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ABSTRACT

Extending an existing architecture for delta-sigma conversion of
vector inputs, we suggest spectrally shaping quantization noise
jointly in temporal and spatial frequency domains with delta-sigma
modulation, and we examine the application of the idea to wide-
band antenna or acoustic arrays and to halftoning of video imagery.

1. INTRODUCTION

Delta-sigma (AX) modulation is widely used in D/A and A/D
conversion to obtain high precision, linearity, and dynamic range
in exchange for a higher sampling rate or lower bandwidth [1]
by placing a low-resolution quantizer inside a feedback loop to
spectrally shape quantization noise to minimize its interference
with the signal. Out-of-band quantization noise is then removed
with digital or analog filtering according to the application (A/D
or D/A). High oversampling rates (rates relative to signal band-
widths) result in signal-to-noise ratio (SNR) levels often exceeding
the roughly 100 dB limit of conventional (Nyquist-rate) converters.
One-bit quantizers have traditionally been used for their automati-
cally near-ideal characteristics, but newer multi-bit AX-like archi-
tectures [2-5] spectrally shape hardware-mismatch errors as well
and lower oversampling requirements by increasing parallelism.

Spatial AY modulation of images to produce halftone images
from continuous-tone ones is known as error diffusion [6, 7]. Typ-
ically, continuous-valued image files viewed on a monitor at 100
dots per inch (DPI) are converted to 600+ DPI binary-valued im-
ages for printing. Single-bit quantizers are used, but less for being
ideal than because they model printers and displays with binary-
valued pixels. The inherent lowpass nature of human vision then
replaces the explicit post-modulator filtering that removes quanti-
zation noise in temporal AY modulation. The eye’s sensitivity is
much lower than the 100 dB mentioned before, so lower oversam-
pling rates and filter orders are typically used in halftoning than in
temporal applications. Further, human vision is necessarily sub-
jective, and so SNR measures can involve more than just in-band
signal and noise power levels.

Given the benefits of temporal and spatial AY modulators
individually, it is natural to consider jointly oversampling space
and time in a space-time AXY. modulator. An obvious applica-
tion is halftoned video sequences for simple binary displays. A
perhaps more technically challenging application is digitally con-
trolled transmit arrays of medium to high bandwidth for RF (com-
munications, radar) or acoustic (sonar) systems in which hardware
simplicity and perfect amplifier linearity make single-bit outputs
attractive. Here we first extend previous AX results to the case of
joint space-time modulation and then consider the applications.
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Fig. 1. Space-time AY modulator. The loop filter matrix is square.
The shapes of other boxes indicate relative matrix dimensions.

2. SPACE-TIME AYX MODULATION

Our architecture for space-time AX modulation is shown in Fig. 1
and is a natural extension of our earlier vector A architecture [8].
Input vector a[n] represents the original, high-resolution signal
to be AX-modulated, and the block applies
unit-sample response matrix r[n] to create spatially and tempo-
rally bandlimited input b[n] for input to the AX modulation loop.
In a wideband array, N x 1 vector a[n] might contain scalar wave-
forms to be transmitted, and columns of M x N matrix r[n] would
act as individual beamformers to generate individual array-element
drives. For video, K N x 1 vector sequence a[n] of two-dimensional
images with N pixels of K color components each could be spa-
tially and temporally interpolated using M x K N matrix r[n].

Each vector coordinate inside the AX loop corresponds to a
hardware unit element, perhaps a switch feeding a radiator in an
array or a color component (i.e. RGB) of a pixel. The loop is
closed around a L oop Filter operating on the quantization error of
a Vector (Spatial) Quantizer. Sequential computability requires
strict causality in the loop-filter impulse response, or h[0] = L
The quantizer output is the AX-modulated space-time signal.

Matrix Unit-Sample Response p(z, t) and matrix S” charac-
terize the physics of combining unit-element outputs at time ¢ after
a unit-sample input at position . The mathematically unnecessary
decomposition into two matrices is convenient for hardware mod-
eling. For arrays, S” p(z, t) is a L x M matrix, with L the number
of electromagnetic polarization components or acoustic propaga-
tion modes of interest and M the number of unit elements. For K
color-component video imagery, itisa K x M matrix.

