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ABSTRACT

In this paper we present a trainable speech synthesis system that
uses the trended Hidden Markov Model to generate the trajecto-
ries of spectral features of synthesis units. The synthesis units are
trained from a transcribed continuous speech corpus, making the
speech more natural than that produced by conventional diphone
synthesisers which are generally trained from a highly articulated
speech database and require a large investment of time and effort
in order to train a new voice. The overall system has been incorpo-
rated into a PSOLA synthesiser to produce speech that is natural
sounding and preserves the identity of the source speaker.

1. INTRODUCTION

Trainable speech synthesis (more accurately described asvoice
synthesisif we are attempting to retain the training speaker’s char-
acteristics) is the technique where by a customised voice for a
Text-To-Speech (TTS) system is automatically learned via a set of
training data. This type of synthesis relies on obtaining represen-
tative models of context-dependent speech units from the training
set.

In our research we have used the trended Hidden Markov Model
to represent the basic synthesis unit [4]. The standard Hidden
Markov Model (HMM) that has been used widely in speech recog-
nition and more recently in speech synthesis applications [6, 12]
assumes that the modeled data is independent and identically dis-
tributed (IID). We know this assumption to be incorrect for plo-
sives and longer segments of speech sounds, thus, a non-stationary
model of spectral trajectories is required in order to accurately re-
construct such speech segments. This is achieved by including a
linearly varying function of time in our formulation of the synthe-
sis model — hence our use of the trended HMM.

This paper presents our initial work and findings on the application
of trended Hidden Markov Models to trainable speech synthesis.
Trended HMMs have been trained from a Bark scaled Line Spec-
tral Frequency (LSF) parameterisation. Synthesis models have
been trained using isolated words for comparison between trended
and stationary HMMs in Modified Rhyme Testing (MRT). Models
were also trained from a large continuous speech corpus and used
to resynthesise speech using prosody information from the original
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speech. Preliminary results have shown significant improvement
of trended HMMs over stationary HMMs.

The paper is organised as follows. Section 2 describes the train-
ing speech database and automatic labeling process. Section 3 de-
scribes the automatic training of the synthesis units and the in-
corporation of the trended Hidden Markov Models into a PSOLA
synthesiser frame work. Finally, Sections 4 and 5 present the eval-
uation of synthesiser performance and discussion respectively.

2. SPEECH DATABASE AND SEGMENTATION

Trainable speech synthesis requires that we have a phonetically
aligned database from which we can train the speech production
models. A Hidden Markov Model alignment tool was used for
this purpose. The speech analysis comprised a 10th order MFCC
parameterisation plus 0th order coefficient, delta and delta2 terms
(making a total of 33 coefficients). This was used to train 42 left-
right, single-mixture, continuous density monophone HMMs in-
cluding silence and short-pause models. All models comprised of
three states except the plosives which only had two and the frica-
tives which only had one (as recommended in [7]). Context de-
pendent models (cross-word triphones) were cloned and retrained
from the monophone models. State tying was performed using
the decision tree technique resulting in approximately 3000 unique
models. The number of mixtures was incremented to four for each
distribution.

Speaker independent models were initially trained using the male
speakers of the TIMIT phonetically balanced speech corpus. The
speaker dependent database from which synthesis models were
trained comprised the journalistic speakers of the WSJ1 contin-
uous speech recognition corpus. 1200 sentences were aligned for
training of the synthesis models and a further 40 were used as test
sentences. Maximum a posteriori (MAP) and maximum likelihood
linear regression (MLLR) adaptation of the speaker independent
models was performed before alignment of the speech was carried
out. Phonetic transcriptions of the corpus were obtained using the
provided text transcriptions and the CMUDICT 4.0 Amercian En-
glish lexicon [1].

3. SPEECH SYNTHESIS

In this section we describe the design and implementation of the
speech synthesiser. In particular we give an outline of the trended



HMM theory and then detail the training of these models and the
overall speech synthesis system.

3.1. Trended Hidden Markov Models

Proposed by Deng [3], the trended Hidden Markov Model attempts
to capture the non-stationary statistics of speech signals by repre-
senting the feature vector observations,Ot, t = 1; 2; � � � ; T within
state i, as a time varying function plus a stationary residual, Eq.
(1).

Ot =

MX

m=0

Bi(m)fm(t� �i) +Rt(�i) (1)

where the left-hand term is the state-dependent polynomial regres-
sion function of orderM with Bi(m) as the polynomial coeffi-
cients andfm(t � �i) themth order polynomial trend function.
The right-hand term is the residual,Rt, with covariance�i. The
purpose of�i is to normalise the time at which the regression be-
gins (to a value ofzero).

