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ABSTRACT
In this paper, we have investigated the differences between normal
and impaired auditory processing for a frequency discrimination
task by analyzing the responses of a computational auditory model
using signal detection theory. Two detectors, one using all of the
information in the signal, the other using only the number of neural
responses, were implemented. An evaluation of the performance
differences between the two theoretical detectors and experimen-
tal data may provide insight into quantifying the type of informa-
tion present in the auditory system as well as whether the human
auditory system uses this information efficiently. Results support
previous hypotheses that, for low- and mid-range frequencies, the
auditory system is able to use temporal information to perform
frequency discrimination [8]. The results also suggest that some
temporal information is represented in the neural spike train, even
at high frequencies. However, the ability of the auditory system to
use this information deteriorates at higher frequencies.

1. INTRODUCTION

In the auditory literature, signal detection theory (SDT) was orig-
inally used to generate theoretical predictions of psychophysical
performance based on the stimuli themselves (e.g., [11], [15]).
The theoretically optimal detector greatly outperformed the ac-
tual human auditory system. This could be attributed to the fact
that the theoretical approach, based on the acoustic signals mea-
sured outside the ear, essentially ignored the signal transforma-
tions that occurred as the acoustic signal propagated through the
auditory system. Later, Siebert addressed this issue by generating
simulated auditory responses to an acoustic stimulus using a func-
tional auditory model [12, 13]. Using this approach, Siebert was
able to study frequency and intensity discrimination in a normal
auditory system. More modern computational auditory models
(e.g., [1], [10]) may provide more accurate predictions of neural
responses to a wider range of acoustic stimuli than the analytical
models used previously. Recent work has analyzed several compu-
tational models using SDT to predict psychophysical performance
on a simultaneous masking task [6] and Heinz et al. (1999) have
used a different computational model to predict performance for
normal-hearing individuals on frequency and intensity discrimina-
tion tasks [5]. In this paper, we have developed theoretical predic-
tions of psychophysical performance on a frequency discrimina-
tion task by analyzing the signals predicted by the Auditory Image
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Model (AIM) [10] using SDT. We incorporated a spike generator
into the otherwise deterministic model using a Poisson process to
represent the internal noise present in the auditory system [7]. We
have also investigated differences between normal and impaired
auditory processing by modifying AIM as described in Section 2.

Three different approaches were used to generate theoretical
predictions of performance. These approaches were selected to
provide insight into quantifying the information present in the dif-
ferent neural populations. In one case, the theoretical detector was
allowed to process all of the information present in the responses
generated by the model. In the second case, temporal information
was removed from the signals by only considering rate information
before the detector was allowed to process the data. This approach
mimics the rate-based processing hypothesis for frequency dis-
crimination. These two cases were chosen so that the differences
between the two processors and the experimental data might be
used to infer how the auditory system uses temporal information.
As both of these approaches are computationally intense, a third
approach, the Cramèr-Rao Lower Bound, was also employed.

2. IMPAIRING THE MODEL

A flat (constant as a function of frequency), 40-dB hearing loss
was induced by shifting the thresholds of the normal model by
40 dB. To verify the impaired model, comparisons were made
between rate-intensity curves, neural tuning curves, and response
area curves generated by the normal and impaired models. These
comparisons are presented in Figure 1. The rate-intensity curve
(Figure 1a), which plots the firing rate as a function of signal in-
tensity, shows that the threshold, or point at which the firing rate
exceeds the spontaneous rate, for the impaired model is shifted
by approximately 40 dB. The steeper slope for the impaired model
also illustrates the phenomenon of loudness recruitment [9]. In ad-
dition to indicating a 40-dB threshold shift for the impaired model,
the neural tuning curves (presented in Figure 1b for a fiber with a
best frequency (BF) at 1045 Hz responding to a 1000-Hz tone by
plotting the threshold as a function of frequency) depict a broad-
ening of the filter in the impaired case. This feature has implica-
tions for the design of hearing aids in that it suggests that more
than simple amplification might be necessary to restore the normal
functioning of an impaired ear. Finally, the response area curve
(Figure 1c), which plots the firing rate as a function of filter cen-
ter frequency, indicates how an elevated threshold affects the re-
sponses of fibers tuned to frequencies other than the stimulus fre-
quency. Specifically, more fibers respond to a stimulus at a given
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(a) Rate-Intensity curves
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(b) Neural tuning curves
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(c) Response area curves

Fig. 1. Comparison between normal (solid lines) and impaired
(dashed lines) models: (a) Rate-Intensity curves for a fiber with
CF=1045 Hz in response to a 1000-Hz tone; (b) Neural tuning
curves for a fiber with CF=1045 Hz in response to a 1000-Hz tone;
(c) Response area curves for a 1000-Hz tone at 55 dBSPL.

level in the normal system than in the impaired system. The impli-
cations are that, since more fibers respond, more information may
be available in the normal system on which to base a decision.
Based on these three comparisons, it appears that, to at least a first
order, the desired impairment has been induced and, consequently,
that it is reasonable to make comparisons between the normal and
impaired systems on a frequency discrimination task.

