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ABSTRACT

This paper describes a novel global-to-local method for the ad-
aptive enhancement and unsupervised segmentation of brain tis-
sues in MRI (Magnetic Resonance Imaging) images. Three brain
tissues are of interest: CSF (CerebroSpinal Fluid), GM (Gray
Matter), WM (White Matter). Firstly, we de-noise the image
using wavelet thresholding, and segment the image with min-
imum error thresholding. Both the thresholdings are global-wise.
Subsequently, we combine locally adaptive weighted median and
weighted average filters with FCM (Fuzzy C-Means) clustering to
achieve a local-wise segmentation. The performance of the pro-
posed method is quantitatively validated by four indices with re-
spect to a MRI brain phantom.

1. INTRODUCTION

Segmentation of brain tissues in MRI images, plays an indispens-
able role in three-dimensional (3-D) volume visualization, quant-
itative morphometric analysis, and structure-function mapping for
both scientific and clinical investigations. For instance, in order
to construct the mapping between EEG (ElectroEncephaloGram)
and MRI, an anatomic head model is necessary with segments of
CSF, GM, WM, the skull and the scalp because of the significantly
different conductivities of these tissues. In this paper, we deal with
the segmentation of CSF, GM and WM in MRI images.

Numerous methods have been reported in this area [1, 2].
Niessen et al. [2] grouped roughly these methods into three main
directions: classification methods, region based methods and
boundary based methods. Just as pointed out in [2], the meth-
ods in the first two directions are limited by the difficulties due to
intensity inhomogeneities, partial volume effects and susceptibil-
ity artifacts, while those in the last direction suffer from spurious
edges. Furthermore, all the methods are also degraded by noise
perturbations in low contrast and low SNR (Signal-to-Noise Ra-
tio) images, e.g., the images used in EEG/MRI mapping with thin
slices and a short measuring time.

In this context, we propose a global-to-local method to achieve
an adaptive enhancement and unsupervised segmentation of CSF,
GM and WM. Our method is a hybrid of an unsupervised classi-
fication method (Fuzzy C-Means clustering) and a region based
method (minimum error thresholding). Partial volume effects
are taken into account by calculating fuzzy membership degree
of a pixel to these three brain tissues. In order to remove the
noise and artifacts, a global filter based on wavelet threshold-
ing, and segmentation-based locally adaptive weighted median and
weighted average filters are also embedded into our method.

2. OUTLINE OF PROPOSED METHOD

The outline of our method is described as follows.
First we de-noise the image using wavelet thresholding. Second

we segment the image with minimum error thresholding. Both the
thresholdings are global-wise. Third we classify the pixels into
three brain tissues through an FCM clustering, using the global
thresholding result to initialize the parameters of FCM. The fea-
ture space is constructed by intensity pairs (intensity, average in-
tensity) of the pixels in the MRI image. Fourth, we de-noise the
image again with locally adaptive weighted median and weighted
average filters; the elements of filtering templates are decided by
the clustering result and weighted by the fuzzy membership de-
grees. Finally we employ the FCM clustering once more to achieve
a local-wise segmentation.

3. DE-NOISING WITH WAVELET THRESHOLDING

Wavelet transforms have an ability of locating frequency contri-
butions in the spatial domain. This ability facilitates the wide use
of wavelet thresholding for image de-noising [3, 4] by suppressing
those coefficients that originate from noise.

The common procedure of wavelet based de-noising is the fol-
lowing: 1) Compute the wavelet decomposition of the noisy im-
age; 2) Modify the wavelet coefficients: the coefficients supposed
to be dominated by noise are usually replaced by zero, other coef-
ficients are either kept unchanged or reduced; 3) Reconstruct the
de-noised image from the modified coefficients.

