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ABSTRACT speech. Preliminary results have shown significant improvement
of trended HMMs over stationary HMMs.

In this paper we present a trainable speech synthesis system thagpe naner is organised as follows. Section 2 describes the train-
uses the trended Hidden Markov Model to generate the trajecto-j,g sneech database and automatic labeling process. Section 3 de-
ries of spectral features of synthesis units. The synthesis units argqrjnes the automatic training of the synthesis units and the in-
trained from a transcribed continuous speech corpus, making the,,noration of the trended Hidden Markov Models into a PSOLA
speech more natural than that produced by conventional diphonegy esiser frame work. Finally, Sections 4 and 5 present the eval-

synthesisers which are generally trained from a highly articulated | /5t of synthesiser performance and discussion respectively.
speech database and require a large investment of time and effort

in order to train a new voice. The overall system has been incorpo-
rated into a PSOLA synthesiser to produce speech that is natural 2. SPEECH DATABASE AND SEGMENTATION
sounding and preserves the identity of the source speaker.

Trainable speech synthesis requires that we have a phonetically
aligned database from which we can train the speech production
models. A Hidden Markov Model alignment tool was used for
this purpose. The speech analysis comprised a 10th order MFCC
Trainable speech synthesis (more accurately describedias parameterisation plus Oth order coefficient, delta and Hédtans
synthesisf we are attempting to retain the training speaker's char- (making a total of 33 coefficients). This was used to train 42 left-
acteristics) is the technique where by a customised voice for aright, single-mixture, continuous density monophone HMMs in-
Text-To-Speech (TTS) system is automatically learned via a set of cluding silence and short-pause models. All models comprised of
training data. This type of synthesis relies on obtaining represen-three states except the plosives which only had two and the frica-
tative models of context-dependent speech units from the trainingtives which only had one (as recommended in [7]). Context de-
set. pendent models (cross-word triphones) were cloned and retrained
In our research we have used the trended Hidden Markov Modelffom the monophone models. State tying was performed using
to represent the basic synthesis unit [4]. The standard Hiddenthe decision tree technlqu(_e resulting in approximately 3000 unique
Markov Model (HMM) that has been used widely in speech recog- mod_els._The number of mixtures was incremented to four for each
nition and more recently in speech synthesis applications [6, 12] distribution.

assumes that the modeled data is independent and identically disSpeaker independent models were initially trained using the male
tributed (1ID). We know this assumption to be incorrect for plo- speakers of the TIMIT phonetically balanced speech corpus. The
sives and longer segments of speech sounds, thus, a non-stationagpeaker dependent database from which synthesis models were
model of spectral trajectories is required in order to accurately re-trained comprised the journalistic speakers of the WSJ1 contin-
construct such speech segments. This is achieved by including aious speech recognition corpus. 1200 sentences were aligned for
linearly varying function of time in our formulation of the synthe-  training of the synthesis models and a further 40 were used as test
sis model — hence our use of the trended HMM. sentences. Maximum a posteriori (MAP) and maximum likelihood
linear regression (MLLR) adaptation of the speaker independent
of trended Hidden Markov Models to trainable speech synthesis, Mdels was performed before alignment of the speech was carried
Trended HMMs have been trained from a Bark scaled Line SpeC-OUt' _Phonenc transcnpt_lons of the corpus were obtained using the
tral Frequency (LSF) parameterisation. Synthesis models havepr_owded_ text transcriptions and the CMUDICT 4.0 Amercian En-
been trained using isolated words for comparison between trended!ish lexicon [1].

and stationary HMMs in Modified Rhyme Testing (MRT). Models

were also trained from a large continuous speech corpus and used 3. SPEECH SYNTHESIS

to resynthesise speech using prosody information from the original

1. INTRODUCTION

This paper presents our initial work and findings on the application

This work was supported by the CSIRO Division of Telecommunica- In this section we describe the design and implementation of the
tions and Industrial Physics. speech synthesiser. In particular we give an outline of the trended



HMM theory and then detail the training of these models and the
overall speech synthesis system.

