CLASSES FOR FAST MAXIMUM ENTROPY TRAINING

Joshua Goodman

Microsoft Research
Redmond, Washington 98052, USA
joshuago@microsoft.com
http://research.microsoft.com/~joshuago

ABSTRACT

Maximum entropy models are considered by many to be one
of the most promising avenues of language modeling research.
Unfortunately, long training times make maximum entropy
research difficult. We present a novel speedup technique: we
change the form of the model to use classes. Our speedup works
by creating two maximum entropy models, the first of which
predicts the class of each word, and the second of which predicts
the word itself. This factoring of the model leads to fewer non-
zero indicator functions, and faster normalization, achieving
speedups of up to a factor of 35 over one of the best previous
techniques. It also resultsin typicaly slightly lower perplexities.
The same trick can be used to speed training of other machine
learning techniques, e.g. neural networks, applied to any problem
with alarge number of outputs, such as language modeling.

1. INTRODUCTION

Maximum entropy models [1] are perhaps one of the most
promising techniques for language model research. These
techniques allow diverse sources of information to be combined.
For each source of information, a set of constraints on the model
can be determined, and then, using an algorithm such as
Generalized Iterative Scaling (GIS), a model can be found that
satisfies al of the constraints, while being as smooth as possible.
However, training maximum entropy models can be extremely
time consuming, taking weeks, months, or more. We show that
by using word classing, the training time can be significantly
reduced, by up to a factor of 35. In particular, we change the
form of the model. Instead of predicting words directly, we first
predict the class that the next word belongs to, and then predict
the word itself, conditioned on its class. The technique used is
actually more general: it can be applied to any problem where
there are a large number of outputs to predict, with language
modeling being just one example. Furthermore, the technique
applies not only to maximum entropy models, but to almost any
machine learning technique for predicting probabilities that is
sowed by a large number of outputs, including many uses of
decision trees and neural networks.

In this paper, we first give a very brief introduction to
maximum entropy techniques for language modeling. We then
go on to describe our speedup. After this, we describe previous
research in speeding up maximum entropy training, and compare
it to our technique. Next, we give experimental results, showing
both the increased speed of training, and a slight reduction in
perplexity of the resulting models. Finaly, we conclude with a
short discussion of how these results can be applied to other
machine learning techniques and to other problems.

We begin with a very quick introduction to language models
in general, and maximum entropy-based language models in
particular. Language models assign probabilities to word
sequences P(w1...wp). Typicaly, thisis done using the trigram
approximation:

P wh) = [PO [) = [T POW [W 2w)
=1 1=1

Maximum entropy models for language modeling [2] do not
necessarily use the n-gram approximation and can in principle
condition on arbitrary length contexts. The genera form of a
conditional maximum entropy model is as follows:

EXD[Z/‘]' £ (W, wy... —1)]

i
Zy(W.. 1)
The J;j are red-valued constants learned in such a way as to

Pr(wlwg.. W) =

optimize the perplexity of training data. Zj(wi...wj-1) is a
normalizing constant so that the sum of all probabilities is 1,

simply set equal to)" exp| D" A fj (w,wy..wi_) |. The f
W J
represent a large set of indicator functions that aways have the
value 1 or 0. For instance, we could use fj(* Tuesday” , wy...wj-1)
=1ifwj-1 = “on” and wij-2 = “meet” (and, implicitly, otherwise
0). If A were given a positive value, then the probability of
“Tuesday” in the context of “meet on” would be raised. By
making many indicator functions of this type, we could capture
all of the information captured by atrigram. Similarly, we could
make a bigram indicator function with fj(* Tuesday”, w1...wj-1)
= 1if wji.g = “on”. Or we could make a unigram indicator
function with the simple fj(* Tuesday”, w;...wj-1)=1 for all

wi..wi-1. In principle, any set of indicator functions that

depends on w, w1...wj-1 can be used, including n-grams, caching,
skipping n-grams, word triggers, etc.

The optimal A-values must be learned. The agorithm —
Generalized Iterative Scaing [1] — for optimizing their values
(based on some set of training data) can be very slow. It requires
many iterations, and at each iteration, it involves a loop over al
words in the training data. We give here a very rough sketch of
the algorithm, with only the inner loop presented in any detail.

