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ABSTRACT

Theasymptotic optimal performanceof variable-ratevec-
tor quantizers of fixed dimension and large rate was first de-
veloped in a rigorous fashion by Paul Zador. Subsequent
design algorithms for such compression codes used a La
grangian formulation in order to generalize Lloyd's clas-
sic quantizer optimization algorithm to variable rate codes.
This formulation has been subsequently adopted in a vari-
ety of practical systems including rate-optimized streaming
video. We describe a Lagrangian formulation of Zador's
variable-rate quantization results and apply it to estimate
Zador's constant using the generalized Lloyd algorithm.

1. INTRODUCTION

There are two primary approaches to the theoretical anal-
ysis of systems for analog-to-digital conversion and signal
compression: Shannon’s rate-distortion theory and Zador's
high-rate quantization theory. Shannon’stheory providesan
information theoretic approach characterizing the optimal
achievabl e performance of systems with fixed rate and large
dimension or delay; Zador’'s high-rate quantization theory
characterizes the optima achievable performance of sys-
tems with fixed dimension and large rate. An account of
the history and status of the two approaches (as of 1998) a
long with numerousreferencesmay befoundin[1]. Zador's
approach arguably makes more sense when the delay or di-
mensionissmall or moderate, but the allowed bit-rateis not,
e.g., in systems requiring small delay and high quality. Our
focus hereis on variable-rate systems as they provide better
distortion/bit-rate tradeoffs than fixed-rate systems.

A shortcoming of Zador’s origina formulation of the
optimal performance of high-rate entropy-constrained vec-
tor quantizers [2] is that it does not directly lend itself to
the comparison with codes designed or optimized using the
generalized Lloyd algorithm for entropy-constrained quan-
tizers, which uses a Lagrangian formulation of the quanti-
zation problem. Our goal is to provide a new statement of
Zador’s result using the Lagrangian formulation and to take
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advantage of the formulation by applying the Lloyd clus-
tering algorithm to provide numerical estimates of Zador's
constant. Preliminary results are presented. The theory
may prove useful, for example, in deriving theoretical per-
formance bounds and performance approximationsfor rate-
controlled coding in the high-rate regime.

2. VECTOR QUANTIZATION

A k-dimensional vector quantizer g is characterized by

e an encoder o : R*¥ — 7 mapping k-dimensional Eu-
clidean space into the integers 7

e areproduction decoder 3 : Z — R* mapping indices
into reproduction vectors

e anindex coder ¢ : Z — {0, 1}* mapping indicesinto
variable-length binary sequences. v is assumed to be
invertible and uniquely decodable.

e the overall quantization operation ¢(x) = B(«a(x))

The encoder is described by a partition S = {S;} with
S; = {z : a(z) = i}. The decoder is described by the
reproduction codebook C = {5(i); i € Z}.

To measure performance we assume a distortion mea-
sure d(z,y) > 0, which for the sake of simplicity we as-
sume to be the mean-squared error, d(z, 5(i)) = |lz —
yill? = 5= | — B(i)i]?- Many asymptotic quantization
results extend to weighted quadratic measures of the form
d(z, B(i)) = (z — B(i))!B.(z — B(i)) for positive definite
weighting matrices B, and to other norms (see, e.g., [1]).
The instantaneous rate of an index is given by £(1 (7)), the
length of the binary vector ¢ (i). If = is areaization of a
random vector X described by a probability density func-
tion (pdf) f, then the average distortion and average rate of
aquantizer are given by
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The classic approach to describing optimal performance
is the distortion-rate approach (the dual of Shannon's rate-
distortion approach). For R > 0, define the operational
distortion-rate function as 6;(R) = infy.g,(g)<r Dy(q)-
Zador proved that under certain technical conditions on the
pdf f,
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whereb, ;. is Zador's constant, which depends only on £ and

not f, and h(f) £ — [ da f(x)log f(x) is the differential
entropy. When entropies appear as an exponent of 2, they
are assumed to have units of bits. Otherwise their units are
nats. The constant b, j, is known only for £ = 1 and upper
and lower bounds are known for general k that converge as
k — oo. If apdf f issuchthat (1) holds, we say it has the
traditional Zador property.