3.1. Trended Hidden Markov Models

Proposed by Deng [3], the trended Hidden Markov Model attempts
to capture the non-stationary statistics of speech signals by repre-
senting the feature vector observatiofs,t = 1, 2, - - - , T within d
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where the left-hand term is the state-dependent polynomial regres-
sion function of orderM with B;(m) as the polynomial coeffi-
cients andf,, (¢t — 7;) the mth order polynomial trend function.
The right-hand term is the residudt,, with covariancex;. The
purpose ofr; is to normalise the time at which the regression be-
gins (to a value otero).

We have used the Legendre family of orthogonal polynomials, Eq.
(2), as used in [4], to estimate the polynomial coefficieBigm).
Model parameters are estimated via a two stage process involving
a segmentation step followed by a maximisation step, similar to
the K-means algorithm used to initialise standard HMMs.
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) Figure 1: LSF parameter sequences for (a) trended (3rd order) (b)
= V5(62” — 6z + 1) 2 stationary HMMs compared with (c) original speech

the overall size of the model set and also to ensure that there was
sufficient training data for each model. This was done by training
a set of standard triphone HMMs and using the decision tree clus-
It has been shown [3, 4] that the trended Hidden Markov Model tering technique to cluster whole models. This also enables the
is able to better fit models to speech data then its stationary coun-synthesis of unseen models. A total of approximately 2000 unique
terpart (see Figure 1). From this we would intuitively expect that models resulted from over 10,000 observed triphones. State tying
its use in a HMM based synthesiser would result in better quality was not performed as the current formulation of trended HMMs

wherez = t¢/T, such that the polynomiaf., (t) is defined on
[0, To] whereTj is the duration of the state.

speech production. does not enable embedded re-estimation of sub-word model pa-
rameters which is a necessary condition for the training of state
tied HMMs.

3.2. Training of Synthesis Units

Single mixture trended Hidden Markov Models were then trained
Bark scaled Line Spectral Frequency (LSF) parameterisation of using the clustered models determined from the previous step. The
the training speech with its phonetically aligned transcription (see number of states was set to correspond with the stationary HMMs
Section 2) is sufficient to train a speaker dependent voice usingused for alignment. In order to improve synthesis quality the num-
trended Hidden Markov Models. ber of training tokens used for each model was limited, as it may
be expected that some alignment errors would result from the auto-
matic alignment process, and such tokens should be omitted from
the training process. Hence, a maximum of twenty-four training
Eokens were selected based on the average log-likelihood per frame
Scored by the speech alignment tool.

Initially, models were trained from a small database of isolated
words which were later used in Modified Rhyme Tests (see Section
4). Phonemes were clustered according to the phonetic classe
of adjacent speech units (eg. Consonant-ae+Nasal). Trended an
stationary HMMs were trained using the tokens from each cluster.

A more comprehensive speech synthesis system was built by train-

ing models from a single journalistic speaker of the WSJ1 database3.3. Synthesiser Output

using 1200 of the 1240 avaliable sentences. The remaining 40 sen-

tences were retained for testing purposes. Given the large quantitySynthesis of LSF parameters from model statistics is achieved by
of triphone combinations that are encountered in the English lan- calculating the polynomial values over time given the state dura-
guage the first task was to cluster similar models in order to reducetions, Eq. (3). Speech synthesis was carried out using a PSOLA



system with a simple binary excitation scheme. 4. EVALUATION

M
0= Bim)fu(t—m7), t=m,,n+T (3) Informal Modified Rhyme Testing was carried out using five un-
— trained listeners. The subjects listened to a total of 50 words syn-
thesised using both trended and stationary HMMs. An error rate