Donoho and Johnstone [3] classified the coefficient having its
absolute value below a “universal threshold” into the set of coeffi-
cients dominated by noise. The universal threshold is derived as:
tu = �̂ �

p
2 log(n), where n is the number of wavelet coeffi-

cients, and �̂ = MAD=0:6745 is the estimates of the noise stand-
ard deviation. MAD denotes the Median Absolute Deviation of
the wavelet coefficients in the finest resolution level. The wavelet
coefficients wj;k above the universal threshold are updated by soft
thresholding: sgn(wj;k)(jwj;k � tuj).

The magnitude of MRI images is generally Rician distributed,
as the acquired complex MRI data is known to be corrupted by
Gaussian white noise [5]. The Rician distribution approaches to a
Gaussian distribution when SNR is high.

In this step, our goal is to improve the SNR thus to approximate
more precisely the Rician distribution with Gaussian distribution
by a fast and effective de-noising. Gaussian distribution is more
easy to be processed, whatever in mathematics or in engineering
application, especially it is the base of the following minimum er-



ror thresholding. Higher SNR will also give rise to a better seg-
mentation in further FCM clustering, considering more compact
and well-separated intensities of brain tissues. Meanwhile, wavelet
thresholding with universal threshold doesn’t considered the spa-
tial intra-scale or inter-scale correlation. It brings blurring more or
less into the reconstructed image. Therefore, a tradeoff has to be
made here between the efficiency and the effectiveness.

We employed an one level decomposition with Daubechies
wavelets db4. From the experiments, we found there is not much
difference in using different wavelets. An MRI image simulated
from a normal brain phantom [6] with 9% noise level and 40%
intensity inhomogeneity is shown in Fig. 1(a), along with its de-
noising result in Fig. 1(b).

4. MINIMUM ERROR THRESHOLDING

In our global-to-local method, we use FCM clustering to achieve
spatial adaptive segmentation. As an unsupervised clustering
method, FCM has its performance, particularly the validity and
speed of convergence, being dependent on the initialization of its
parameters, e.g., the centers (prototypes) of clusters, the member-
ship degrees of each pixel to different clusters. The random initial-
ization leads quite possibly the FCM to converge to a local min-
imum or a saddle point of its objective function. To decrease such
a possibility, a reliable initialization is required.

Practically, due to a great diversity of MRI images from dif-
ferent subjects and imaging settings, and due to an aim of redu-
cing the human interactivity in favor of a less labor-intensive and
fast segmentation, no prior knowledge of the parameters of FCM
is available straightforwardly. However, these parameters can be
estimated through an initial segmentation which constructs auto-
matically the training set of classified pixels in the original image.

In order to generate a fast and reliable estimator of FCM’s para-
meters, intensity-based thresholding is used in our work. Intensity-
based thresholding is the most old, simple and widely used seg-
mentation algorithm. Since the Rician distributed MRI data can
be better approximated by Gaussian distribution after the wavelet
de-noising, we choose minimum error thresholding proposed by
Kittler and Illingworth [7] and based on Gaussian distributions of
objects and background intensities.

Although this method is originally proposed for a binarization,
it can be extended to segment three clusters of the CSF, GM and
WM. Suppose a threshold pair t = (t1; t2), 1 < t1 < t2 < 256
for an 8 bits T1-weighted MRI image where the black background
with zero intensity is always ignored in processing, we use this
pair to classify all the pixels having an intensity f into a cluster c:
c is CSF (if f < t1), GM (if t1 � f < t2) or WM (if f � t2).

Considering a probability p(f) of the intensity f , a priori
probability P (cjt) of the cluster c, and a conditional probability
p(f jc; t) of f given that f is classified into c under t, one criterion
of an optimal classification is to maximize a sum

P
f2[1;256)[p(f)�

P (cjt)p(f jc; t)]. Suppose that we approximate the p(f) by the
intensity histogram h(f), and approximate the p(f jc; t) by three
Gaussian distributions N(�c;t; �

2
c;t) for c as being CSF, GM or

WM respectively, then the mentioned criterion can be viewed as a
measure of fitting between the observed intensity distribution and
the Gaussian approximation. We seek the pair t corresponding
to the maximum fitting. An alternative criterion can be obtained
by minimizing

P
f2[1;256)[�2p(f) � log(P (cjt)p(f jc; t))] so as

to simplify the computation. Consequently, the objective function

can be rewritten as

J(t) =
X

c

[P (cjt) log �c;t � P (cjt) logP (cjt)] ; (1)

where P (cjt), �c;t can be estimated from the histogram h(f) [7].
The global threshold pair t can be found by minimizing the

J(t) in equation (1). The intensity-based thresholding result of
Fig. 1(a) is shown in Fig. 1(c); it will be used to initialize the para-
meters of the following FCM clustering.