The inner loop of this code, and the most time-consuming
part is lines 4 to 12. Notice that the inner loop contains severa
loops over al words in the vocabulary (lines4, 7 and 8). Notice

For each iteration

1

2 observed[1. .# of indicators] {0}
3 For i =1 to |training data

4 For each word w in Vocabul ary

5

unnor mal i zed[W « exp(}. A; f; (W, w..w)
i

6 Next w
7 z <) unnormalized W
w
8 For each word w in Vocabul ary
9 For each j such that fj(w wi..w.1) #0
10 observed[j] +=fj xunnornal i zed[w / z
11 Next |
12 Next w
13 Next i
14 For each indicator fj
15 re-estimte Aj using observed[]j]
16 Next j

17 Next iteration

that the sum in line 5 is typicaly bounded by the number of
different types of indicator functions. In particular, a given
system will typically have only a few types of indicators — e.g.
unigram, bigram, and trigram — and typically, for each of these
types, and for a given word w, and history, there can be only one
non-zero indicator function. This means that the sum in line 5
and the loop in line 9 are bounded by the number of types of
indicator function. Overall, then, the inner loop of lines 4 to 12
istypically bounded by the number of types of indicator function,
times the vocabulary size. This means that decreasing the
vocabulary size leads to a decrease in the runtime of the inner
loop. Certain types of indicator functions (e.g. triggers) and

optimizations to line 5 (summing only over non-zero fj) change
the exact analysis of run-time, but not the intuition that inner-
loop run-time is roughly proportional to vocabulary size.

2. CLASS-BASED SPEEDUP

We now describe our speedup. We assign each word in the
vocabulary to a unique class. For instance, cat and dog might be
in the class of ANIMAL, while Tuesday and Wednesday might
bein the class of WEEKDAY. Next, we observe that
P(w | wy..Ww _1) = P(class(w) | wy...w; _q) X P(W | wy...w, _q, class(w))
This equality holds because each word isin asingle class, and is
easily proven. Conceptualy, it says that we can decompose the
prediction of a word given its history into prediction of its class
given the history, and the probability of the word given the
history and the class. For “true’ probabilities, this equality is
exact. If the probabilities are not true, but instead are, for
instance, the results of estimating a model, or are smoothed, or
are the results of computing a maximum entropy model, the
equality will not be exact, but will be avery good approximation.
Indeed, the approximation is so good that typically classing is
used to lower the perplexity of models.

This decomposition is the basis for our technique. Rather
than create a single maximum entropy model, we create two
different models, the first of which predicts the class of a word

given its context P(class(w)|w1...wj-1), and the second of which

predicts a word given its class and its context, P(w | wq...wj-1,

class(wj)). The process of training each of these two models is
completely separate. If we have 100 classes in our system, then
the inner loop of the training code for predicting the class is
bounded by a factor of 100, rather than afactor of the vocabulary
size. Thus, thismodel can be computed relatively quickly.

Next, consider the unigram, bigram and trigram indicators for
a class-based model. An example unigram indicator would be

fi(* Tuesday”, wi...wi-1,class(wj))=1 if class(wj)=WEEKDAY.
For the bigram indicator, we would have fj(* Tuesday” , wy...Wj-1,
class(wj)) = 1 if class(wj)=WEEKDAY and wj.3 = “on”; and a
trigram indicator would be fj(* Tuesday”, w1...wj-1, class(wj)) =
1if class(wj)=WEEKDAY and wj-1 = “on” and wj-2 = “ meet”.
Notice an important fact: for a word w not in the same class
as wj, P(wjwj..wj-1, class(wj))=0. This means that we can
modify the loops of lines 4, 7 and 8 to loop only over those

words w such that w is in the same class as wj. Now, if each
class has 100 words, then the run time of the inner loop is
bounded by a factor of 100. (If we were to explicitly perform the
computations, the unigram A's for words w not in class(w;)
would be set to -0, and the unnormalized probabilities would be
0, leading to no contribution in lines 7 and 10).