Begin the detailed analysis of Fig. 1 with the quantizer input,

ufn] = (r +a)[n] + (h x e)[n] — e[n],

where « represents conventional discrete-time matrix-vector con-
volution. The quantizer output becomes

wn] = (r xa)[n] + (h*e)[n].

y(z, 1)



Defining a temporal convolution in continuous/discrete-time by

(p*b)(@,t) 2Ty p(a, t — kT) blK],

with T denoting both the system sampling interval and transpose?
the final system output, before/after Fourier transforming on ¢, is

y(@,t) = (S"prrx*a)(z,t)+

(STp*h*e)( ,1), Q)
S"P(, f) TR(fT) A(fT) +
S"P(z, ) TH(T)E(/T). O

On the right in each the first and second terms are the desired signal
and the quantization error respectively, each shaped by the pulse
matrix after filtering. To suppress the error term at spatio-temporal
frequencies containing desired signal components, one must care-
fully choose the spatial locations of unit elements (antenna ele-
ments, transducers, or ink dots), the vector-quantization rule, the
signal and noise frequency responses R(fT") and H(fT'), and
possibly even pulse-response matrix p(«,t). We next consider
the details for arrays and video sequences separately.
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3. APPLICATIONS

3.1 Wideband Antenna Arrays

A new generation of RF transmitters keeps signals digital nearly to
the individual antenna-element inputs where D/A conversion, ana-
log filtering, and power amplication finally takes place. Tremen-
dous flexibility in choosing array patterns results [9, 10], ideally
for each of several signals separately. Intermodulation will be un-
acceptable, however, unless any high-power amplifiers handling
multiple simultaneous signals are extraordinarily linear. One op-
tion is to forego conventional amplifiers and instead AY modu-
late high-power switches [11]. Adding closely spaced antenna el-
ements to this scheme boosts output power per unit aperture and
opens the door to joint spatial and temporal AY. modulation.*

To analyze such a system, let element k& of vector w[n] in
Fig. 1 be the time nT input to high-power switch  feeding? an
antenna element at position x;. Let the kth diagonal 3 x 1 block
of p(x,t) model linear, time-invariant propagation from switch
input & to the fields at position « so that elements 3k, 3k + 1, and
3k + 2 of vector (p x w)(z,t) are the z, y, and z components
of the electric field at position 2 and time ¢. Off-block-diagonal
entries represent crosstalk and mutual coupling between elements.
Superposition of switch/element fields is modeled by block matrix
ST = [Is,1s,...,I3], assembled from 3 x 3 identity matrices.
System output y (x, t) becomes a 3 x 1 vector of field components.

Array Pattern and Noise Transfer Function

We now examine in more detail the responses that modify signal
and noise in (2). Writing the kth column of sTP (z, f) as Py (x —

1The situation is similar for ultrasonic arrays; see [12].

2Summing multiple switch outputs together to feed a single physical
element would allow shaping of hardware-mismatch errors using dynamic
element matching (DEM) [5, 8]. This is simply modeled with nonunique
x’s. A DEM version of this system would require generalization of our
analysis however, which for simplicity assumes that k — x. is one to one.

Xk, f), the desired-signal (first) term of (2) becomes

ZPk :B—Xk, TZRkn fT fT)

Yov,f) = ZPk(v,f)TZRk,n(fT)e’”Z”’“”An(fT),
k n

where we have transformed to the far field (see Appendix A) in the
second line. If element responses are identical then ﬁk(v, f) =
Po(v, f) can be factored from the summation over k, which is
then recognized as a spatial Fourier transform:

Y (v, f) = TZ By A (fT).

This extends the classic array-pattern formulation to multiple in-
puts, with the pattern seen by nth input A, (fT) just the product of

element pattern Py (v, f) and the nth array factor T'R,, (v, fT').
Taking the error term of (2) through similar stages,

Ye(@, f) = Y Pu@—xp, )TY Hea(fT)En(fT)
k n

Ye(w,f) = Po(v, )T Y Hin(fT)e ™t EL(ST) (4)

k,n

f)O(vaf)TZﬁn(vvfT)En(fT)‘ (5)

Frequency repsonse ﬁn(v, fT) is the spatial and temporal shap-
ing of element E,, (fT") of the quantization error.

