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ABSTRACT
We explore a novel approach for handwriting recognition
tasks whose intrinsic vocabularies are too large to be applied
directly as constraints during recognition. Our approach
makes use of vocabulary constraints, and addresses the issue
that some parts of words may be written more recognizably
than others. An initial pass is made with an HMM recog-
nizer, without vocabulary constraints, generating a lattice
of character-hypothesis arcs representing likely segmenta-
tions of the handwriting signal. Arc confidence scores are
computed using a posterioriprobabilities. The most-con-
fidently-recognized characters are used to filter the overall
vocabulary, generating a word subset manageable for con-
straining a second recognition pass. With a vocabulary of
273,000 words, we can limit to 50,000 words in the second
pass and eliminate 39.3% of the word errors made by a one-
pass recognizer without vocabulary constraints, and 18.3%
of errors made using a fixed 30,000-word set.

1. INTRODUCTION

Applying vocabulary constraints significantly aids handwrit-
ing recognition accuracy [8] by providing a substantial re-
duction in character-level perplexity compared with allow-
ing any character to follow any other character. However,
the drawback is that words not in the vocabulary cannot be
recognized. For very-large-vocabulary applications, such as
those involving proper names, the vocabulary may be un-
manageably large for the recognizer, due to speed, memory,
or other implementation limitations, impeding exploitation
of vocabulary constraints.

A second problem is that different parts of words may
be written more recognizably than others. In the case of
typical left-to-right algorithms for on-line recognition, such
as HMM systems, if a poorly-written character occurs early
in the word, it may set the search astray, making it impossi-
ble to recover the correct answer. This is particularly likely
in the case of a larger-vocabulary system, whose search al-
gorithm requires substantial pruning of hypothesized tran-
scripts of the beginning portion of the word.

An appealing method for dealing with this latter prob-
lem is an “island-of-reliability” approach, in which reliably-

recognized characters are used as anchor points from which
to constrain and expand hypotheses. While such systems do
exist [7], research in this direction is hampered by the com-
plexity of formulating search strategies to contend with par-
tial recognition hypotheses with varied patterns of labeled
and unlabeled segments spanning the handwriting signal.

We explore a hybrid approach to address both problems.
A first, “character-set”, recognition pass is performed with-
out employing vocabulary constraints. A posterioriconfi-
dence scoring [4] is performed on the character arcs in the
hypothesis lattice, leading to identification of the most-con-
fidently-recognized characters. Words conforming to this
character pattern are extracted from a very large vocabulary,
yielding a word set small enough to be usable to constrain a
second, “word-set”, recognition pass.

In general, we will use the term “vocabulary” to refer
to the set of known words intrinsic to an application, which
we assume to be too large to apply directly as a recognition
constraint. A vocabulary subset which is used to constrain
recognition will be referred to as a “word set”.

2. CHARACTER CONFIDENCE SCORING

Our base system is a hidden-Markov-model-based (HMM)
recognizer which seeks to label any handwriting signal with
the highest-a-posteriori-probability word sequence:

ĉ = argmax P (cjo)
c 2 C

(1)

where o denotes the observed signal, c denotes a charac-
ter or word sequence, C denotes the set of all possible such
sequences, and ĉ denotes the highest-probability sequence.
P (cjo) is decomposed as follows:

P (cjo) = P (ojc)P (c)=P (o) (2)

P (ojc) is a likelihood computed using a “character-shape
model”, a statistical model of how people write a given
text. This model is typically applied after segmenting o into
frames defined by some windowing criterion. P (c) comes
from a statistical language model of whatpeople are likely



to write; it can be in terms of characters (e. g. a charac-
ter N -gram) or words (e. g. a word unigram). Typically,
P (o) is disregarded because it is constant relative to c, so
P (ojc)P (c) constitutes the score for hypothesis c.

For a posteriori character scoring, however, we must
compareP (cjo) for characters spanning different sequences
of frames of the handwriting signal, and so P (o) cannot be
neglected. We decompose P (o) into

P
c
P (ojc)P (c). We

recognize P (ojc)P (c) as the score we use during typical
recognition, and so in effect we are normalizing each score
against the sum of all character scores for a given segment
of the signal. We approximate the set of all scores using an
N -best-words list, analogously to Stolcke et al. [9] except
we do it at the character level rather than at the word level.

Scoring proceeds as follows. The set of character hy-
potheses output by the recognizer is represented as a di-
rected graph with one start node and one end node. Each
arc carries a character along with its likelihood score, and a
start and end node, with each node linked to a frame index
indicating its position in the handwriting signal. Each path
traversing the graph defines one word hypothesis, whose
likelihood is computed as the product of its arc likelihoods,
assuming independence. Likelihoods are scaled by raising
to a power � between 0 and 1. Setting � < 1 reduces the
probabilities of the top paths, which can be interpreted as
compensating for (1) pruned paths, (2) uncertainty about the
accuracy of the character-shape model, and/or (3) multipli-
cation of probabilities which were possibly not fully inde-
pendent. In these experiments, � is empirically set to 0.2.

