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ABSTRACT 

An edge-preserving method for image resizing (decimation and 
interpolation) is proposed. The decimation is considered as an 
orthogonal projection with respect to the chosen interpolation 
basis. The latter one is formed in a spline-like manner as a 
linear combination of B-splines of different degrees. This 
combination is optimized in such a way that the small image 
details are preserved. Considering the strongest edges as step 
edges, a segmentation procedure preceding the decimation is 
proposed. It leads to resized images with clearly outlined 
borders.    

1. INTRODUCTION 

Image resizing is an essential task in many image processing 
applications. In the light of the modern sampling theory it can be 
interpreted as finding the signal projection into an admitted 
signal space [1]. Following this paradigm, the synthesis 
(reconstruction) basis is usually first specified according to the 
desired approximation properties. Then, the analysis basis that 
gives the expansion coefficients is taken as (bi)orthogonal to the 
synthesis one. A classical example is the orthogonal basis for 
the band-limited function space that is generated by using the 
integer translates of the sinc function. Recently, B-splines, the 
generating functions for the polynomial spline spaces of the 
respective degrees, have been recognized as an alternative to the 
sinc basis due to many attractive properties. These include the 
explicit expressions in both the time and frequency domains, the 
compact support, the highest regularity for a given order [2]. 
Due to these properties, several approaches have been 
introduced for effective image interpolation and reduction [3], 
[4], [5]. Furthermore, several attempts have been proposed for 
improving the B-splines approximation capabilities. Mainly, 
they have been aimed at optimizing different linear 
combinations of B-splines [6], [7], [8].  

The change in the resolution and the sampling rate when 
resizing an image causes various artifacts such as aliasing, 
ringing, blurring, imaging, etc. [9]. The most influenced and 
destroyed image areas are the image edges. At the same time 
they are the most important features used by the human visual 
system to form and interpret any visual objects [10]. Edge-
directed interpolation algorithms have been proposed [11], and 
edge-modeling approaches have been established, particularly in 
the wavelet domain [10]. Usually, a sharp signal transition is 
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represented in the wavelet domain by a number of significant 
wavelet coefficients. A less costly wavelet representation can be 
achieved by pre-segmenting the signal into relatively smooth 
regions [12]. In this paper, we propose an approach to image 
resizing based on the use of modified B-spline synthesis 
functions. These functions have been especially optimized for 
preserving small image details. Like in a segmented wavelet 
representation, we apply the least-squares decimation technique 
segment-wise, hence preserving the step-like strong edges. 

2. LINEAR EXPANSION BASES 

2.1 Interpolation spline-like kernels   

Consider discrete data on a regular grid: v(n), n=0,1,…, have to 
be interpolated. We assume that this sequence has been 
generated by sampling a certain continuous-time function s(t) at 
integer time instants. If this function is known, the interpolation 
can be performed by resampling it in a finer grid. The function 
s(t) can be described by  its discrete coefficients expansion 
assuming that it belongs to a function space that is generated by 
an appropriately chosen function ϕ :  
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The integer shifts of ϕ should form a Riesz basis to assure that 
the space V(ϕ) is well-defined and closed subspace of the 
Hilbert  space L2 [13]. The model (expansion) coefficients c(k) 
can be found adhering to the interpolation constraint: 
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Then,  

 vc ∗= −1ϕ , (3) 

where ∗ denotes a discrete-time convolution and ϕ -1 is the 
convolution inverse.   

Classical B-spline basic functions. B-splines have been 
recognized as very appropriate space-generating functions. Their   
attractive properties can be listed as follows: they are compactly 
supported with the maximal approximation order for a given 
support, they have maximum regularity for a given order, and 
their smoothness is proportional to their degree [2]. There are 
piece-wise polynomials of degree n (order n+1) with 
equidistantly spaced nodes given as  
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In practice, they can be generated recursively by using the B-
splines of lower degree as follows:  

 10 −∗= nn βββ ,  (5) 

where β 0 is an indicator function for the interval [-½ ½] (B-
spline of degree zero) and * denotes the continuous-time 
convolution. They are symmetrical continuous-time functions 
obeying the partition of unity condition, 1)( =−∑k

n ktβ , 

which assures the preservation of a constant. When sampled at 
integers, symmetrical sequences are obtained. This has been 
exploited for an efficient implementation of (2) with the aid of 
recursive filters [4].  