How does (5) relate to the spatio-temporal spectrum of the
quantization error? Suppose element locations {xy } are distinct
and that interpolation function 1, (&), with Fourier transform ¥, (v),
is constructed such that ¢, (—&m) = dnm, & Kronecker delta.
(The minus sign will prove convenient.) Insert

> [ on(-2)sle —xn) de =3 b =1

and two superfluous conjugations into (4) and rearrange:

Ye(’v,f) = ok (6)
Po(w. ) [ | 7| e Hn (4T (-a)

n,k

x (Z En(fT)5(

m

T — xm)) dx.

Parseval’s relation applies. Fourier transforming parenthesized quan-
tities from spatial variable & to a spatial-frequency variable, say ),

E(n, fT) = ZEm (fT) e 2 emn (7)

(.5 1) 217 [l (57) | i) @)
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Parseval’s relation now reveals (6) to be a linear-system integral:

Yel(w.f) = Po(w. 1) [ F(w.m fT) B, 1T)dm. 9

Linear-system input-output relation (9) is the heart of the mat-
ter. The final parenthesized quantity in (6) is the error signal con-
centrated spatially on element locations {x }, here acted on in the



transform domain in (9) by noise-shaping response A (v,n; fT).
This depends on one temporal input-output frequency but on input
and output spatial frequencies separately. It therefore represents
a linear system that is time-invariant but not space invariant [13].
Its response should be designed to distribute the noise in its out-
put space R? x R of spatio-temporal frequencies (v, f) so that the
final application in (9) of P(v, f), the spatio-temporal frequency
response of the antenna element, will discard most of the noise.
Identical elements have made this element system space invariant
as well as time invariant. Further, its spatio-temporal frequency re-
sponse is automatically zero except on the Helmholtz cone defined
by |f| = ||v||, the “visible region” of spatio-temporal frequency
space (Appendix A).

Satial and Temporal Oversampling

Strict-causality requirement h[0] = I prohibits suppressing quan-
tization noise everywhere, so the noise must instead be placed out
of band. Where is that? Element locations {x,} and sampling
interval T control the structure of the signal and noise input to
the element system, and both are well defined and nonzero on the
whole (v, ) space. Period 7~ in temporal frequency f has been
implied throughout by the discrete-time system structure. Arbi-
trary element locations can lead to aperiodic functions of spatial
frequency, but if the elements lie on some lattice AZ? defined by
matrix A then both signal and noise terms are periodic in spatial
frequency as well with period A~T Cartesian product A =T x 7!
then gives the overall spatio-temporal frequency period. This must
be made large enough to include an out-of-band region, preferably
off the visible (Helmholtz) cone entirely. Once this is done, filter
responses R, (v, fT) and H(v,n; fT) can be chosen to maxi-
mize SNR in the in-band portion of the visible region.

As a simple example, take elements uniformly spaced at inter-
val d along the 2 axis, and use spatial frequency v = (v, vy, v:)".
Rewriting the right-hand sides of (3) and (5) as Po (v, f)Ws(v, f)
and Po(v, f)We(v, f), the implicitly defined signal and noise
spectra W (v, f) and W, (v, f) have period 1/d in v, and are un-
changing as v, and v, vary. Projecting into the (v, f) plane and
considering only positive temporal frequencies, we have the four
choices illustrated in Fig. 2. The central trapezoid is the in-band
portion of the visible cone, projected into the plane, and the bound-
ing rectangle is one period of the signal and noise spectra and cor-
responds to particular choices of 7" and d. Out-of-band regions
where quantization noise can be placed are shaded. In the upper
right, 71 is chosen just slightly larger than the signal bandwidth,
and d = ¢/2fn = An/2, the classic choice. There is no over-
sampling, and no noise shaping is possible. On the bottom right,
an increased 7' allows noise shaping in temporal frequency by
using independent scalar AY: converters to drive the individual el-
ements of a conventional array (suggested in [14]). On the upper
left, there is oversampling in space only, corresponding to running
a AY. modulator across the array at each time interval, a sort of
instant-by-instant RF halftoning. Joint temporal and spatial over-
sampling appears at the lower left. The much larger area in which
to place noise should allow much better performance.