5. LOCAL-WISE SEGMENTATION WITH FCM

FCM is an iterative, unsupervised clustering algorithm, initially
developed by Dunn and later generalized by Bezdek [8]. FCM has
been applied widely to MRI segmentation, and regarded as one of
the most promising methods [1].

Consider a dataset X = fxkg
n

k=1 � Rq where q is the dimen-
sion of the desired feature space, xk denotes the feature vector
of k-th data sample; and a set of fuzzy subsets fFigCi=1 with its
corresponding crisp versions fHig

C

i=1. FCM partitions X into
Fi with a mapping ui : X 7! [0; 1]. uik , ui(xk) desig-
nates the membership degree of a data sample xk in the Fi, andP

C

i=1
uik = 1, 8 k.

The optimal partition is accessed via minimizing approximately
the sum of intra-cluster squared errors as

JFCM (U; V : X) =

CX

i=1

nX

k=1

(uik)
m
(kxk � vik)

2
; (2)

where matrix U = [uik]C�n, while set V = fvig
C

i=1, vi 2 Rq

is the prototype of i-th cluster Fi. m � 1 is a weighting exponent
which determines the degree of fuzziness of FCM. kxk�vik is an
inner product induced norm on Rq to measure the distance from
xk to vi; we use the Euclidean norm and set m = 2.

In order to bring the locally spatial information from the image
into the FCM clustering, we compute a two-dimensional feature
vector of (intensity, locally average intensity) for each data sample,
i.e., xk = (fk; �fk)

0
2 R2 where fk is the intensity of k-th data

sample, and �fk the corresponding local average. We choose the
simple 8-connectivity for local averaging. Generally the pixels in-
side of a homogeneous region are located closer to the main diag-
onal than the edge pixels. Hence we choose such a feature space.

In our case three subsets fFig3i=1 are defined respectively for
CSF, GM and WM, so C = 3. The two features characterize
themselves in the same range [1; 256), so no normalization is used.
We implement FCM to segment brain tissues as follows.

Step 1: InitializeU using the minimum error thresholding result
as: if the k-th data sample (corresponding to xk) is segmented into
Hi, uik = 1; otherwise uik = 0. Initialize V as

vi =

nX

k=1

(uik)
m
xk =

nX

k=1

(uik)
m
; 8 i : (3)

and v(0)
i

= vi.
Step 2: Update U as: 8 xk, count the number (�) of prototypes

which satisfy kxk �vik = 0, � denotes a set of these prototypes;
if � 6= 0, then 8 vi 2 �, uik = 1=�; otherwise

uik =
� CX

j=1

(kxk � vik=kxk � vjk)
2

m�1
�
�1
; 8 i; k : (4)



And update V again with equation (3).
Step 3: Stop the FCM if maxi2[1;C] kvi � v

(0)

i
k1 < �, where

� = 0:5 for sub-level precision and k � k1 is the L-infinity vector
norm (i.e., the maximum of absolute values of the entries in the
corresponding vector). Otherwise, v(0)

i
= vi, return to Step 2.

Step 4: Segment X into fHig
C

i=1 by maximum membership
de-fuzzification as: xk 2 Hi, if maxj2[1;C](ujk) = uik.

The FCM clustering result of Fig. 1(a) is shown in Fig. 1(d); we
use it for the segmentation-based locally adaptive weighted me-
dian and weighted average filterings in next section.

