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ABSTRACT

The previously proposed lattice-ladder adaptive decorre-
lation filtering (LL-ADF) algorithm is further studied and
improved in this work, with the aim of developing a more
efficient co-channel speech separation system. The effect of
the joint linear predictions is first analyzed and the conver-
sions between the lattice coefficients and the prediction and
filter vectors are formulated. The implementation issues on
the estimation of lattice coefficients are then discussed and
the adaptation equations are further refined. Experimental
results demonstrate the effectiveness of the algorithm in re-
ducing cross-interference between co-channel speech sources
as well as the significant performance improvement over the
previous direct-form ADF algorithm. A simplified LL-ADF
is also proposed as a compromise between computational
cost and system performance.

1. INTRODUCTION

A number of co-channel speech separation algorithms uti-
lizing multi-microphone acquisition and second-order statis-
tics have been proposed in the literature [1][2] and shown
effective in separating speech sources from their convolu-
tive mixtures in a variety of applications. In our previous
work [3], a co-channel speech separation system was devel-
oped based on the adaptive decorrelation filtering (ADF)
algorithm [1]. The separation system significantly improved
accuracy on co-channel speech recognition as well as intel-
ligibility on clinical subject listening test [4]. The current
ADF algorithm has several shortcomings due to the use of
direct FIR form in modeling acoustic paths. First of all, it is
often difficult to know the required filter length in advance.
Secondly, the impulse responses of acoustic paths are usu-
ally sparsely spaced, making the direct FIR implementation
inefficient. Finally, a slight change in acoustic environment
can cause significant changes in FIR coefficients and it can
take a long time for the adaptation algorithm to adjust for
such a change.
Lattice-ladder structure has been widely used in adaptive

signal processing such as linear prediction and noise can-
cellation [5][6]. Lattice-ladder filters are modular in struc-
ture, so that additional stages can be added when necessary
without affecting the earlier stages [6]. This provides the
potential flexibility to adapt filter length according to envi-
ronment. Furthermore, when converting a direct-form FIR
filter into the lattice-ladder filter, the filter coefficients be-
come more evenly distributed, which enables more efficient
filter estimation and adaptation.
In our previous work [7], a lattice-ladder ADF (LL-ADF)

algorithm is proposed with the aim of developing a more
efficient separation system. It is intended in this work to
further study and improve on the previous results. This pa-
per is organized into six sections. In Section 2, co-channel
speech separation problem is discussed and the the idea of
applying lattice-ladder decorrelation filters in constructing
a separation system is introduced. In Section 3, the joint
linear predictions defined in [7] is reviewed and their ef-
fect on the input signals is analyzed. The lattice-ladder

decorrelation filter [7] developed from the joint linear pre-
dictions is then described and the conversions between the
lattice coefficients and the prediction and filter vectors are
formulated. The implementation issues on the estimation
algorithm of the lattice coefficients are addressed and the
estimation equations are further refined in Section 4. Ex-
perimental results are presented in Section 5 and a conclu-
sion is made in Section 6.

2. CO-CHANNEL MODEL AND
CO-CHANNEL SPEECH SEPARATION

Assuming that two speech sources exist in a co-channel en-
vironment and that two microphones are used to acquire
the speech signals. Denoting the speech signal generated
by speech source j as xj(t), j = 1, 2 and the signal acquired
by microphone i as yi(t), i = 1, 2, the co-channel environ-
ment can be modeled in the frequency domain as

Y1(f) = H11(f)X1(f) +H12(f)X2(f)
Y2(f) = H22(f)X2(f) +H21(f)X1(f)

(1)

where Hij(f) represents the transfer function that models
the acoustic path from source j to microphone i. It is shown
in [1] that by using a separation system

V1(f) = Y1(f)− F12(f)Y2(f)
V2(f) = Y2(f)− F21(f)Y1(f)

(2)

which generates output signals vi(t)’s, the speech signals
can be separated if the filters Fij ’s satisfy Fij = Hij/Hjj .
Since Hij ’s are usually unknown and time-varying, Fij ’s
need to be estimated and tracked.
Assuming that xj(t)’s are zero-mean and uncorrelated,

the separated signals should also be zero-mean and un-
correlated. In many situations, decorrelation between
vi(t)’s is a simple and effective criterion for estimat-
ing Fij ’s. Define the length-m vector of a signal x(t)

as xm(t) = [x(t), · · · , x(t−m+ 1)]T and choose filters
Fij ’s to be length-M FIR filters with coefficients f

ij
=

[fij(0), · · · , fij(M − 1)]T . It was shown in [1] that for vi(t)’s
to be uncorrelated, f

ij
’s need to satisfy

f
ij
= E

{
vj

M
(t)yj

T

M
(t)