We have used the Legendre family of orthogonal polynomials, Eq.
(2), as used in [4], to estimate the polynomial coefficientsBi(m).
Model parameters are estimated via a two stage process involving
a segmentation step followed by a maximisation step, similar to
the K-means algorithm used to initialise standard HMMs.

f0(t) = 1

f1(t) =
p
3(2x� 1)

f2(t) =
p
5(6x2 � 6x+ 1) (2)

f3(t) =
p
7(20x3 � 30x2 + 12x� 1)

f4(t) = 3(70x4 � 140x3 + 90x2 � 20x+ 1)

wherex = t=T0 such that the polynomialfm(t) is defined on
[0; T0] whereT0 is the duration of the state.

It has been shown [3, 4] that the trended Hidden Markov Model
is able to better fit models to speech data then its stationary coun-
terpart (see Figure 1). From this we would intuitively expect that
its use in a HMM based synthesiser would result in better quality
speech production.

3.2. Training of Synthesis Units

Bark scaled Line Spectral Frequency (LSF) parameterisation of
the training speech with its phonetically aligned transcription (see
Section 2) is sufficient to train a speaker dependent voice using
trended Hidden Markov Models.

Initially, models were trained from a small database of isolated
words which were later used in Modified Rhyme Tests (see Section
4). Phonemes were clustered according to the phonetic classes
of adjacent speech units (eg. Consonant-ae+Nasal). Trended and
stationary HMMs were trained using the tokens from each cluster.

A more comprehensive speech synthesis system was built by train-
ing models from a single journalistic speaker of the WSJ1 database
using 1200 of the 1240 avaliable sentences. The remaining 40 sen-
tences were retained for testing purposes. Given the large quantity
of triphone combinations that are encountered in the English lan-
guage the first task was to cluster similar models in order to reduce
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Figure 1: LSF parameter sequences for (a) trended (3rd order) (b)
stationary HMMs compared with (c) original speech

the overall size of the model set and also to ensure that there was
sufficient training data for each model. This was done by training
a set of standard triphone HMMs and using the decision tree clus-
tering technique to cluster whole models. This also enables the
synthesis of unseen models. A total of approximately 2000 unique
models resulted from over 10,000 observed triphones. State tying
was not performed as the current formulation of trended HMMs
does not enable embedded re-estimation of sub-word model pa-
rameters which is a necessary condition for the training of state
tied HMMs.

Single mixture trended Hidden Markov Models were then trained
using the clustered models determined from the previous step. The
number of states was set to correspond with the stationary HMMs
used for alignment. In order to improve synthesis quality the num-
ber of training tokens used for each model was limited, as it may
be expected that some alignment errors would result from the auto-
matic alignment process, and such tokens should be omitted from
the training process. Hence, a maximum of twenty-four training
tokens were selected based on the average log-likelihood per frame
scored by the speech alignment tool.

3.3. Synthesiser Output

Synthesis of LSF parameters from model statistics is achieved by
calculating the polynomial values over time given the state dura-
tions, Eq. (3). Speech synthesis was carried out using a PSOLA



system with a simple binary excitation scheme.

Ot =

MX

m=0

Bi(m)fm(t� �i); t = �i; � � � ; �i + T0 (3)

Synthesis of words for the Modified Rhyme Test was carried out
using a monotone pitch contour. Line Spectral Frequency and en-
ergy features were synthesised from the model statistics only. State
durations were set according to the mean state occupations mea-
sured during training. Synthesis of sentences from the WSJ1 cor-
pus used the prosody and energy information extracted from the
original test sentences.

In order to reduce spectral discontinuities at state and phoneme
boundaries dynamic features may be used, as developed in [9]. It
was found that the trended HMM synthesis models had relatively
smooth transitions between state and even phoneme boundaries
due to better modelling of LSF trajectories, hence, this technique
was not as essential as for stationary HMMs. This is demonstrated
in Figure 2 which shows the evolution of the smoothed spectrum
with time.
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Figure 2: 3-D smoothed spectrum synthesised using 3rd order
trended HMMs

It has been observed, as in other trainable speech synthesis sys-
tems, that the formant bandwidths tend to be wider and the spec-
tral peaks less significant in the synthesised speech. This results
from the fact that the trajectories are “averaged” during regression
carried out for multiple training tokens. In [10] it is suggested
that this may be rectified by constraining the Line Spectrum Pair
difference parameters. In our current work this was partially com-
pensated for by post-filtering the speech with a spectral sharpening
filter, Eq. (4), as developed in [11].

H(z) =
1�A(z=�)

1�A(z=
)
(4)

whereA(z) = a1(z
�1

) + a2(z
�2

) + � � �+ am(z�m) is themth
order linear prediction filter and0 < � < 
 < 1.