Modified B-spline functions. As it was commented in [13], not 
only the B-splines themselves, but also their linear combinations 
are bases for V(ϕ). Sometimes it is more appropriate to consider 
other bases, e.g. cardinal, biorthogonal, orthogonal, etc. Another 
interesting case is the one where B-splines of different degrees 
are combined. This alternative provides again symmetrical 
compactly supported functions together with more freedom in 
adjusting the weighting parameters. The prize paid is the loss of 
the highest regularity. Such a combination has been proposed in 
[6] as a particular case of the parametric splines. In this 
construction, the generating function is given by  
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The construction in [7] considers a combination of a centered B-
spline of degree n with its derivatives, that is, B-splines of 
lower degrees. The optimization procedure proposed in [7] has 
been oriented to minimizing the overall approximation error.  

2.2 Decimation kernels 

The adoption of fixed (predetermined) reconstruction method 
demands a decimation method being optimal to the interpolation 
in the least-squares sense. The interpolation in the decimated 
signal’s space can be rewritten in the following matrix form: 

 cΦ=s~ ,  (7) 

where the matrix Φ represents a linear transformation in the 
form of an infinite matrix, containing the basis vectors. The 
least-squares solution for the coefficients c is given by [14] 

 s*)*(c 1 ΦΦΦ= − .  (8) 

Here Φ* is the adjoint operator to Φ. In fact, this solution is a 
projection of the function s onto the space generated by 

)( kx −ϕ (here the sampling rate is supposed to be equal to 

unity) and the linear operator *)* 1 ΦΦΦ −( represents the dual 

basis )(~ kx −ϕ [13]. For the case of resampling, when the initial 

function (image row or column) is discrete, Eq. (8) gives the 
equivalent discrete least-squares solution [14].  

3. EDGE PRESERVATION  
For our purposes, two types of edges are distinguished. A row of 
the Barbara grayscale image is presented in Fig. 2. As seen from 
the figure, there exist oscillating-like changes in the row with 
relatively low amplitudes, forming small image details. There 
exist also jump discontinuities, separating the image row into 
relatively smooth regions. The latter can be modeled by step 
functions [10]. This contribution proposes a technique where the 
image is first separated into segments, according to the location 
of the sharp edges and, then, each segment is treated separately. 
As far as the small details are concerned, we designed an 
appropriate resampling basis function that can effectively 
preserve them.  
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Figure 1. Intensity row of Barbara grayscale image. 

3.1 Preservation of small details 

This contribution concentrates on a combination of third and 
first degree B-splines. Hence, Eq. (6) becomes  

 )1()1()()()( 1
11

1
11

1
10

3mod −++++= ttttt βγβγβγββ  (9) 

This combination is of particular interest since the cubic term is 
smooth enough with a short support and the use of linear terms 
models in a better way the sharp signal parts. In fact, keeping 
the partition of unity condition, that is, 1110 2γγ −= , gives  
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which is nothing but a combination of a smoothing function and 
a difference part or, more broadly, a combination of a scaling 
function and a wavelet. Optimizing the parameter γ11 in an 
appropriate manner gives various tradeoffs between the 
smoothing and sharpening.  

In the optimization, it is assumed that most of the input signal 
energy is located at frequencies less than or equal to α times the 
Nyquist frequency. Two other parameters involved in the 
optimization are δs, giving linearly the maximum attenuation 
level for the corresponding imaging frequencies, and δp, 
indicating that the amplitude response of the corresponding 
interpolator stays within 1 ± δp for frequencies less than or 
equal to α times the Nyquist frequency. The proposed modified 
B-spline is then optimized to minimize δs subject to the given 
ratio ω = δp / δs. A family of modified B-splines optimized for 
various values of α and ω are included in Table I that is used 
later on for comparison purposes.    



3.2 Preservation of strong edges 

The segmentation idea for preserving strong edges is based on 
the following question: why to waste expansion coefficients for 
the jump discontinuity representation when it can be modeled 
just by a step function and, hence, preserved by a simple 
segmentation. In Fig. 1, the possible segmentation points are 
indicated by arrows. The segment-wise decimation and 
interpolation requires that the border conditions as well as the 
decimation and interpolation grids are properly maintained. 
Mirroring is an appropriate alternative for maintaining the 
border conditions because of the use of the symmetrical spline-
like kernels proposed above. Our case differs from the earlier 
segmented wavelet expansions by the fact that the sharp edges 
are determined before the decimation stage. Without 
segmentation, our decimated image is a least-squares 
approximation of the initial image, according to Eq. (8). 
Decimating segment by segment adds some high frequencies in 
this approximation. Metaphorically, this operation can be 
illustrated as a sharp pencil that outlines the borders between 
different intensity regions in the small image. This could be 
especially appropriate in applications demanding small images 
with clearly outlined regions. Since we need an edge map 
indicating the strongest and isolated edges only, we adopted, 
according to our experiments, the Canny edge detector. It was 
applied separately through rows and through columns. Its 
threshold was appropriately tuned to find only the strong edges. 
Hence, the edge map tallies with the originally sized image. If 
one has memory resources, he can keep this map (e.g. 
compressing the edge map into a bitstream and saving it into the 
least-significant pixel bits of the small image). This map can be 
used in the interpolation. If the originally sized edge map is not 
presented, it should be built by using only the information in the 
decimated image. For building sub-pixel edge maps, we adopted 
the method proposed in [11]. It applies a center-on-surround-off 
filtering, which mimics the Laplacian-of-Gaussian filtering, 
followed by a directed linear interpolation to estimate the zero-
crossings on the finer grid. We refer also to the work [15], 
where a method is presented for continuous-time geometrical 
modeling of step edges if the small image had been obtained 
through simple averaging.   