3. METHODS USED TO CALCULATE �fJND

Theoretical predictions of the difference limen for frequency (DLF)
were generated three ways. Two detectors, one utilizing the entire
neural response predicted by the computational model and another
restricted to using the number of spikes only, were derived using
SDT. The first detector, referred to as the optimal detector, was
applied to the spike trains generated by a non-stationary Poisson
process driven by the neural firing rate predicted by the auditory
model and was implemented to provide a bound on performance.
For a single fiber located in the ith filter, the detector is:

NX
n=1

ln ri(STn; f)

ln ri(STn; f +�f)

H1

>

<
H0

�; (1)

where ri(STn; f) is the time-varying firing rate in response to a
tone with frequency f sampled at STn, the time of the nth spike.

The second detector, based on the total number of spikes on
each fiber, was implemented to study the theoretical contribution
of temporal information on frequency discrimination. Temporal
information was removed from the signal by integrating over the
neural firing rate and using this average rate to drive a stationary
Poisson process. Then, the total number of spikes was computed,

disregarding arrival times. The form of this detector was simply:

N

H1

>

<
H0

�; (2)

where N is the total number of spikes observed in a given fiber.
The difference between the count-based results and the optimal de-
tector result may provide insight into how much potentially useful
temporal information is present in the auditory system. For both
detectors, it was assumed that the filters were independent. There-
fore, the overall detectability, d0, was equal to the square root of
the sum of the squares of the detectability in each individual filter.
An adaptive procedure was used to determine �fJND , defined as
the difference in frequency required to obtain d0 = 1.

The third method used to calculate the DLFs was to compute
the Cramèr-Rao Lower Bound [2]:

�fJND =
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�
2

dt

)
�(1=2)

: (3)

This approach is only optimal (i.e., equivalent to the optimum de-
tector) when an efficient estimator exists. Therefore, if such an
estimator does not exist, the CRLB may underestimate the bound.

4. DISCRIMINATION TASK

Frequency discrimination based on the model was determined as
a function of both stimulus frequency and sensation level. First,
the DLF of a stimulus presented at 55 dBSPL was measured at
the test frequencies of 250, 500, 1000, 2000, 4000, and 8000 Hz.
Next, the DLF was measured at 1000 Hz for stimuli presented at
sensation levels ranging from 10 to 70 dB. In all simulations, the
stimuli were 200 ms in duration with a 20 ms rise/fall time. An
adaptive procedure was used to determine the theoretical DLF (see
Section 3). Simulation results are compared to human data from
experiments with comparable stimulus parameters [3, 8, 14, 16].

5. SIMULATION RESULTS

In the first simulation, frequency discrimination was determined
as a function of frequency for a stimulus presented at a fixed level
of 55 dBSPL. The normal-hearing data used for comparison was
collected by Moore (1973) for stimuli 200-ms long presented at
60 dBSPL [8]. The geometric mean of the data (in terms of the We-
ber fraction, �f=f ) for three subjects is plotted with a solid line
in Figure 2. The sharp increase in the Weber fraction at higher fre-
quencies suggested to Moore that a temporal mechanism was more
efficient at frequencies below 5 kHz and a place mechanism was
more efficient above this frequency [8]. A similar trend can be ob-
served in the impaired-hearing data collected by Simon and Yund
(1993) with the sharp change occurring closer to 2 kHz (dashed
line in Figure 2). They measured frequency discrimination for 34
hearing-impaired subjects using stimuli 320 ms in duration pre-
sented at 80 dBSPL or 10 dBSL, whichever was larger [14].

As seen in Figure 2, none of the theoretical detectors accu-
rately predict the absolute level of human performance. The larger-
than-experimental values of �f=f for the count-based detector
may be attributed to the fact that the model only simulates 100

nerve fibers, whereas there are approximately 30000 fibers in a
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Fig. 2. Frequency discrimination as a function of frequency.

healthy human auditory system [4]. Theoretically, each fiber con-
tains additional information; therefore, if more fibers were sim-
ulated, theoretical performance would improve by a factor on the
order of the square root of the factor of increase in number of fibers
(i.e., approximately

p
300). This would result in theoretical DLFs

less than experimental data, as in the case of the optimal and CRLB
detectors (whose predictions would also decrease if the number of
fibers modeled was increased). When theoretical predictions of
�f=f are smaller than those measured experimentally, it suggests
that the theoretical detectors have more information to operate on
or are more efficient than the human auditory system. In the first
case, this implies that the model does not accurately simulate the
information loss in the auditory system. One solution is to modify
the model. The other alternative is that the information exists in
the signals encoded in the peripheral auditory system, but the au-
ditory system does not use this information efficiently. In this case,
the auditory system does not behave optimally and the theoretical
detector can be modified to reflect this.

