out
that two to three bits per sample are usually sufficient for
representing most genres of music. This implies that for
uncompressed music, noise can be injected into the signal
without it being perceptible to the end user. We utilize this
fact, not for compression, but instead for hiding data in mu-
sic. In particular, we will leverage recent promising work
[2] in the field of data hiding to show how large amounts
of data can be hidden in uncompressed audio signals. The
method of data hiding is a constructive attempt at bridging
the gap between what is currently available in data hiding
technology and what is theoretically possible [3]. In the
work of [3], bounds were given on the amount of data that
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Fig. 1. The data hiding problem

can be hidden in a signal when the signal is i:i:d: Gaussian
and the noise that the data is subjected to is a concatenation
of the known signal and unknown i:i:d: Gaussian noise. In
this work, we will formulate a method in which the audio
signal can be modeled as a set of parallel Gaussian channels
and show how data can be hidden in an imperceptible and
robust fashion into the audio signal.

We will then show how our method of audio data hid-
ing can be extended to exciting applications ranging from
embedding extra information onto CDs to increasing the
throughput of existing analog communication channels. Cur-
rent methods of audio data hiding [?] can embed a signifi-
cant amount of information into audio signals but is typi-
cally not robust to channel noise, and is hence not appli-
cable to the above applications. From our simulations, we
will show that our method of audio data hiding is an order
of magnitude above existing audio data hiding techniques
and is also robust to channel noise.

2. GENERAL DATA HIDING

In general, the data hiding problem is formulated as follows
(see [2]). The encoder has access to two signals; the infor-
mation (an index set), M, to be embedded, and the signal
that the information is to be embedded in. The output of the
encoder, W , will then be subjected to random noise. The
decoder will receive the corrupted encoded signal and will
attempt to recover the embedded data. The goal, then, is
to embed as much data as possible into the signal without
altering the fidelity of the original signal. The fidelity con-
straint can be posed as a distortion constraint between the
original signal and the encoded signal where the distortion
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Fig. 2. Audio data hiding system diagram.

measure can range from a Euclidean-based measure to some
perceptual measure. Mathematically, the goal is to solve the
following constrained minimization problem:

minjjW�Sjj2�D1;jjY�W jj2�D2
Pe(M̂); (1)

wherePe(M̂) represents the probability of decoding error.
The above problem can be generalized into the problem

of channel coding with side information, for which the ca-
pacity can be calculated (see Fig. 1). The capacity [4, 5, 3]
of such systems is given by

C = maxp(U;SjX)[I(U ;Y )� I(U ;S)]; (2)

where the maximization is over all conditional probability
density functionsp(U;X jS). The signalS is the side in-
formation about the channel andU represents the codeword
space.

For the applications we will be considering, we can limit
ourselves to the case where the channel is AWGN (see Fig. 1)
and the signal (side information, S) isi:i:d: gaussian. Our
constructions can of course be generalized to accomodate
other channels and input distributions. In the AWGN case,
it was shown [3] that the capacity (2) is given as

C =
1

2
log(

P

N
+ 1); (3)

where P and N represent the transmitter power constraint
and the variance of the channel noise respectively. It is in-
teresting to note that as the variance of the channel noise
approaches 0, the capacity approaches infinity. This implies
that an infinite amount of data can be hidden within a sig-
nal given that the channel does not introduce any random
noise! Of course, it must be recognized that no existing sys-
tems have come close to achieving the attainable bound of
(3). Promising work on practical constructions for attaining
(3) can be found in [6, 7].

3. AUDIO DATA HIDING

The method with which we hide data in audio signals is sim-
ilar to that of state-of-the-art audio compression codecs [8];
the interpretation, however is different. A block diagram of
our audio data hiding system is given in Fig. 2. From Fig. 2

we can see that the audio signal is first divided into short
time frames and fed in parallel paths to a wavelet decompo-
sition and a short-time Fourier transform. The wavelet de-
composition serves the purpose of decomposing the audio
signal into critical frequency bands that closely model the
human auditory response. The short-time Fourier transform
decomposes the audio signal into frequency coefficients that
can be used to estimate the various tones that are present in
the audio signal. These tones can then be used to estimate
a perceptual mask that will dictate the amount of noise that
can be added to the wavelet coefficients and be impercepti-
ble to the ear. There are many ways to compute a perceptual
mask; we chose to use the generic methods that are com-
monly employed in MPEG audio encoders [8]. The data
that is to be embedded in the signal will index a quantizer
from a set of quantizers to use for quantizing the wavelet co-
efficients. The choice of quantizer is based on the methodol-
ogy used in [2] and the constraints on the quantization noise
imposed by the perceptual mask. To effectively utilize the
methodology of [2], recall that the coefficients in which the
data is to be hidden must bei:i:d: Gaussian random vari-
ables. Furthermore, the quantizer must be continuously var-
ied to accomodate the quantization noise constraints. We
will address the previous two points in the following sub-
sections.