6. ADAPTIVE ENHANCEMENT AND SEGMENTATION

Conventional linear/nonlinear filters always employ fixed-shape
and fixed-size templates in a sliding window to perform convo-
lutions [9]. The pixel to be filtered is generally the center pixel of
the window. The entries in filtering templates can be decided in a
nonlinear manner by statistics calculated from the current window.
Normally the stationarity in the window is assumed. However, this
assumption is not always true for MRI images, especially to the
edge pixels which are effected by partial volume effects.

Wavelet shrinkage with universal threshold performs a simple
and global de-noising which suppresses all the pixels with small
detail coefficients. But on the other side, it’s based on the assump-
tion of additive white Gaussian noise and not spatial-scale adaptive
thus ignores much of the spatial correlation information. Therefore
for the signal-dependent noise like Rician noise, universal shrink-
age will leave some noises un-suppressed and edges blurred. We
can find these limitation from the filtering result in Fig. 1(b) and
from the misclassifications in the segmentation result in Fig. 1(d).

Meanwhile, the FCM clustering result gives us some useful in-
formation about partial volume effects via the fuzzy membership
matrix U . In this context, we proposed a locally adaptive enhance-
ment scheme based on the clustering result which indicates locally
a kind of spatial correlationship and stationarity.

Generally a pixel within Hi and farther away from edges has
higher membership degree to Hi than the edge pixels. For such a
pixel, we suppose that a more stationary neighborhood of its can be
constructed using the pixels which were segmented into the same
region with it and are in the sliding window with it being the center
pixel. This neighborhood, varying in the size and shape, considers
both the correlationship in the feature space via a segmentation
and in spatial domain via a sliding window. The average filtering
is used in such a neighborhood. For the pixels whose maximum
membership degrees are not high enough (e.g., less than 75%),
we use adaptive median filtering in the whole sliding window to
remove noise and avoid destroying details and structures as what
average filtering suffers from.

Furthermore, we use maximum membership degrees as weights
of the elements within a filtering template. To calculate average
and median with the weights of membership degrees will favor
the willing of replacing the edge pixels with the center pixel of
a segments. It inclines to enhance a structure like edge and to
increase the homogeneity within each region, and thus improves
the performance of the further FCM clustering.

6.1. Implement of Locally Adaptive Enhancement

First we make several denotations. ui(x; y) denotes the member-
ship degree of a pixel (x; y) to the i-th cluster; it can be obtained
from the matrix U in the previous FCM, if we arrange each pixel

as an individual data sample in X . H(x;y) denotes the cluster that
(x; y) was classified into after the de-fuzzification in the FCM,
and u(x;y) = maxi2[1;C](ui(x; y)). SW(x0;y0) = f(x; y) j x 2
[x0�2; x0+2]; y2 [y0�2; y0+2]g is a 5� 5 sliding window with
its center pixel (x0; y0). f(x; y) is the intensity of (x; y).

Then the implement of the FCM-weighted adaptive median fil-
tering on this pixel (x0; y0) is as follows.

Step 1: If u(x0;y0) < uth, we update f(x0; y0) using a
weighted median filtering in SW(x0;y0). uth 2 [0; 1], which in
our case 75%, is a parameter to measure the reliability and valid-
ity of FCM clustering result. Firstly we sort the intensities of all
the pixels within SW(x0;y0) in ascending order, denoting the sor-
ted intensities as (f1; f2; � � � ; f25) and corresponding maximum
fuzzy membership degrees as (u1; u2; � � � ; u25). Subsequently,
the median fm is decided by

m = minfi j

iX

j=1

ui � �ug ; (5)

where �u =
P25

i=1
ui=2. As you can find, the weight of each

pixel is the corresponding fuzzy membership degree. In such a
way, the updated f(x0; y0) = fm is in favor of the intensity with
highest degree in its neighborhood, and the misclassifications of
those pixels with similar degrees to two brain tissues will be re-
duced. Go to Step 3.