3.2 Video Halftoning

Video halftoning is more straightforward. Signal sequences are
temporally lowpass, not bandpass. And at each time instant, im-
ages are lowpass functions of two spatial dimensions, not three,
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Fig. 2. Example signal and quantization-noise regions.

and the unit elements (pixels) are generally on a rectangular lattice.
Moreover, the relevant frequency domain is not based on coherent
far-field propagation but instead on the straightforward temporo-
spatial Fourier spectrum of the video intensity distribution. The
bandlimited nature of wave propagation (the visible region) is also
unimportant. It is the lowpass nature of the eye, both spatially and
temporally, that filters out high-frequency quantization errors.

In Fig. 1, each color gets some consecutive number of ele-
ments in each vector, possibly a different number for each color,
depending on the relative densities of different-colored pixels and
their locations. Composite pixels are simply separate monochrome
pixels with identical locations. Spatio-temporally oversampled low-
pass signal b[n] represents spatio-temporal intensity distributions
input to the modulator loop. The quantizer output represents the
binary intensities driving display pixels. Pixel-intensity response
matrix p(a, t) representing the display is block diagonal by color
with each block itself diagonal by pixel location. With K x 1
block-diagonal S™ = diag(s”,...,s”)ands” = (1,...,1), the
video output is compactly represented as the K x 1 vector of color
components y(x, t).

4. SUMMARY AND CONCLUSIONS

We have presented the basic theory of and an architecture for joint
spatial and temporal AX. modulation, focusing on key potential
applications. Much work remains to be done in extending existing
AY: stability theory and loop filter design to the joint space-time
case, as well as in quantizer design. As an example of the latter,
the vector quantizer in Fig. 1 might itself be a spatial-only AX
modulator, so that the resulting errors are already shaped spatially.
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APPENDIX A. THE FAR-FIELD ANTENNA PATTERN
Here we review the far-field spatial response of an isotropic ra-

diator located at xo, relating it to a four-dimensional function of
spatial and temporal frequency. The spatial and temporal response
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Fig. 3. The visible cone in two spatial-frequency dimensions.

(i.e. the electric field component of interest) of a spatially-offset
isotropic antenna element to a (temporal) input impulse is

L5t —llw —xoll/c).  (10)

p(x —xo,t) = M5

By the physics of electromagnetic propagation, the field is causal
in time, propagates at a speed ¢, and has field strength decaying as
reciprocal distance. The norms in (10) expand to

2xTz %02
& —xoll = lle|4/1 — =25 + 5
llell* ~ lz|?

In the far field defined as ||z|| > ||x.||, the square root is of form
V1 —26 ~1—6,s0 (10) with a change of variable becomes

x0T HXoH2>

cllel 2|zl

Hﬂm@—xmerW@z5G+
Fourier transforming on ¢ results in

) L xje - lxoll?
||| P(x — %0, f)e’ ™ 121/e n 2™ Tl e =™l F - (12)

If |f| < fo forall frequencies of interest, ||xo|| < D for all poten-
tial offsets xo, and D? fo/c < |||, then the second exponential
is approximately unity and the right side of (11) becomes

. T
Fry(u, f) S /2m0I /¢

using unit direction vector w = x/||x||. This is the Fraunhofer
approximation [15, p. 123] where the “output plane” is here the
single far-field point . Propagation to the Fraunhofer region ef-
fectively Fourier transforms the field spatially. Substitution of spa-
tial frequency v = —u f/c (reciprocal-distance units) yields

A . T
Pr() 2 e 2w

the spatial Fourier transform of an impulse at xo, a convenient
model of an isotropic radiator. By the definition of v we have
the Helmholtz equation ||v|| = |f|/c, which restricts the spatial
frequencies of propagating waves with temporal frequency f to a
spherical surface of radius |f|/c. Other spatial-frequency compo-
nents, so-called evanescent waves, die out a small distance from
the antenna. So, far-field propagation is an ideal spatial bandpass
filter, or if only a single component of v is considered, a spatial
lowpass filter with temporal-frequency-dependant cutoff at | f|/c.
Generally, the fields radiated into the far field are given by
a four-dimensional spatio-temporal transfer function [13] of form
P(v, f) = P(v)d(f — c|lv])). All of its mass is on the visible
cone defined by the Helmholtz equation and shown in Fig. 3.