}−1
E

{
vj

M
(t)yi(t)

}
(3)

A lattice-ladder implementation of this separation sys-
tem is proposed in [7] where two length-M decorre-
lation filters are applied parallelly. Each decorrela-
tion filter estimates its ideal filter coefficients h∗ =

E
{
vM (t)y

T

M
(t)

}−1
E

{
vM (t)d(t)

}
from its three input sig-

nals d(t), y(t), and v(t), and generates an output signal
z(t) = d(t) − hT y

M
(t) that is uncorrelated to v(t). By us-

ing yi(t), yj(t), and vj(t) in places of d(t), y(t), and v(t),
Fij can be implemented and the resulting output is vi(t).
The block diagram of this system is shown in Fig. 1.
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Figure 1. Block diagram of the co-channel speech
separation system based on LL-ADF

3. DECORRELATION FILTERING WITH
LATTICE-LADDER STRUCTURE

Let the random processes d(t) and y(t) be convolutive mix-
tures of two zero-mean and uncorrelated signals x1(t) and
x2(t) and let the random process v(t) be a linear transfor-
mation of x2(t). It is shown in [7] that a length-M decorre-
lation filter h can be estimated using an adaptive filtering
process with lattice-ladder structure. The decorrelation fil-
ter h matches the x2-component in y(t) to the one in d(t)
such that the output signal z(t) = d(t) − yT

M
(t)h contains

only x1-component and is thus uncorrelated to v(t).

3.1. Joint Linear Predictions
The lattice-ladder structure is derived based on the joint
forward and backward linear predictions, where the mth
order forward prediction errors are defined as

epf,m(t) = y(t)− yT

m
(t− 1)f

p,m

eqf,m(t) = v(t)− vT
m(t− 1)f q,m

(4)

and the mth order backward prediction errors are defined
as

epb,m(t) = y(t−m)− yT

m
(t)bp,m

eqb,m(t) = v(t−m)− vT
m(t)bq,m

(5)

The ideal values of the mth order prediction vectors are

f∗
p,m
= P−

m pf,m
, f∗

q,m
= P−T

m q
f,m

b∗p,m = P−
m p

b,m
, b∗q,m = P−T

m q
b,m

(6)

in order to satisfy the decorrelation conditions

E {vm(t− 1)epf,m(t)} = E {vm(t)epb,m(t)}
= E

{
y

m
(t− 1)eqf,m(t)

}
= E

{
y

m
(t)eqb,m(t)

}
= 0 (7)

Here the mth order cross-correlation matrix Pm is
defined as E

{
vm(t)y

T

m
(t)

}
and the mth order cross-

correlation vectors p
f,m
, p

b,m
, q

f,m
, and q

b,m
are defined as

E {vm(t− 1)y(t)}, E {vm(t)y(t−m)}, E
{
y

m
(t− 1)v(t)

}
,

and E
{
y

m
(t)v(t−m)

}
, respectively. When Eq. (6) is sat-

isfied, the cross-correlations Ef,m = E {epf,m(t)eqf,m(t)}
and Eb,m = E {epb,m(t)eqb,m(t)} have the same value, i.e.,

E∗
f,m = E

∗
b,m = ryv(0)− qT

b,m
P−

m pb,m
≡ Em (8)

Since the goals of f
p,m

and f
q,m

are to make

E {vm(t− 1)epf,m(t)} = 0, and E
{
y

m
(t− 1)eqf,m(t)

}
= 0,

when m→ ∞ and the forward prediction vectors are equal
to their ideal values, the forward prediction errors should
satisfy

E {epf,∞(t)v(t− τ )} = E {eqf,∞(t)y(t− τ )} = 0, τ > 0
(9)

By combining Eqs. (4) and (9), it is straightforward to show
that

E {epf,∞(t)eqf,∞(t− τ )} = E∞δ(τ ) (10)
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Figure 2. Diagram of the lattice-ladder structure

Therefore, the cross-spectrum between epf,m(t) and
eqf,m(t) is gradually whitened as m increases. Because
epf,m(t) and eqf,m are linear transformations of y(t) and
v(t), respectively, this is equivalent to whitening the cross-
spectrum of y(t) and v(t). Similarly, it can be shown that

E {epb,∞(t)eqb,∞(t− τ )} = E∞δ(τ ) (11)

and the joint backward linear prediction also whitens the
cross-spectrum of y(t) and v(t). Because v(t) contains only
x2-component, the whitening process on the cross-spectrum
of y(t) and v(t) is, in fact, the whitening process on x2(t).