4. EVALUATION

Informal Modified Rhyme Testing was carried out using five un-
trained listeners. The subjects listened to a total of 50 words syn-
thesised using both trended and stationary HMMs. An error rate
of 29.6% and 43.2% was achieved for the trended and stationary
HMMs respectively. The most frequent errors are detailed in Table
1. It can be seen that errors mostly occurred with plosive and nasal
sounds. It was found that, in general, plosives were synthesised
poorly by both trended and stationary HMMs due to the highly
non-stationary behaviour of the phoneme (especially the energy in-
formation), though the trended HMM did provide some improve-
ment. Also, nasal sounds were often mistaken due to flattening of
the formant structure (which is discussed in more detail later on).
A mechanised quality was particularly apparent in sustained vow-
els due to the binary excitation scheme, but generally the trended
HMMs were judged to produce more natural vowel sounds with
fewer spectral discontinuities.

Trended Static
Phone % of Errors Phone % of Errors
/d/ 21.6 /d/ 16.6
/g/ 13.5 /t/ 12.9
/k/ 13.5 /g/ 11.1
/m/ 8.1 /k/ 11.1
/b/ 8.1 /m/ 9.2

Table 1: Most frequent errors in MRT.

Although these results may compare poorly with other speech syn-
thesis systems that are widely available. It is worth noting that
some errors could be attributed to inappropriate vowel durations
under some phonetic contexts. A more advanced duration model-
ing scheme would be expected to improve results for both trended
and stationary HMMs. The system is currently very basic and most
of the errors that were recorded were localised to specific phoneme
classes which our future research can concentrate on improving.

Testing of the models trained from the WSJ1 corpus was carried
out by resynthesising speech from the 40 test sentences using the
trained synthesis models. Observations by untrained listeners fur-
ther support the findings of the MRT testing, in particular, the “for-
mant flattening”. It may be postulated that this is due to the wider
variety of contextual variations that were present in the continuous
speech database compared with the models trained from isolated
words, and vowel, nasal and glide sounds are particularly influ-
enced by the context in which they were uttered. Despite these
apparent short-falls the synthesised sentences still maintained rea-
sonable intelligiblity and naturalness.

Speech synthesis examples may be found at:
http://www.eese.qut.edu.au/˜speech/demos/index.html.

5. DISCUSSION

This paper has presented work on a trainable speech synthesis sys-
tem that utilises the trended Hidden Markov Model. This has the
advantage over previous stationary HMM synthesis techniques in
that it is better able to synthesise spectral trajectories of speech



parameters, especially in vowel and plosive sounds. The use of
trended HMMs was also found to reduce spectral discontinuities
at state and phoneme boundaries when compared with stationary
HMMs. The synthesised speech is natural sounding and maintains
the key characteristics of the training speaker.

It has been noted that the synthesis system tends to exhibit “flat-
tened” formant profiles which result in a degradation in intelligi-
bility, especially in vowel, glide and nasal segments. (see Figure
3). Investigation of this phenomenon has shown it to be a con-
sequence of pooling many phonetic occurrences into a single tra-
jectory model, as explained in Section 3.3. Other research in this
area has displayed similar behaviour [5, 10]. Experiments were
carried out in order to verify this “pooling effect” by generating
synthesis models that were trained from a single occurrence of
each context dependent phoneme with the highest log-likelihood
per frame. The results yielded almost identical perceptual quality
of synthesised speech. It may be postulated that this is because the
most likely phoneme is that which is closest to the centroid of our
pool of training examples.
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Figure 3: Example of formant flattening in the vowel /ax/.

In order to overcome this problem it must be recognised that coar-
ticulation effects span more then just the adjacent phonetic con-
texts, especially in rapidly spoken continuous speech as is often
encountered in the WSJ1 corpus. These coarticulation effects may
be modeled by taking in to account greater phonetic context (eg.
quinphones), but this would further increase problems with spar-
sity of training data. A more practical solution would utilise multi-
ple mixtures of trend functions for each state of our models, which
should be sufficient to capture the significant contextual variations
of spectral trajectories encountered in natural speech. This is the
direction that will be taken in our future work.

It was also observed that in some cases, models produced poorly
synthesised speech (esp. plosives), probably due to excessive time
modification of these sounds coupled with insufficient modeling of
their dynamic behaviour. Future work needs to incorporate an im-
proved duration modelling scheme that will better constrain such
phenomena. Some instances may also have been due to inappro-
priate selection of training tokens for that synthesis unit. A more
robust training unit selection algorithm that utilises multiple se-
lection criteria — such as phone duration, voicing and pitch —
in addition to the log-likelihood of the phone need to be imple-
mented.

In addition to addressing the challenges that have been discussed
above, we shall also endeavour to implement a full synthesis of
speech by incorporating our automatically trained voices into the
Festival Text-To-Speech system.
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