The optimality properties and code improvement algo-
rithm for variable rate codes are better stated in terms of a
Lagrangian formulation of the problem. Toward this end,
define for A > 0 aLagrangian distortion

ox(z, i) = d(x,y;) + \r(i)
and average distortion

pcf; M0 = Ep(dX,q(X)) + AEsr(a(X)))
= Dy(g) + ARy(q)

and optimal performance
p(f,A) = inf p(f, 2, 9).

Intuitively, each ) yieldsadistortion-rate pair on the op-
erational distortion-ratefunction curve. Small A meanshigh
rate, large A means small rate. Thus one would expect that
the high rate traditional Zador formulation should translate
into asmall A result.

The Lagrangian formulation yields generalized Lloyd
conditions for optimality (i.e., necessary conditions for op-
timal codes) which can be successively applied to yield a
sequence of codes with diminishing Lagrangian distortion.
These are (seg, e.g., [1]):

Centroid condition: The optimal decoder 3 for given en-
coder o and index coder v, is determined by

B(i) = arg;nin Er[d(X,y)|a(X) = .

For the squared error, thisis 5(i) = E¢[X|a(X) = i].
Minimum distortion property: The optimal encoder «,
givendecoder 5 andindex coder ¢, isdeterminedby a(z) =
argmin, (d(z, y;) + AL(0))

Kraft/Huffman property: Theoptimal index coder v, giv-
en an encoder « and decoder 3, is an optimal lossless code

for a(X) or, equivalently, ¢(X) (e.g., aHuffman code with
lengths satisfying the Kraft inequality).
The Kraft/Huffman property ensures that
Hy(q(X)) < Ef[t(a(X))] < Hf(q(X)) +1

where the Shannon entropy is defined as usual as
Z Py($

Henceit is common practice to make the approximation that

i) log Pr(S5)

~log P(a(X) =)
Ept(a(X)) = Hy(q(X))

in both theory and practice, yielding entropy-constrained
vector quantization (ECV Q). Thisisin fact donein Zador’'s
original derivation and it replaces the Kraft/Huffman prop-
erty in the Lloyd conditions by a simple computation of in-
dex entropy.
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3. TRADITIONAL VS. LAGRANGIAN
ASYMPTOTIC PERFORMANCE

We say that apdf f has the Lagrange-Zador property if the
following limit exists:

m (2

where 8, dependsonly on the dimension and not on the pdf.
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Lemmal Apdf f hasthetraditional Zador propertyif and
only if it has the Lagrange-Zador property. The constants
arerelated by
Or = i 1H §bz k (3
k
Proof: We beginwith some notation. For the Lagrangian
formulation, define

p(f, N q)

0(f,\q) = 5y

k
+ 5 ln/\ — —h(f)

= P2 b)) - () + B
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C(f,R,q) = Dj(q)2FFE-UD
R =, it <00
) = liminf((f,R)
¢((f) = limsup((f,R)

R—o0

Thetraditional form of Zador’s property can now be de-
scribed as ((f) = ((f) = b2, and the Lagrangian form as
0(f) =6(f) = bk.

The connections between the limits follow from the e-
quality
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The term in the square brackets is nonnegative since In r <
r—1.

If @ isfinite, we can choose \,, — 0 asn — oo so that
0(f, \n) — 8(f) and hence a sequence of quantizersq,, ex-
istssuchthat 6( f, A, g.) — 8(f) andhenceA,.0(f, \n, @) —
0. Thus

Dy(an) + My (4 (X)) = B(1) + 5 2wl A =0,

Since the rightmost term goes to zero and the differential
entropy term goes to 0, this also means that
Dy (Qn) - 0. (4)

Define A}, = 2D¢(qy,)/k and observe that
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The divergence inequality can be used to prove that for
al f,\,andgthat 6(f,\,q) > —klnw. Since Ds(g,) —
0, this necessarily implies that H (g, (X)) — oo. Thus

f
= lim 6(f, A\n, qn)
n—oo
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Summarizing,

(6)

Now supposethat Zador’straditional result holds, hence
¢(f) = C(f) = bax, and for any sequence R,, — oo there

is a sequence of quantizers ¢,, with H (g, (X)) < R, for
which ((f, Ru, ¢n) — bo.s SO that

Df(qn)Q%(R"_h(f)) — b27k.