Path probabilitiesare computed by dividing each path
likelihood by the sum of all path likelihoods. Each arc pos-
terior is then computed as the sum of the probabilities of
all paths that include that arc. Next, we compute a confi-
dence score for each character for each frame, which we
define to be the sum of the posteriors of all arcs which span
that frame and carry that character. Finally, for each arc, we
compute arc confidenceto be the average over all the arc’s
frames of the arc’s character frame confidences. More de-
tails are provided by Maison and Gopinath [4] and Kemp
and Schaaf [3]; see also [1] and [5].

A simple example is shown in Figure 1; we will fo-
cus on the longer “d” arc, and let � = 0:5 for this exam-
ple. Path likelihoods for “dog”, “day”, “clog” and “clay”
are 10�2, 2� 10�3, 10�3, and 2� 10�4, respectively, ob-
tained by multiplying their arc likelihoods and raising to the
power �. The path probability for “dog” is its likelihood di-
vided by the sum of all the path likelihoods, 10�2=(10�2+
2 � 10�3 + 10�3 + 2 � 10�4) = 0:758. This is also
the arc posterior for the “d” in “dog”, as “dog” is the only
word traversing this arc. Next, we compute the character
frame confidence score for this arc’s frames, which is the
sum of the posteriors of all arcs which span that frame and
carry that character. For frame 6, this is the only “d” arc,
so 0.758 is the “d” frame confidence. For the preceding
frames, however, we add the other “d” arc posterior, which
is the path likelihood for “day”, the only word traversing
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Fig. 1. Example character-hypothesis graph to be used to
compute character-arc confidences. This graph represents
16 frames spanned by four hypothesized words, “dog” (like-
lihood = 0:1�0:1�0:01 = 10�4), “day” (4�10�6), “clog”
(10�6) and “clay” (4 � 10�8). Nodes are labeled here by
the number of frames preceding them.

this arc, 2�10�3=(10�2+2�10�3+10�3+2�10�4) =
0:152. This yields a “d” frame confidence of 0.909 for these
frames. Finally, we compute arc confidence, which is the
average of character frame confidence over all its frames.
Arc confidence for the longer “d” arc then is the average of
0.909 for five frames and 0.758 for frame 6, or 0.884.

3. RECOGNITION SYSTEM

Experiments are performed using the IBM on-line hand-
writing recognizer in the IBM Ink ManagerTM software;
previous papers [6] [10] describe most algorithms in detail.
Data are collected as a stream of (x; y) points indexed in
time, re-sampled to be equi-distant. Features based on dis-
tances and angles are computed at each point. Windows of
temporally-adjacent points are assembled around window
centers, which are mainly local extrema in x and y and
the strokes’ pen-down and pen-up points. Feature vectors
of the points within a window are spliced together to form
window feature vectors. These are projected onto a lower-
dimensional space; the resulting vectors become the frames.

In our system, each character is represented by a set of
four allograph HMMs. Each allograph model consists of
a sequence of states; sequences vary in length. Mixture-
Gaussian models, trained using an EM algorithm, repre-
sent the distribution of frame vectors for each state, P (ojc).
Beam search, governed by word set or character set, begins
with a forward pass using fast-match character-shape mod-
els, and a character-level language model P (c) in the case
of character-set recognition. Then, hypothesized words are
optionally re-scored using a word-unigram language model.
Finally, the hypotheses are re-scored using detailed-match
character-shape models. Note that each “recognition pass”
mentioned elsewhere in this paper consists of all these steps.

All experiments reported here are based on running the
system in American English writer-independent mode. Each
experiment uses character models trained on an in-house
database of approximately 165,000 words plus 330,000 dis-
crete characters provided by 450 writers.



4. DATABASE

Testing is done using the isolated-word portion of the Uni-
pen database [2], Train-R01/V07. We restrict to fully-al-
phabetic English and proper-name inputs – 26 lower- and 26
upper-case letters. We restrict attention to words which are
four or more letters long. The data set was further reduced
by a factor of three down to 8009 word tokens.

A 273,000-word unigram and vocabulary were derived
from a text corpus of 600 million words drawn from various
sources including news and office correspondence. A por-
tion of this corpus was also used to derive a set of 30,000
most common words, for baseline evaluations, and a char-
acter-4-gram language model, for character-set recognition.

5. EXPERIMENTAL PROCEDURE

A character-set recognition pass is run using the character
4-gram as the statistical language model. Search beam pa-
rameters are set wide, allowing 150 hypotheses per frame
in the character-level search lattice, and 70 best word out-
puts, yielding a large lattice of character arcs to approxi-
mate the full set of hypotheses for computing a posteriori
arc probabilities. Arc confidences are computed for each
character in the recognized character sequence, and the M
most-confidently-recognized characters are selected as “is-
lands of reliability”. We begin with M = 2, empirically
chosen to obtain word sets smaller than 50,000 words.

