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ABSTRACT

An edge-preserving method for image resizing (decimation and
interpolation) is proposed. The decimation is considered as an
orthogonal projection with respect to the chosen interpolation
basis. The latter one is formed in a spline-like manner as a
linear combination of B-splines of different degrees. This
combination is optimized in such a way that the small image
details are preserved. Considering the strongest edges as step
edges, a segmentation procedure preceding the decimation is
proposed. It leads to resized images with clearly outlined
borders.

1. INTRODUCTION

Image resizing is an essential task in many image processing
applications. In the light of the modern sampling theory it can be
interpreted as finding the signal projection into an admitted
signd space [1]. Following this paradigm, the synthesis
(reconstruction) basis is usualy first specified according to the
desired approximation properties. Then, the analysis basis that
gives the expansion coefficients is taken as (bi)orthogona to the
synthesis one. A classical example is the orthogonal basis for
the band-limited function space that is generated by using the
integer trandates of the sinc function. Recently, B-splines, the
generating functions for the polynomial spline spaces of the
respective degrees, have been recognized as an aternative to the
sinc basis due to many attractive properties. These include the
explicit expressions in both the time and frequency domains, the
compact support, the highest regularity for a given order [2].
Due to these properties, several approaches have been
introduced for effective image interpolation and reduction [3],
[4], [5]. Furthermore, several attempts have been proposed for
improving the B-splines approximation capabilities. Mainly,
they have been amed at optimizing different linear
combinations of B-splines [6], [7], [8].

The change in the resolution and the sampling rate when
resizing an image causes various artifacts such as aiasing,
ringing, blurring, imaging, etc. [9]. The most influenced and
destroyed image areas are the image edges. At the same time
they are the most important features used by the human visual
system to form and interpret any visua objects [10]. Edge-
directed interpolation algorithms have been proposed [11], and
edge-modeling approaches have been established, particularly in
the wavelet domain [10]. Usudly, a sharp signal transition is
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represented in the wavelet domain by a number of significant
wavelet coefficients. A less costly wavel et representation can be
achieved by pre-segmenting the signa into relatively smooth
regions [12]. In this paper, we propose an approach to image
resizing based on the use of modified B-spline synthesis
functions. These functions have been especialy optimized for
preserving smal image details. Like in a segmented wavelet
representation, we apply the least-squares decimation technique
segment-wise, hence preserving the step-like strong edges.

2. LINEAR EXPANSION BASES
2.1 Interpolation spline-like kernels

Consider discrete data on aregular grid: v(n), n=0,1,..., have to
be interpolated. We assume that this sequence has been
generated by sampling a certain continuous-time function s(t) at
integer time ingtants. If this function is known, the interpolation
can be performed by resampling it in a finer grid. The function
S(t) can be described by its discrete coefficients expansion
assuming that it belongs to a function space that is generated by
an appropriately chosen function ¢ :
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The integer shifts of ¢ should form a Riesz basis to assure that
the space V(¢) is well-defined and closed subspace of the
Hilbert space L2 [13]. The model (expansion) coefficients c(k)
can be found adhering to the interpol ation constraint:

s(0),., =v(n) = Y c(k)p(n-k) =
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Then,
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where # denotes a discrete-time convolution and ¢ ™ is the

convolution inverse.

Classical B-spline basic functions. B-splines have been
recogni zed as very appropriate space-generating functions. Their
attractive properties can be listed as follows: they are compactly
supported with the maximal approximation order for a given
support, they have maximum regularity for a given order, and
their smoothness is proportiona to their degree [2]. There are
piece-wise polynomias of degree n (order n+l) with
equidistantly spaced nodes given as
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In practice, they can be generated recursively by using the B-
splines of lower degree as follows:

B"=p°=p"", ©)

where ,B° is an indicator function for the interval [-Y2 Y4 (B-
spline of degree zero) and * denotes the continuoustime
convolution. They are symmetrical continuous-time functions
obeying the partition of unity condition, Zk/j’"(t—k)zl,

which assures the preservation of a constant. When sampled at
integers, symmetrical sequences are obtained. This has been
exploited for an efficient implementation of (2) with the aid of
recursive filters [4].