3.1. Data Modelling

We can divide the wavelet coefficients into groups, with
group i representing a realization of a Gaussian random
variable with mean�i and variance�i. The groups of co-
efficients will correspond to coefficients within the same
band of frequencies. From empirical evidence, modelling
each group of coefficients as Gaussian random variables is
in general fairly accurate. We can then apply the methods
of data hiding used in [2], by using a separate encoder for
each group of coefficients. The encoder is designed so that
the noise which is added to the wavelet coefficients as a re-
sult of embedding data will fall below the perceptual mask.
This can also be viewed as a power constraint,Pi, on the
total amount of noise that can be added to the coefficients
of groupi. From (3) we know that the maximum amount of
data that can be hidden in groupi is then:

Ci =
1

2
log(

Pi

Ni

+ 1) (4)

whereNi represents the variance of theGaussian noise
that can be added to groupi. In general, this can be treated
as a water-filling problem, where each channel is indepen-
dent of the other, and has capacity (4). The total amount of
data that can be hidden in the audio signal is then given as:

Ctotal =
X
i

Ci (5)
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Fig. 3. Codebook represented as a lattice partition: the root code-
book specifies the channel code. The leaves of the lattice partition
specify the source code. The bits specifying a path to a leaf are the
bits to be hidden in the data.

where the sum ranges over all groups of coefficients and the
Gaussian noise that corrupts each group of coefficients has
varianceNi.

3.2. Code Constructions

One method of encoding for attempting to achieve capac-
ity (see (4)) entails generating a codebook and partitioning
the codebook into subcodebooks. The data to be embed-
ded will index a particular subcodebook, and this subcode-
book will be used to encode a group of coefficients. In [9],
it was shown that one could design a codebook to achieve
capacity by distributing the codewords on a hyper-sphere
of radius specified by two parameters; the variance of the
Gaussian random variable in which the data is to be hidden,
�i and the power constraintPi. In practice, the encoding
complexity using such a codebook would be exponential
and hence impractical. A more practical construction en-
tails taking some code,C0 and partitioning it into subcodes,
using another codeC1. The union ofC1 with its cosets will
constitute the subcodes. The message should then have a
one to one correspondence with the quotient groupC 0=C1.
It was shown by Forney [11] that the partition can be done
in accordance with error correction codes. In this case, the
codewords of the error correction code will correspond to
the subcodeC1. The cosets ofC1 will then correspond to
the cosets of the codewords of the error correction code. As
a result, we can represent the messages that are to be em-
bedded in the data as the syndromes of the error correction
code. There are computationally efficient ways to calculate
the syndrome; hence our method of embedding data will be
easy and cost effective to implement. In the above exam-
ple, we considered a single partition ofC0 usingC1. This is
easily generalized into multiple partitions, by further parti-
tioning C1 using another codeC2 and partitioningC2 using
C3. This process can continue indefinitely. The message
to be embedded will then correspond to the syndrome as-
sociated with the groupC0=C1=C2=C3=::: The advantage of

having multiple partitions is that a variable number of bits
can be easily embedded into the data by using this method.
In terms of choosingC0 andC1; C2; ::: we would likeC0 to
have a large shaping gain and a large coding gain and for
C1; C2; ::: to have a large granular gain and a large bound-
ary gain [7] For the interested reader, we provide general
codebook constructions in [7].