Consider a hypothetical example, with a 10,000 word
vocabulary, 100 classes and 100 words per class. The inner loop
of the standard training agorithm would require time
proportiona to 10,000. Alternatively, we can use the class-based
speedup. Both the inner loop for learning the class model, and
the inner loop for running the word-given-class model are
bounded by a factor of 100, leading to an overal hypothetical
improvement of 10,000 / (100+100) = 50.

We can extend this result to 3 or more levels, by predicting
first a super-class, eg. NOUN, and then a class, eg.
WEEKDAY, and finaly the word, Tuesday. Such a decom-
position will further reduce the maximum number of indicator
functions, but, since there is some overhead to each level, we
have not found improvements by extending beyond 3 levels.

3. PREVIOUS RESEARCH

Maximum entropy has been well studied. [1] gives the classic
Generalized Iterative Scaling algorithm, athough in a form
suitable for joint probabilities, as opposed to the conditional
probabilities given here, and is somewhat dense; [2] is a classic
introduction to the use of maximum entropy models for language
modeling, but despite the fact that [2] uses conditiona
probabilities, most of the discussion is of joint probabilities.

[2] has previoudy used a simple form of classes with
maximum entropy-based language models. However, they were
used only as conditioning variables; i.e., indicator functions like
fi(wlwi-1)= 1if w=y and class(wj-1)=x were used. They were not
used for predicting outputs, and thus did not lead to speedups.

Word classes have, of course, been used extensively in
language modeling, including [2][3][4][5]. However, previous
research has focused mostly on improving perplexity or reducing
language model size, and never to our knowledge for increasing
speed. Note that we have previously used a model form very

similar to the one used here for reducing language model size, by
up to afactor of 3, at the same perplexity [5].

There have been three noteworthy previous attempts to speed
up maximum entropy models. unigram caching, Improved
Iterative Scaling (11S) [6], and cluster expansion [7][8].

Unigram caching makes use of the following observation:
most bigram and trigram indicators are not used in practice (e.g.
if the string “ Y ork Francisco” never occurred in the training data,
then there will not be any bigram indicators for that case). On
the other hand, al possible unigram indicators typically are used.
This means that typically, the vast majority of indicator functions
that are non-zero for a given context are unigram indicators; also
notice that these unigram indicators are independent of context,
meaning computation can be easily shared. In unigram caching,
the effect of the unigram indicators is pre-computed and the
computations of the inner loop are rearranged so that they depend
only on those non-unigram indicators that take a non-zero value.
In practice, the number of non-zero indicators till tends to be
proportional to the vocabulary size (since the number of non-zero
bigrams, trigrams, and similar indicator-functions for a given
history is bounded by the vocabulary size).

We have implemented unigram caching and it leads to
considerable speedups over the naive implementation. Our 35
times speedup is a speedup over unigram caching. Our technique
can be used with or without unigram caching, but because of
some extra overhead involved in unigram caching, and because
our technique drastically reduces the number of unigrams, it is
usually best to use our technique without unigram caching.

In Improved lterative Scaling [6], a different update
technique is used. It introduces additional overhead that slows
down the time for each iteration of the iterative scaling
algorithm, but alows larger steps to be taken at each time,
leading to fewer iterations, and overal faster performance. It
also introduces additional memory overhead and coding
complexity. The main benefits from improved iterative scaling
come from certain models in which the total number of indicator
functions that can be true for a certain time is highly variable.
The learning speed of Generdized Iterative Scaling is inversely
proportional to the value of max max Y f (W, wy..w_q).

W | ;
J
GIS uses the maximum of this value to slow learning, while I1S
slows learning on a case-by-case basis. 1n some models, this sum
can be very different for different w, i. In particular, models
using caching and triggering techniques can lead to these
different numbers of active indicators. In other models, such as
n-gram-style models, there is a fixed maximum for the number of
non-zero indicators. In these models, 11S would lead to little or
no reduction in the number of iterations of iterative scaling, and,
because of the additional overhead for each iteration, might
actually lead to a slowdown.