3.2. Lattice-Ladder Structure
To facilitate the construction of lattice ladders, the mth
order stage output is defined as

zm(t) = d(t)− yT

m
(t)hm (12)

To satisfy the decorrelation condition

E {vm(t)zm(t)} = 0 (13)

the ideal value of the mth order decorrelation filter hm is

h∗m = P−
m sm (14)

where sm is defined as E {vm(t)d(t)}.
It is shown in [7] that the prediction errors and the stage

output in each stage can be calculated from the ones in the
previous stage as

epf,m+1(t) = epf,m(t)−Hmepb,m(t− )
epb,m+1(t) = epb,m(t− 1)−Kmepf,m(t)
eqf,m+1(t) = eqf,m(t)−Kmeqb,m(t− )
eqb,m+1(t) = eqb,m(t− 1) −Hmeqf,m(t)
zm+1(t) = zm(t)− Lmepb,m(t)

(15)

where Hm, Km, and Lm are the lattice coefficients in the
mth stage with ideal values

H∗
m =

(
ryv(m+ 1)− qT

b,m
P−

m pf,m

)
E−

m

K∗
m =

(
ryv(−m− 1)− qT

f,m
P−

m pb,m

)
E−

m

L∗
m =

(
rdv(m)− qT

b,m
P−

m sm
)
E−

m

(16)

From Eqs. (4) and (5), the inputs to the initial stage are
epf,0(t) = epb,0(t) = y(t), eqf,0(t) = eqb,0(t) = v(t), and
z0(t) = d(t). On the other hand, the output at the final
stage, zM (t), is the desired output z(t). The diagram of
the lattice-ladder structure defined by Eq. (15) is shown in
Fig. 2.

3.3. Conversion Between the Lattice Coefficients
and the Prediction and Filter Vectors

Because the filtering functions performed by Hi, Ki, and
Li, ∀i ≤ m are equivalent to those performed by f

p,m+1
,

bp,m+1, f q,m+1
, bq,m+1, and hm+1, there exist a one-on-

one conversion between the two sets of parameters. The
conversion algorithms are described below.



3.3.1. From the lattice coefficients to the vectors
If the lattice coefficients Hi, Ki, and Li, ∀i ≤ m are

available, the vectors f
p,i
, bp,i, f q,i

, bq,i, and hi, ∀i ≤ m+1
can be computed using the following procedure:
Step 1. Set i = 1 and initialize the vectors of order 1 as

f
p,1
= bq,1 = [H], bp,1 = f q,1

= [K], and h1 = [L].

Step 2. Computing the vectors of order i + 1 from the
vectors and lattice coefficients of order i as

f
p,i+1

= b↑↓q,i+1 =

[
f

p,i

0

]
+Hi

[ −bp,i

1

]

bp,i+1 = f
↑↓
q,i+1

=
[
0
bp,i

]
+Ki

[
1

−f
p,i

]

hi+1 =
[
hi
0

]
+ Li

[ −bp,i

1

]

Here ↑↓ denotes reverse vector entry order.
Step 3. If i = m, stop. Otherwise increase i by 1 and go

to Step 2.

3.3.2. From the vectors to the lattice coefficients
If f

p,m
(or bq,m), bp,m (or fq,m

), and hm are available,

Hi, Ki, and Li, ∀i ≤ m − 1 can be computed using the
following procedure:
Step 1. Set i = m.
Step 2. Set the lattice coefficients of order i−1 as Hi− =

fp,i(i), Ki− = bp,i(), and Li− = hi(i).
Step 3. For j = 1, 2, · · · , i− 1, compute the entries in the

prediction and filter vectors of order i− 1 as

fp,i−1(j) = bq,i−1(i− j) = fp,i(j)+fp,i(i)bp,i(j+1)

1−fp,i(i)bp,i(1)

bp,i−1(j) = fq,i−1(i− j) = bp,i(j+1)+bp,i(1)fp,i(j)

1−fp,i(i)bp,i(1)

hi−1(j) = hi(j) +
hi(i)[bp,i(j+1)+bp,i(1)fp,i(j)]

1−fp,i(i)bp,i(1)

Step 4. If i = 1, stop. Otherwise decrease i by 1 and go
to Step 2.
It should be noted that the prediction and filter vectors

of lower orders are also computed by the procedure.