Step 2: Construct a neighborhood set 
(x0;y0) as


(x0;y0)=f(x; y)jH(x;y)=H(x0;y0); (x; y)2SW(x0;y0)g; (6)

then replace the intensity of (x0; y0) with a weighted average over
pixels in 
(x0;y0) as

f(x0; y0)=
X

(x;y)2
(x0;y0)

u(x;y)f(x; y) =
X

(x;y)2
(x0;y0)

u(x;y) :

(7)

Similarly, the average is also affected more by the pixel with higher
degree, normally the pixel closer to the prototype of same cluster
to which (x0; y0) belongs. In such a way, the homogeneity within
each cluster is improved.

Step 3: Move the sliding window to the next position, return
back to Step 1 unless every pixel in the image has already been
processed once as a center pixel.

6.2. Segmentation after Adaptive Enhancement

The FCM will be applied once more to segment the image which
has been filtered by the aforementioned adaptive median filtering.
The median filtering and segmentation results of Fig. 1(a) can be
found respectively in Fig. 1(e) and Fig. 1(f). After comparing the
Fig. 1(d) and Fig. 1(f), we can find in the latter the refinement
of noise removal and edge preservation. To be noted is that the
performance of such an adaptive median filtering depends on the
accuracy of a preceding segmentation. Hence using an iteration of
filterings and segmentations can improve the accuracy of the final
segmentation. But the price of this iteration is the computation
complexity and the risk of giving rise to unwarranted enhancement
on edges between different segments. From our experiments, we
found that more iterations have given little improvement on the
validations of segmentation results.



7. QUANTITATIVE VALIDATION AND CONCLUSION

To quantitatively validate our method, testing images with the
“ground truth” are required. A realistic digital brain phantom
was proposed in [6] considering the partial volume effects. A dis-
crete anatomical model of three brain tissues is derived from the
phantom by assign the pixel a label of the tissue which contributes
the most to that pixel. This model serves as the “ground truth”
in our quantitative validation. Based on this phantom, four real-
istic MRI images are simulated with T1-weighted sequences, slice
thickness of 1mm, intensity inhomogeneities of 40%, and noise
levels of 3%, 5%, 7% and 9% respectively. The brain of interest
is firstly extracted with the guidance of the “ground truth”, then
segmented by our proposed method.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Original image from MRI brain phantom with 9%
noise level and 40% intensity inhomogeneities, and its processed
versions with (b) wavelet-based de-noising; (c) minimum error
thresholding; (d) FCM clustering; (e) adaptive median filtering;
(f) final segmentation result.

We employ four different indices (false positive ratio 
fp, false
negative ratio 
fn, similarity index � [10], and Kappa statistic
� [10]) for each of three brain tissues as quantitative measures to
validate the accuracy and reliability of our method. �; � > 0:7
indicates a well acceptable result [10]. The quantitative validation
results of aforementioned four images are plotted in Fig. 2. 
fp
and 
fn of GM are approximately 15% and 12% respectively, both
larger than those of CSF and WM. Meanwhile, � and � of GM are
around 86% and 78% respectively, both less than those of CSF and
WM. For anyone of the three brain tissues, the maximum differ-
ence between two noise levels is less than 2% in 
fp, 
fn and �,
and less than 1% in �. Particularly between the noise levels of 3%
and 5%, the differences in all the four indices are quite small. From
the Fig. 2, we can also find that: with the noise level increasing,

fp and 
fn are approximately monotonically increasing, while �
and � are approximately monotonically decreasing.

Up to now, we have presented and validated a global-to-local
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Fig. 2. From top to bottom: validation results for different noise
levels with measures of (a) false positive ratio 
fp; (b) false neg-
ative ratio 
fn; (c) similarity index �; (d) Kappa statistic �.

method for the adaptive enhancement and unsupervised segment-
ation of three brain tissues (CSF, GM and WM) in MRI brain im-
ages. This method endows the segmentation with an encouraging
performance even in noisy images. Although this method is only
with 2-D implementation, the extension to 3-D volume segmenta-
tion is currently being investigated.
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