Modified B-spline functions. As it was commented in [13], not
only the B-splines themselves, but also their linear combinations
are bases for V(¢). Sometimes it is more appropriate to consider
other bases, e.g. cardinal, biorthogonal, orthogonal, etc. Another
interesting case is the one where B-splines of different degrees
are combined. This alternative provides again symmetrical
compactly supported functions together with more freedom in
adjusting the weighting parameters. The prize paid is the | oss of
the highest regularity. Such a combination has been proposed in
[6] as a particular case of the parametric splines. In this
construction, the generating function is given by

N
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The construction in [7] considers a combination of a centered B-
spline of degree n with its derivatives, that is, B-splines of
lower degrees. The optimization procedure propaosed in [7] has
been oriented to minimizing the overall approximation error.

2.2 Decimation kernels

The adoption of fixed (predetermined) reconstruction method
demands a decimation method being optimal to the interpolation
in the least-squares sense. The interpolation in the decimated
signd’ s space can be rewritten in the following matrix form:

S=dc, (7

where the matrix @ represents a linear transformation in the
form of an infinite matrix, containing the basis vectors. The
least-squares solution for the coefficients c is given by [14]

c=(P*P)'d*s. (8

Here ®* is the adjoint operator to ®@. In fact, this solution is a
projection of the function s onto the space generated by
o(x—Kk) (here the sampling rate is supposed to be equal to
unity) and the linear operator (®* @) '®* represents the dual
basis ¢(x—k) [13]. For the case of resampling, when the initial
function (image row or column) is discrete, Eq. (8) gives the
equivalent discrete least-squares sol ution [14].

3. EDGE PRESERVATION

For our purposes, two types of edges are distinguished. A row of
the Barbara grayscale image is presented in Fig. 2. As seen from
the figure, there exist oscillating-like changes in the row with
relatively low amplitudes, forming small image details. There
exist also jump discontinuities, separating the image row into
relatively smooth regions. The latter can be modeled by step
functions [10]. This contribution proposes a technique where the
image is first separated into segments, according to the location
of the sharp edges and, then, each segment is treated separately.
As far as the small details are concerned, we designed an
appropriate resampling basis function that can effectively
preserve them.
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Figure 1. Intensity row of Barbara grayscale image.

3.1 Preservation of small details

This contribution concentrates on a combination of third and
first degree B-splines. Hence, Eq. (6) becomes

leOd M= lBs(t) + yloﬂl(t) + yuﬂl(t +D+ yuﬂl(t -0

This combination is of particular interest since the cubic termis
smooth enough with a short support and the use of linear terms
models in a better way the sharp signd parts. In fact, keeping
the partition of unity condition, that is, y,, =-2y,,, gives

B0 =B +7alB -0 -28'®)+ A +1)], (10)

which is nothing but a combination of a smoothing function and
a difference part or, more broadly, a combination of a scaling
function and a wavelet. Optimizing the parameter 1 in an
appropriate  manner gives various tradeoffs between the
smoothing and sharpening.

In the optimization, it is assumed that maost of the input signal
energy is located at frequencies less than or equal to o times the
Nyquist frequency. Two other parameters involved in the
optimization are &, giving linearly the maximum attenuation
level for the corresponding imaging frequencies, and &,
indicating that the amplitude response of the corresponding
interpolator stays within 1 + & for frequencies less than or
equal to o times the Nyquist frequency. The proposed modified
B-spline is then optimized to minimize & subject to the given
ratio = & / &. A family of modified B-splines optimized for
various vaues of ¢ and @ are induded in Table | that is used
later on for comparison purposes.



3.2 Preservation of strong edges

The segmentation idea for preserving strong edges is based on
the following question: why to waste expansion coefficients for
the jump discontinuity representation when it can be modeled
just by a step function and, hence, preserved by a simple
segmentation. In Fig. 1, the possible segmentation points are
indicated by arrows. The segment-wise decimation and
interpolation requires that the border conditions as well as the
decimation and interpolation grids are properly maintained.
Mirroring is an appropriate aternative for maintaining the
border conditions because of the use of the symmetrical spline-
like kernels proposed above. Our case differs from the earlier
segmented wavelet expansions by the fact that the sharp edges
are determined before the decimation stage. Without
segmentation, our decimated image is a least-squares
approximation of the initial image, according to Eg. (8).
Decimating segment by segment adds some high frequenciesin
this approximation. Metaphorically, this operation can be
illustrated as a sharp pencil that outlines the borders between
different intensity regions in the small image. This could be
especially appropriate in applications demanding small images
with clearly outlined regions. Since we need an edge map
indicating the strongest and isolated edges only, we adopted,
according to our experiments, the Canny edge detector. It was
applied separately through rows and through columns. Its
threshold was appropriately tuned to find only the strong edges.
Hence, the edge map tallies with the originally sized image. If
one has memory resources, he can keep this map (eg.
compressing the edge map into a bitstream and saving it into the
least-significant pixel bits of the small image). This map can be
used in the interpolation. If the originally sized edge map is not
presented, it should be built by using only the information in the
decimated image. For building sub-pixel edge maps, we adopted
the method proposed in [11]. It applies a center-on-surround-off
filtering, which mimics the Laplacian-of-Gaussian filtering,
followed by a directed linear interpolation to estimate the zero-
crossings on the finer grid. We refer aso to the work [15],
where a method is presented for continuous-time geometrical
modeling of step edges if the small image had been obtained
through simple averaging.