4. ESTIMATION OF LATTICE
COEFFICIENTS

In the lattice-ladder structure discussed above, the ideal
values of the lattice coefficients in each stage need to be
estimated. Based on the decorrelation criteria, estimation
equations for the lattice coefficients were derived in [7] as

H(t+)
m = H(t)

m + µHm

[
∆b,mepf,m+(t)eqb,m(t− )
+∆f,mepf,m(t)eqb,m+1(t)

]
K(t+)

m = K(t)
m + µKm

[
∆b,meqf,m+(t)epb,m(t− )
+∆f,meqf,m(t)epb,m+1(t)

]
L(t+)

m = L(t)
m + µLm∆b,meqb,m(t)zm+(t)

(17)
where ∆b,m = sign {Eb,m} and ∆f,m = sign {Ef,m}. How-
ever, two critical implementing issues still need to be ad-
dressed: (1) the choice of adaptation gains µHm , µKm , and
µLm ; and (2) the estimation of ∆f,m and ∆b,m. Because
we use the same lattice coefficient Hm in the order adap-
tation of both epf,m(t) and eqb,m(t) and the same Km in
that of both epb,m(t) and eqf,m(t), it can be shown that

bq,m = f
↑↓
p,m
, bp,m = f

↑↓
q,m
, and, as a result, Ef,m = Eb,m.

Therefore, both Ef,m and Eb,m can be substituted by Em,
and both ∆f,m and ∆b,m can be substituted by ∆m.
By following the analysis commonly used in the LMS al-

gorithm [8], it can be shown that to guarantee the conver-
gence of the lattice coefficients, the adaptation gains need
to satisfy 0 < µHm , µKm < Γm and 0 < µLm < 2Γm, with

Γm being defined as |Em|−1. Based on these bounds, the
estimation equations in Eq. (17) can be revised as

H(t+)
m = H(t)

m + µm(t)
[
epf,m+(t)eqb,m(t− )
+epf,m(t)eqb,m+1(t)

]
K(t+)

m = K(t)
m + µm(t)

[
eqf,m+(t)epb,m(t− )
+eqf,m(t)epb,m+1(t)

]
L(t+)

m = L(t)
m + µm(t)eqb,m(t)zm+(t)

(18)

where µm(t) is defined as

µm(t) =
γ∆̂m(t)∣∣Êm(t)

∣∣+ α (
Êy(t) + Êv(t)

) (19)

with: (1) γ being a constant and 0 < γ < 1; (2) α being

a small positive constant; (3) ∆̂(t) being the estimate of

∆m at time t using a length-L∆ window; and (4) Êm(t),

Êy(t), and Êv(t) being the estimates of Em, E
{
y2(t)

}
, and

E
{
v2(t)

}
at time t using a length-LE window. The reason

for including the second term in the denominator of µm(t)
is to prevent instability when Em(t) changes its sign and
may have a small absolute value.
To tolerate estimation errors, γ is usually chosen to be

significantly smaller than 1. For highly dynamic signals
such as speech, typical choices of γ are around 10−4. The
window length LE needs to be chosen such that reasonably
good estimates of the expectations can be obtained without
introducing long delays. Typical values for LE are between
4000 to 10000 samples. Parameters L∆ and α are unique
for the LL-ADF and will be discussed in Section 5.

5. EXPERIMENTS

Several experiments were carried out to evaluate the LL-
ADF algorithm. In all experiments, the speech source sig-
nals were chosen from the TIMIT database. They were
convolved with the impulse responses measured from real
acoustic paths and then were combined to generate the co-
channel speech signals used in the experiments.