The last technique we consider is the most powerful one,
cluster expansion, introduced in [7] and expanded in [8]. Cluster
expansion can be regarded as a natural extension of unigram
caching to n-grams. Consider a simple trigram model. With
some straightforward rearrangement of the equations, for two
trigrams with a common bigram, most of the computation can be
shared. In [8], this technique is extended to handle cases in
which there is limited interaction between hierarchical
congtraints, and still achieves good speedups (a factor of 15.)
However, as [7] concludes, cluster expansion “is limited in its

usefulness... When the number of interacting constraints is
large...the cluster expansion is of little use in computing the
exact maximum entropy solution.” We believe that the same
conclusion appliesto [8]. In particular, a smple model combin-
ing bigram 1-back, 2-back, ..., 5-back constraints would prob-
ably show no, or only small, gains from the techniques of [7] or
[8], while for our technique, the gains would be about the same.
In theory, our speedup can be used in conjunction with 11S,
unigram caching, or cluster expansion. However, in conjunction
with unigram caching, in experiments, it typically leads to only
small speed improvements, or sometimes actual slowdowns
(because unigram caching introduces overhead in other parts of
the agorithm). Similarly, we suspect that with cluster expansion
speedup might be limited. We have not tested our algorithm with
I1S, but in principle, there is no reason they could not be
combined, and we guess the combination would work well.

4. RESULTS

We ran our experiments using four different learning techniques:
simple GIS, GIS with unigram caching, GIS with a two level
clustering, and GIS with athree level clustering. We ran on four
different sizes of training data. The model used is a “skipping,
classing” model with the following types of indicator functions,
where W, Y, and Z are variables filled in for specific instances of
theindicator functions.

9w, we . wh1)=1 if w=W
cassbgram e wi)=1if weW and class(wi-1)=Z
dlass-skip-bigram (W, wi...wj-1)=1 if w=W and class(wj.p)=Z

f
fj
fjb|gram (w, wy...wj-1)=1if w=W and wj.1=Z
_skip-bigram
f
f
class(wj-2)=Y
f class-bigram-skip-bigram
]
class(wj-1)=Z and wj-2=Y

: bigram-class-skip-bigram
J

and class(wj-2)=Y

We used al and only indicator functions where there were at
least three matching cases in the training data. We found our
word classes by using a top-down splitting algorithm that
attempted to minimize entropy loss, as described in [9]. We used
different numbers of classes for different purposes. For the two-
level splitting, we used approximately 60-250 classes. For the
three-level splitting, we used approximately 8-30 classes for the
first level, and 100-2000 classes for the second level. In all
cases, we optimized the number of classes by running one iter-
ation of training with varying numbers of classes, and picking the
fastest. The classes used in the indicator functions are not typ-
ically the same as the classes used in our factoring; for the indic-
ator classes, we used 64 classes. We linearly interpolated each
maximum entropy model with a trigram model, to smooth and
avoid zero probabilities. Our technique interpolated with a tri-
gram model reduced overall perplexity from 1% to 5% versus a
maximum entropy model without our technique interpolated with
the same trigram model; we were not able to run the baseline
perplexity at 10,000,000 words, because the version without our
speedups was too slow. We used subsets of Wall Street Journal

(w, wi...wj-1)=1if w=W and wj.p=2

class trigram (w, wi...wj-1)=1 if w=W and class(wj-1)=Z and

(w, wi...wj-1)=1 if w=W and

(w, wi...wj-1)=1 if w=W and wj.1=Z

data, building the classes from scratch at each size, and using the
60,000 most common words in the training data, or al words, if
there were fewer than 60,000 unique words in the training data.

10
z
= 1 % O
(O]
(%]
©
o R\ » []
PO - S Y - Ry
o 01 e
2 -
© -
2 &=
T 0.01 | —e—baseline (GIS) .
-§ — 4 — unigram caching \<
— -/~ - clustered
—¥—clustered (3 level)
0.001 ’
10,000 100,000 1,000,000 10,000,000
Training size

Figure 1: Speedup Results

Figure 1 shows our results, giving relative speeds. Notice
that we achieve a speedup of up to a factor of 35 over the
unigram caching result. We believe this is the largest speedup
reported. Notice also that at the smallest data size, the classing
methods actually result in minor slowdowns compared to
unigram caching, but that as the training data size increases, the
speedup from our technique also rapidly increases.