4. EXPERIMENTS 

We made two groups of experiments. The first group was aimed 
at proving the interpolation properties of the modified B-spline 
kernels, while the next group was aimed at demonstrating the 
importance of the segmentation done based on the positions of 
the sharp edges.  

Specifying different fractions α of the Nyquist frequency (see 
Table 1) as containing important signal features, we ran the 
optimization procedure, described in Subsection 3.1, and 
obtained a family of modified B-splines of mixed ‘3+1’ degree.  

In order to compare the splines’ pure interpolation properties, 
we adopted the experiment with successive rotations, where 
only interpolation with no rescaling is involved [9]. We 
compared the performance the modified B-spine family with the 
similar spline-like kernels, called ‘o-moms’ [7], and the 

classical B-splines, as well as with the standardized bi-cubic 
and bi-linear interpolation methods. Table 1 summarizes the 
results, and Fig. 2 clarifies the good capabilities of the new 
basis functions in preserving the small details.  

To emphasize the importance of the proposed segmentation 
based on the location of sharp edges, we used an artificial image 
containing step edges, as shown in Fig. 3(a). It was reduced in 
the horizontal direction by a factor of 2.31 applying least-
squares decimation in respect to the interpolating B-spline 
function. This was performed with and without segmentation. 
Figures 3(b) and 3(c) show zoomed-in regions of the resulting 
images, obtained with and without segmentation, respectively. 
The same zoomed-in regions of the corresponding reconstructed 
images are shown in Figs. 3(d) and 3(e). The smoothing 
artifacts appearing in the non-segmented images are missing in 
the segmented ones, as was desired.   

Parameters of the modified functions SNR in dB after 15x24° 
rotations 

α ω Attenuation,  
−20lgδs, [dB] 

γ 11  Barbara Mandrill Lena 

0.6 0.2 36.4 0.0305 25.75 24.98 34.34 

0.6 0.5 38.0 0.0343 26.28 25.23 34.54 

0.6 1 39.6 0.0374 26.30 25.26 34.45 

0.6 2 42.0 0.0409 25.47 24.86 33.86 

0.7 0.2 27.9 0.0357 26.36 25.27 34.53 

0.7 0.5 29.4 0.0407 25.54 24.90 33.91 

0.7 1 31.4 0.0446 23.39 23.58 32.40 

0.7 2 33.7 0.0485 20.18 20.94 29.72 

0.8 0.2 19.7 0.0424 24.76 24.47 33.39 

0.8 0.5 21.2 0.0490 19.71 20.50 29.29 

 
o-moms 0.0238 24.54 24.38 33.69 

Classic b3 spline 0 21.72 22.73 31.60 

Bi-cubic  18.37 19.19 26.18 

Bi-linear  16.61 16.68 21.49 

Table 1. Results after successive rotations with different 
interpolation functions. 

5. CONCLUSIONS 

When a certain application demands that the original image has 
to be decimated with later possible reconstruction, the 
orthogonal projection paradigm dictates that the decimation 
should be dual (in least-squares sense) operation with respect to 
the interpolation. In our experiments we have considered an 
interpolation basis, taken as a linear combination of B-splines of 
different degrees, optimized in such a way that the resulting 
interpolating functions have improved frequency responses, that 
is, flatter characteristics in the passband and a higher 
attenuation of unwanted images of the original baseband. It was 



shown that they are better at preserving the small image details. 
To improve further the performance in the sense of preserving 
strong image edges we have proposed a technique to build an 
appropriate edge map and to perform the decimation and 
interpolation segment-wise.    
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Figure 2. A part of the Barbara image after 15x24° 
rotations. 
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Figure 3. Reduction and reconstruction of the image.  
a) original image; b) part of the decimated image, 
obtained without segmentation; c) part of  the 
decimated image, obtained with segmented decimation; 
d) part of the reconstructed image, obtained from b) 
without segmentation; e) the same part, reconstructed 
from c) with segmented interpolation. The images b-e 
have been additionally zoomed-in to emphasize the effects. 