5.1. Choice of Parameters L∆ and α
The first two experiments investigated the effects of the
parameters L∆ and α on the performance of LL-ADF. A
pair of co-channel signals were processed by the LL-ADF
(with M = 200, γ = 10−4, and LE = 5000). In the first
experiment, α was fixed at 0.25, and L∆ was set to 1, 2, 5,
7, 8, and 10. In the second experiment, L∆ was fixed at 5,
and α was set to 1, 0.5, 0.25, 0.1, 0.05, 0.02, and 0. The
target-to-interference ratio (TIR) improvements (averaged
over the two sources) were calculated every 2 s for all cases,
and the results are given in Figs. 3 and 4, respectively.
From Fig. 3, using L∆ = 1 resulted in slow convergence

and poor steady-state TIR improvement (TIRI). This is
because of inaccurate estimation of ∆m and high correlation
between ∆̂m(t) and the prediction errors. Increasing L∆

to 2 through 7 resulted in faster convergence and better
steady-state TIRIs. However, the steady-state performance
became less consistent as with further increases of L∆ due
to the longer delay in detecting the change of ∆m. When
L∆ ≥ 8, the delay was so serious that the system became
unstable.
The effect of α can be observed from Fig. 4. When α = 0,

the system converged fast, but the steady-state performance
was poor and inconsistent. As α increased, the steady-
state performance became better and more consistent, with
the penalty of reduced convergence rate. The reason was
twofold: (1) using a larger α reduced adaptation gain, and
(2) using a larger α made the adaptation gains in different
stages more similar. The lattice-ladder structure’s whiten-
ing effect on the signals was thus reduced.
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5.2. Steady-State Separation Performance
In the third experiment, a set of co-channel signal pairs was
used. The average TIRs were 6.20 dB in y1 and 5.09 dB
in y2. Upon applying the LL-ADF (M = 200, γ = 10−4,
LE = 5000, L∆ = 5, and α = 0.25), the average TIRs were
improved to 16.90 dB in v1 and 17.66 dB in v2, which was
an improvement of more than 10 dB for both source signals.

5.3. LL-ADF, DF-ADF, and Simplified LL-ADF
In the fourth experiment, the same co-channel signals as in
Section 5.1 were processed by the LL-ADF, as well as the
direct-form ADF (DF-ADF) [3]. The parameters of LL-
ADF were the same as in Section 5.2. The filter length of
the DF-ADF was also 200. Its adaptation gain was cho-
sen such that the steady-state TIRI would be the same as
that of the LL-ADF algorithm. The TIRIs are given in
Fig. 5. Compared with the DF-ADF, the LL-ADF provides
better dynamic tracking ability without sacrificing steady-
state separation performance.
In Eq. (19), it is necessary to keep track of Êm and ∆̂m(t)

in each stage. Since LE is usually in the range of 4 000 to 10

000, the memory space required for evaluating Êm becomes
an issue when the number of stages increases. Since the
prediction errors are generated from y(t) and v(t), an ap-

propriate substitute for
∣∣Êm(t)

∣∣ is 1
2

(
Êy(t) + Êv(t)

)
, and

hence µm(t) can be simplified as

µsimp,m(t) = 2γ∆̂m(t)/
(
Êy(t) + Êv(t)

)
(20)

which saves a significant amount of memory space and com-
putational overhead.
To compare the performance of the simplified LL-ADF

with that of the original one, the same co-channel signals
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Figure 5. Convergence performance: A comparison
among LL-ADF, DF-ADF, and simplified LL-ADF

were also processed by simplified LL-ADF. To achieve the
same steady-state TIRI, γ was chosen as 0.08 for µsimp,m(t),
with other parameters remaining the same. The TIRI is
also given in Fig. 5. It shows that the simplified LL-ADF
converged slightly slower than the LL-ADF, but was still
significantly faster than the DF-ADF.

6. CONCLUSION

In this work, the LL-ADF proposed in [7] is further studied.
The effect of the joint linear predictions is first analyzed.
The conversions between the lattice coefficients and the pre-
diction and filter vectors are then formulated. Finally, the
implementation issues on the adaptation algorithm of lat-
tice coefficients are discussed and the algorithm is further
refined. Experiments demonstrate the effectiveness of the
proposed algorithm in reducing cross-interference between
co-channel speech sources as well as the significant per-
formance improvement over the previous direct-form ADF
algorithm. A simplified LL-ADF is also proposed as a
compromise between computational cost and system per-
formance.
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