Synthesis of words for the Modified Rhyme Test was carried out of 29.6% and 43.2% was achieved for the trended and stationary
using a monotone pitch contour. Line Spectral Frequency and en-HMMs respectively. The most frequent errors are detailed in Table
ergy features were synthesised from the model statistics only. Statel. It can be seen that errors mostly occurred with plosive and nasal
durations were set according to the mean state occupations measounds. It was found that, in general, plosives were synthesised
sured during training. Synthesis of sentences from the WSJ1 cor-poorly by both trended and stationary HMMs due to the highly

pus used the prosody and energy information extracted from thenon-stationary behaviour of the phoneme (especially the energy in-
original test sentences. formation), though the trended HMM did provide some improve-

ment. Also, nasal sounds were often mistaken due to flattening of

In order to reduce spectral discontinuities at state and phonemet R . .
. . . he formant structure (which is discussed in more detail later on).
boundaries dynamic features may be used, as developed in [9]. It

. ; A mechanised quality was particularly apparent in sustained vow-
was found that the trended HMM synthesis models had relatively els due to the binary excitation scheme, but generally the trended

smooth transitions between state and even phoneme boundarie . .
. . ) . ; MMs were judged to produce more natural vowel sounds with
due to better modelling of LSF trajectories, hence, this technique . S
fewer spectral discontinuities.

was not as essential as for stationary HMMs. This is demonstrated
in Figure 2 which shows the evolution of the smoothed spectrum
with time.

Trended Static
Phone| % of Errors | Phone| % of Errors
/d/ 21.6 /d/ 16.6
g/ 13.5 It 129
/Kl 13.5 g/ 11.1
/m/ 8.1 Kl 111
® /bl 8.1 Im/ 9.2

40

20 Table 1: Most frequent errors in MRT.

Although these results may compare poorly with other speech syn-
thesis systems that are widely available. It is worth noting that

some errors could be attributed to inappropriate vowel durations
under some phonetic contexts. A more advanced duration model-
ing scheme would be expected to improve results for both trended
and stationary HMMs. The system is currently very basic and most

< S 0 of the errors that were recorded were localised to specific phoneme
e 0 150 classes which our future research can concentrate on improving.
005 " 2500 . . .
E Testing of the models trained from the WSJ1 corpus was carried
time (s) frea (H2) out by resynthesising speech from the 40 test sentences using the

trained synthesis models. Observations by untrained listeners fur-
Figure 2: 3-D smoothed spectrum synthesised using 3rd orderther support the findings of the MRT testing, in particular, the “for-
trended HMMs mant flattening”. It may be postulated that this is due to the wider

variety of contextual variations that were present in the continuous

speech database compared with the models trained from isolated
It has been observed, as in other trainable speech synthesis syswords, and vowel, nasal and glide sounds are particularly influ-
tems, that the formant bandwidths tend to be wider and the spec-enced by the context in which they were uttered. Despite these
tral peaks less significant in the synthesised speech. This resultsapparent short-falls the synthesised sentences still maintained rea-
from the fact that the trajectories are “averaged” during regressionsonable intelligiblity and naturalness.
carried out for multiple training tokens. In [10] it is suggested
that this may be rectified by constraining the Line Spectrum Pair
difference parameters. In our current work this was partially com-
pensated for by post-filtering the speech with a spectral sharpening

Speech  synthesis examples may be found at:
http://www.eese.qut.edu.au/"speech/demos/index.html

filter, Eq. (4), as developed in [11]. 5. DISCUSSION
H(z) = L(Z/ﬂ) 4 . . .
(2) = 1—A(z/7) (4) This paper has presented work on a trainable speech synthesis sys-
tem that utilises the trended Hidden Markov Model. This has the
whereA(z) = a1(z7 ") + a2(272) + - - - + am (27™) is themth advantage over previous stationary HMM synthesis techniques in

order linear prediction filter anfl < 8 < v < 1. that it is better able to synthesise spectral trajectories of speech



parameters, especially in vowel and plosive sounds. The use ofin addition to addressing the challenges that have been discussed
trended HMMs was also found to reduce spectral discontinuities above, we shall also endeavour to implement a full synthesis of
at state and phoneme boundaries when compared with stationargpeech by incorporating our automatically trained voices into the
HMMs. The synthesised speech is natural sounding and maintaing-estival Text-To-Speech system.

the key characteristics of the training speaker.
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