Choose A\, — 0 such that 8(f,\,) — 6(f). For this se-
guence \,,, define

B k 2ba
Ry = h(f) + 5 log oW
and construct ¢,, as abovefor this R,,. Then
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Since 0(f, A\n, ) > 0(f, \n) and the ratios go to 1 (based
onthechoice of R,,), it follows that
k. 2e . i
5 In—ba e 2 liminf 0(f, An) = 0(f),
which proves that if the traditional Zador limit holds, then
so does the Lagrangian form with
k. 2e
ok = 5 In ?bQ,k' (7)
Suppose instead that the Lagrangian form of Zador’'s
theorem holds, so that §(f) = 6(f) = 6. Choose R,, —
oo and g, so that ((f, Ry, qn) — Q(f) and Hf(Qn(X)) <
R,. Then
C(f: Rn:Qn) Df(‘]n)2%(Rnih(f))
> Df(qn)g%(Hf(qn(X))—h(f))

and hence
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K | SphereLower Bound | Actual Value | Simulation Value | Cube Upper Bound | Zador Upper Bound
1 0.08333 0.08333 0.08323 0.08333 05

2 0.07958 0.07918 0.08333 05

3 0.07697 0.07900 0.08333 0.1157

4 0.07503 0.07776 0.08333 0.09974

00 0.05854 0.05854

Table 1. Values and Bounds for Quantization Coefficients b .

using (5) with X = 2D(g,)/k and (4). With (6) this
provesthat the existence of the Lagrangian limit impliesthat
of the traditional Zador limit.

4. RESULTS

As described earlier, the optimality properties for variable
rate quantizers provide a code design algorithm for variable
rate vector quantizers. The empirical distribution based on
a training sequence was used to estimate the expectations
and probabilities. Using the approximation that the entropy
of the indices yields the average length of the noiseless en-
coded indices, the resulting code is an entropy-constrained
VQ and the algorithm minimizes the Lagrangian function-
a Ji(a,8) = E(d(X,B(a(X)))) + AH(a(X)). Since
the Zador constant is independent of the distribution, sim-
ulations were performed on the simplest possible nontriv-
ia distribution, a uniform density on the k-dimensional u-
nit cube. For this case h(f) = 0 and hence Jy(a,8) =
0(f,\, q) sothat optimizing J for small \ provides an esti-
mate of 6, and hence of b, ;.. For adecreasing sequence A,
the algorithm was run until a stopping criterion was met,
where we used (J,q — J)/J > .005. The reproduction
codebook was initiated with a randomly selected uniform
reproduction codebook. The results arereported in the table
for dimensions 1 through 4 along with the known results for
dimension 1 and known upper and lower bounds. Simula-
tionsare currently running for higher dimensions. Thenum-
ber of training vectors and the codebook size varied from
test to test. For dimension 1,2, and 3, the codebook size
was 1024; for dimension 4, the codebook size was 50, 000.
The preliminary results are summarized in Table 1 and sim-
ulations are continuing.

For dimension 1, thetest wasrun five timeswith 50, 000
training vectors, one time with 100, 000 training vectors,
and three times with 250, 000 training vectors. The prelimi-
nary results show an averagevalueof 0.08323 for b, ; ,which
isa0.1% deviation from the actual value. We ran a simi-
lar test for the second dimension, but this time we focused
on 250, 000 training vectors because algorithm performance
improves as codebook size increases [3]. The test was run
oncewith 50, 000 training vectors, oncewith 100, 000 train-
ing vectors, oncewith 500, 000 training vectors, and then fi-
nally seven timeswith 250, 000 training vectors. Theresult-

s show an average value of 0.079184 for b, ». This differs
from Zador’s constant for fixed rate coding by 1.3%, but it
is not known if thisis also the constant for the variable rate
case (althoughit has been conjectured that the two constants
are the same).

For dimension 3, eight simulationswererun using 250, 000
training vectors and two simulationswere run using 500, 000.
The results show an average of 0.079 for b, 5, which agrees
with the known bounds. For dimension 4, five simulations
were runwith 500, 000 training vectors. For b 4, an average
of 0.07776 was computed.

5. CONCLUSION

Zador'straditional formulation of asymptotic (highrate) vari-
able rate optimal quantization performance has been refor-
mulated in a Lagrangian form. Using the Lagrangian form,
the generalized Lloyd ECVQ algorithm has been used to
estimate Zador’s constant, which is known only for dimen-
sions 1 and asymptotically large dimension. Simulation s-
tudies are continuing for the higher dimensions and will be
reported at the conference. The Lagrangian formulation is
also being used to provide a new and more general proof of
Zador'sresults [4].
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