5. DISCUSSION

We have discussed our speedup technique in the context of
training. However, it can in many cases aso be used for testing.
In particular, if in the test situation one needs the probabilities of
most or all words in a particular context, our speedup will not be
helpful. On the other hand, if one were to use maximum entropy
models to rescore n-best lists, the speedup would work just as
well for testing as for training. In the case of, say, rescoring
lattices, the speedup would be helpful, as long as the lattices did
not allow for too many words in each context.

Notice that our speedup technique could be applied to a
variety of other problems and to a variety of other learning
methods. In particular, there is nothing in particular specific to
language modeling in our speedup technique, except that we are
predicting the probabilities of alarge number of outputs (possible
next words). Any other problem predicting the probabilities of a
large number of outputs could benefit from these methods.
Similarly, there is little that is specific to maximum entropy
modelsin our technique. For instance, consider training a neura
network to learn the probabilities of 10,000 outputs. Each step of
training would require back-propagating 9,999 zeros, and one 1.
Alternatively, one could place the outputs into 100 classes. A
first network could be trained to learn the class-probabilities.
Each step of training would require back-propagating 99 zeros
and one 1. Next, we would learn 100 neura networks, for
predicting the probability of the outputs given the class, one
neural network for each class, predicting a probability for each
output in that class. Network i would learn the conditional

probabilities of outputs in class i given that class i is correct.
Each step of training would need only train the network
corresponding to the correct class, meaning that again, only 99
zeros and one 1 would need to be back-propagated. Presumably
the number of hidden units of these smaller networks predicting
only 100 values (for the class, or the outputs given the class)
would also be much smaller than the number of hidden units of a
network for predicting 10,000 outputs directly.

Similarly, there are at least two ways to train decision trees to
handle large numbers of outputs (train decision trees with many
outputs at each leaf, or train a binary decision tree for each
possible output and normalize). Again, in both of these cases,
our method can be applied.

More generally, amost any learning algorithm that is slowed
at training time when there are a large number of outputs could
benefit from our approach. Similarly, any algorithm slowed at
test time by a large number of outputs, but used in a situation in
which only afew of those outputs are heeded, would benefit.

Our technique is an extremely promising one. Although it is
only an approximation, rather than an exact technique, it is one
that both theoretically and empirically reduces perplexity; it adds
very little complexity to coding; it leads to perhaps the largest
reported speedups — a factor of 35; these speedups are largest
when needed most, on large, complex problems; it can be applied
independently of the form of the model; and it can be applied
both to other learning algorithms and to other problem domains.
We are hopeful that others will useit, both for maximum entropy
modeling applied to language modeling and in many other fields.

6. REFERENCES

[1] Darroch, J. N. and Ratcliff, D (1972). Generalized lterative
Scaling for Log-Linear Models. Annals of Mathematical
Satistics, No. 43, pp. 1470-1480.

[2] Rosenfeld, Ronald (1994). “Adaptive Statistical Language
Modeling: A Maximum Entropy Approach,” Ph.D. Thesis,
Carnegie Mellon University, April.

[3] Ney, Hermann, Essen, Ute and Kneser, Reinhard, (1994)
“On Structuring Probabilistic Dependencies in Stochastic
Language Modeling,” in Computer, Speech and Language,
Vol. 8, pp. 1-38.

[4] Brown, Peter F., Peter V. deSouza, Robert L. Mercer,
Vincent J. Della Pietra and Jennifer C. Lai, (1992), “Class-
Based n-gram Models of Natural Language’,
Computational Linguistics, December, Vol. 18, No. 4.

[5] Goodman, Joshua, (2000), “Language Model Size
Reduction by Pruning and Clustering” 1CSLP-2000,
Beijing, October.

[6] Della Pietra, Stephen, Vincent Della Pietra and John
Lafferty, 1995, “Inducing Features of Random Fields’,
CMU Technica Report # CMU-CS-95-144, May.

[7] Lafferty, J. and Suhm, B. (1996) “Cluster Expansions and
Iterative Scaling for Maximum Entropy Language Models’
in Maximum Entropy and Bayesian Methods, Kluwer
Academic Publishers.

[8] Wun, J. and Khudanpur, S. “Efficient Training Methods
for Maximum Entropy Language Modeling” 1CSLP-2000,
Beijing, October.

[9] Goodman, Joshua, (2000), “Putting it all Together:
Language Model Combination” ICASSP-2000, Istanbul,
June.