A word template is formed from these M characters.
The template consists of the characters in the order in which
they occur in the hypothesis, with character wild-cards in-
serted between them if they span non-adjacent frames, be-
fore them if neither reaches the first frame, and after them if
neither reaches the last frame in the handwriting signal. The
word template is then used to filter the vocabulary, yielding
a word set with which to constrain the second recognition
pass. Because this pass is intended primarily to generate
first-choice word results, a narrower search beam is used, 70
hypotheses per frame in the character-level search lattice. In
the initial experiments, we do not employ word unigrams.

We measure results against two baseline conditions, both
using the narrower beam parameters as appropriate for pro-
ducing single-hypothesis recognition results. A single-pass
“word-set” baseline is constrained using the 30,000-word
set but not using the word unigram. A “character-set” base-
line consists of a single pass constrained only by character
set, using the same character 4-gram language model.

6. RESULTS

Our experimental system yields a net improvement in accu-
racy over both baseline systems. It eliminates 3.6% of the
word-recognition errors produced by the word-set baseline
system. This is mainly due to our system enjoying an advan-
tage of being able to access almost ten times as many words
as the word-set baseline. In fact, 63% of the errors made

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000

"word-set-sizes"

Fig. 2. Histogram of word-set sizes resulting from matching
two-character patterns against a 273,000-word vocabulary.

by the baseline system are due to words being out of the
30,000 word set. By making the 273,000-word vocabulary
available, we prevent 83% of those out-of-word-set errors,
or 52% of all the baseline’s errors, from being made a priori
by the word-set constraint, though some errors remain due
to mis-recognition. The 3.6% reduction shows that the ex-
perimental system’s advantage of having the large vocabu-
lary available outweighs its disadvantage of having to com-
mit to two characters of the output before being able to ap-
ply a word-set constraint, compared to the baseline system
exploiting its word-set constraint from the beginning.

The system eliminates 34.4% of the character-set base-
line’s word-recognition errors, confirming the benefits of
using word-set constraints even when they are not applied
until after committing to the recognition of two characters.

Of the errors made by the system, 61% are due to the
word not being in the word set, which breaks down to 11%
missing from the vocabulary and 50% being excluded by
an erroneous two-character pattern. Thus, it is desirable to
loosen the character patterns, employing larger word sets to
reduce the 50%; next we investigate whether it is practical.

Figure 2 shows a histogram of sizes of word sets result-
ing from using two-character patterns. We note that by fix-
ing M = 2 we narrowly succeed in getting all of the word
sets below 50,000 words. However, the average is only 7859
words, indicating it should be possible to modify the algo-
rithm to produce larger word sets. The importance of doing
so is underscored by the observation that 3% of the word
sets are under 200 words, and a few are actually empty.

Therefore, we repeated this experiment, but setting M
separately on each input to be the fewest number of charac-
ters which results in a set of 50,000 or fewer words. In fact,
54% of the time, choosing one character reduces the word
set sufficiently. As a result, the second recognition pass’s
average word set expands to 18,268 words. Error reduc-
tions improve to 5.7% relative to the word-set baseline, and
35.8% relative to the character-set baseline. Now only 40%



% Error reduction
relative to:

Experimental Word-set Character-set
Condition baseline baseline

No word unigram
M = 2 3.6 34.4
variable M 5.7 35.8

With word unigram
variable M 18.3 39.3

Table 1. Summary of results.

of errors are attributable to an erroneous character pattern
excluding the correct word from being found in the vocab-
ulary when assembling the word set for the second pass.

Finally, we repeated this experiment with the addition of
a word-unigram language model during the second pass of
recognition. Accordingly, we generated new baseline con-
ditions with the same unigram. Further improvement was
realized; the experimental condition eliminate 18.3% of the
errors made by the word-set/word-unigram baseline, and
39.3% of errors made by the character-set/word-unigram
baseline. Results are summarized in Table 1.

7. CONCLUSION

We apply a two-pass algorithm to handwriting recognition,
designed to yield some of the benefit of an island-of-relia-
bility approach, while essentially retaining the manageable
and well-established search strategy of a left-to-right system
such as HMM. Using a first pass unconstrained by word set,
character-confidence results can be used to extract a man-
ageable subset of a very large vocabulary, thereby provid-
ing word-set constraints to be exploited in a second pass.
By manipulating the number of character islands accepted
from the first pass, the word-set size can be constrained to
one which harmonizes well with the other parameters of the
recognizer, such as the pruning criteria in the search.

8. FUTURE WORK

“Very-large-vocabulary” applications are generally actually
open-vocabulary tasks. Ideally, recognition should not be
ultimately constrained by any finite vocabulary. To this end,
future work should include applying confidence measures to
the results of the word-set recognition pass. If confidence is
low enough, recognition could revert back to a character-set
mode, to recognize words outside the vocabulary.
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