As an example we consider the case whereC0 = Z ,
C1 = 2Z , C1 = 4Z , and so on, whereZ is the integer
lattice. Then-dimensional code will then simply be the
product space of the above one-dimensional codes. A rep-
resentation of this codebook for each dimension is given
in Fig. 3. As can be seen from the figure, the codebook
consists of lattice partitions which form a binary tree. The
leaves of the tree, will represent the subcodebooks that are
used for encoding the audio signal. The bits specifying the
path to a particular leaf, will specify the bits to be hidden in
the audio signal. And, the root of the tree will represent the
composite channel codebook that is used at the decoder to
decode the hidden bits. As an example, consider the case of
the user wanting to hide two bits corresponding to (1,1) into
an audio coefficient; the user would then use the right-most
codebook (see Fig. 3) to encode the audio coefficient, and
transmit the encoded audio coefficient across the channel.
The decoder would receive the encoded audio coefficient in
addition to some noise and decode the received coefficient
to the closest codeword (relative to some distortion metric)
in the root codebook. The subcodebook containing the de-
coded codeword is then found, and the bits that specify the
path leading to the subcodebook is declared to be the de-
coded data bits. One can observe from Fig. 3 thatÆ, the
distance between codewords in the root codebook, governs
the amount of noise that the decoder can tolerate from the
channel and still recover the hidden bits successfully. For
AWGN channels, the probability of bit error can be found
as

p = Q(

r
Æ2

2N
) (6)

whereN represents the variance of the noise from the chan-
nel. Forn samples, probability of decoding error becomes:

Pe = 1� (1� p)n (7)

Furthermore, one can deduce an estimate of the distortion
that is introduced by calculating the expected distortion us-
ing the probability distribution of the quantization noise.
One should note, that if the channel does not introduce any
noise, thenÆ can be arbitrarily small and the number of lev-
els in the root codebook can be arbitrarily large. In this
case, the lattice tree can be made to be infinite, and hence
an infinite number of bits can be hidden within an audio co-
efficient, while meeting the distortion constraint that is im-
posed by the perceptual mask! We are now equipped with a
general method for hiding data in audio.



The general method for hiding data within audio can
now be summarized by the following steps (refer to Fig. 2
and Fig. 3) (1) Choose a codebook for a group of wavelet
coefficients. Encode this group of coefficients using the
subcodebook that is specified by the data to be hidden in
the coefficients. (2) Send encoded coefficients across the
channel. The decoder will receive the encoded coefficients
and decode each group of coefficients using the composite
codebook for that group of coefficients. One problem, that
the decoder will encounter is that the decoder will not know
which codebook was used for encoding which group of co-
efficients. If we use ann-dimensional lattice partition tree
as our codebook, then the encoder can use different levels
of the tree for encoding each group of coefficients and send
the level of the tree as side information to the decoder. In
general, this method of data hiding will requirelog2(n) bits
of side information per group of coefficients encoded. The
througput representing the number of bits hidden within the
audio coefficients can be optimized in a rate-distortion sense
similar to the work done in [10]. This throughput optimiza-
tion, however, will also depend upon the amount of channel
noise that the decoder is designed to tolerate.

4. APPLICATIONS

Up to now, we have only described the lattice-tree parti-
tion as a possible codebook to use for hiding data within
audio. Using the principles of [11], one can design better
codebooks using similar principles to the tree partition. For
example, a trellis codebook that is partitioned into trellis
subcodebooks can be designed in a manner similar to de-
signing the lattice tree partition. Using the lattice-tree par-
tition, we found that we could hide 140 kbps of data within
CD quality audio (44.1 kHz) without altering the quality of
the audio. Furthermore, the hidden bits could be perfectly
decoded given a signal-to-noise ratio (SNR) of 15 dB. These
results, however, did not accout for the side-information
necessary to specify to the decoder which codebook was
used to encode which group of coefficients. Accounting for
the side-information, we found that we could successfully
hide 100 kbps of data without altering the quality of the au-
dio.

One possible applications of our audio data hiding scheme
is to hide data within CDs for quality enhancement. An-
other more exciting application, is to hide data within ana-
log communication channels. To do so, one would send the
analog audio through an Analog-to-Digital (A/D) converter
and feed the output of the A/D straight to the data hiding
system described by Fig. 2. The output of the hiding system
is then fed through a Digital-to-Analog (D/A) converter and
the output of the D/A is modulated onto the analog com-
munications channel. This application is useful for users
that want to receive extra data but do not have the requisite

bandwidth for transmitting the extra data. Because we have
targeted high-capacity robust data hiding, our method may
be used to transmit significant amounts of extra information
for various applications.

5. CONCLUSION

In this paper we have introduced a robust method of imper-
ceptible audio data hiding. We developed a method of data
hiding that represents the codebook as a tree structure and
varies the height of the tree based on perceptual constraints
given by the audio signal. Our method of audio data hid-
ing can embed over 100 kbps of data in CD quality audio
and still be robust to noise; this is significantly higher than
existing audio data hiding techniques in the literature. As a
result, we can employ our audio data hiding system in vari-
ous applications to significantly improve performance.
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