4. EXPERIMENTS

We made two groups of experiments. The first group was aimed
at proving the interpolation properties of the modified B-spline
kernels, while the next group was aimed a demonstrating the
importance of the segmentation done based on the pasitions of
the sharp edges.

Specifying different fractions « of the Nyquist frequency (see
Table 1) as containing important signal features, we ran the
optimization procedure, described in Subsection 3.1, and
obtained a family of modified B-splines of mixed ‘3+1' degree.

In order to compare the splines pure interpolation properties,
we adopted the experiment with successive rotations, where
only interpolation with no rescaling is involved [9]. We
compared the performance the modified B-spine family with the
similar splinelike kernels, called ‘o-moms [7], and the

cdassical B-splines, as well as with the standardized bi-cubic
and bi-linear interpolation methods. Table 1 summarizes the
results, and Fig. 2 clarifies the good capabilities of the new
basis functions in preserving the small details.

To emphasize the importance of the proposed segmentation
based on the location of sharp edges, we used an artificia image
containing step edges, as shown in Fig. 3(a). It was reduced in
the horizonta direction by a factor of 2.31 applying least-
squares decimation in respect to the interpolating B-spline
function. This was performed with and without segmentation.
Figures 3(b) and 3(c) show zoomed-in regions of the resulting
images, obtained with and without segmentation, respectively.
The same zoomed-in regions of the corresponding reconstructed
images are shown in Figs. 3(d) and 3(e). The smoothing
artifacts appearing in the non-segmented images are missing in
the segmented ones, as was desired.

Parameters of the modified functions SNRin dB after 15x24°
rotations
o | o | Attenuation, 711 Barbara Mandrill | Lena
—201gd, [dB]

06 | 02 36.4 | 0.0305 25.75 2498 | 34.34
06 | 05 38.0 | 0.0343 26.28 25.23 | 3454
0.6 1 39.6 | 0.0374 26.30 25.26 | 34.45
0.6 2 42.0 | 0.0409 25.47 2486 | 33.86
07| 02 279 | 0.0357 26.36 25.27 | 3453
0.7 | 05 294 | 0.0407 25.54 2490 | 3391
0.7 1 314 | 0.0446 23.39 23.58 | 3240
0.7 2 33.7 | 0.0485 20.18 20.94 | 29.72
08 | 02 19.7 | 0.0424 24.76 2447 | 33.39
08 | 05 21.2 | 0.0490 19.71 20.50 | 29.29
o-moms | 0.0238 2454 24.38 | 33.69
Classic b3 spline 0 21.72 22.73 | 31.60
Bi-cubic 18.37 19.19 | 26.18
Bi-linear 16.61 16.68 | 21.49

Table 1. Results after successive rotations with different
interpolation functions.

5. CONCLUSIONS

When a certain application demands that the original image has
to be decimated with later possible reconstruction, the
orthogonal projection paradigm dictates that the decimation
should be dual (in least-squares sense) operation with respect to
the interpolation. In our experiments we have considered an
interpolation basis, taken as alinear combination of B-splines of
different degrees, optimized in such a way that the resulting
interpolating functions have improved frequency responses, that
is, flatter characteristics in the passband and a higher
atenuation of unwanted images of the original baseband. It was




shown that they are better at preserving the small image details.
To improve further the performance in the sense of preserving
strong image edges we have proposed a technique to build an
appropriate edge map and to perform the decimation and
interpolation segment-wise.
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Figure 2. A part of the Barbara image after 15x24°
rotations.

Figur e 3. Reduction and reconstruction of the image.

a) origina image; b) part of the decimated image,
obtained without segmentation; c) pat of the
decimated image, obtained with segmented decimation;
d) part of the reconstructed image, obtained from b)
without segmentation; e) the same part, reconstructed

from c) with segmented interpolation. The images b-e
have been additionally zoomed-in to emphasize the effects.