Clearly, we are interested in predicting not just absolute lev-
els, but also trends in the data. The count-based predictions are
fairly flat across frequency, whereas the experimental data show
a marked increase in the Weber fraction above 2000 Hz. Since a
strategy based solely on spike counts is approximately independent
of frequency (vis-à-vis the count-based detector), it can be inferred
that a different mechanism mediates the performance of the audi-
tory system above 2000 Hz causing a sharp increase in the Weber
fraction. This supports Moore’s interpretation of experimental re-
sults suggesting a temporal/place mechanism tradeoff [8].

Examination of the theoretical predictions obtained using the
optimal and CRLB detectors reveal that these two approaches yield
similar results. However, unlike experimental results, the optimal
and CRLB detectors show a large decrease in the Weber frac-
tion between 250 and 1000 Hz and only a slight increase above
2000 Hz. This behavior is more like human performance than the
behavior of the count-based detector, but the differences at higher
frequencies suggest once again that either the theoretical detectors
utilize temporal information more efficiently than the auditory sys-
tem or the signals generated by the model contain more informa-
tion than the signals actually present in the auditory system. One
possible solution, not pursued in this work, is to tweak the pa-
rameters of the model, such as the slope of the filters, until more
accurate predictions are obtained.

�fI=�fN

f [Hz] Expt. Optimal CRLB Count-
Based

500 2.1 2.0 2.2 1.6

1000 1.6 2.2 2.0 1.8

2000 2.5 2.2 2.0 1.9

4000 — 1.6 1.8 1.4

8000 — 1.9 1.6 1.0

Table 1. The experimental and theoretical ratios of the DLF in
impaired and normal ears as a function of frequency.

Table 1 lists the ratio of the impaired DLFs and the normal
DLFs (�fI=�fN ) for experimental data as well as the three the-
oretical cases. Experimental data collected by Turner (1987) for
four normal and four impaired subjects are used to calculate the
experimental ratio in Table 1. The test signals were 205-ms in du-
ration and presented at 80 dBSPL [16]. All three theoretical detec-
tors yield ratios on the same order of magnitude as the experimen-
tal data. However, none of them reflect the V-shaped trend evident
in the experimental data. One must exercise caution when com-
paring theoretical and experimental results since the experimental
subjects did not have exactly the same impairment as was simu-
lated in the model. It can be concluded that the simulated 40-dB
flat hearing loss affects the frequency discrimination performance
of the optimal and CRLB detectors approximately equally across
the mid-range frequencies, with a slight decrease above 2000 Hz.
However, in the case of the count-based detector, it appears that
the ratio converges to unity at 8000 Hz. These results suggest that
a more accurate model of hearing impairment is needed.

The results of the second simulation, frequency discrimina-
tion at 1000 Hz as a function of sensation level, are presented in
Figure 3. Due to limitations in the model, impaired simulations
were limited to sensation levels 40 dB and smaller. Human data
for a similar task (f = 1000 Hz, 300-ms duration) from Freyman
and Nelson (1991) for normal subjects (solid line) and impaired
subjects (dashed line) are also shown [3]. In these data, there is
a decrease in the DLF as the sensation level increases from 10

to 20 dBSL and then a more gradual decrease over the remain-
ing range of levels. A similar trend is observed in the theoretical
predictions obtained using the optimal and CRLB detectors, al-
though generally the slope is greater than that of the experimental
data. In contrast, the predictions generated using the count-based
detector display the opposite trend at high levels with the DLF in-
creasing with increasing level. This increase may be attributed to
the spread in response across fibers in the model as the stimulus
intensity increases. The count-based detector, which discriminates
between the two frequencies based on the total number of spikes
on each fiber, has increasing difficulty in distinguishing between
frequencies at higher levels because the firing rates of more and
more fibers are saturated resulting in the same number of spikes in
each fiber. Thus, contrary to our intuition, the amount of useful in-
formation available to the count-based detector actually decreases
as the stimulus level increases above a certain level. This suggests
that the auditory system is able to use temporal information, like
the optimal and CRLB detectors. Thus, it appears that, although
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Fig. 3. Frequency discrimination as a function of sensation level.

none of the theoretical detectors accurately predict the absolute
level of human performance (for reasons discussed previously),
the optimal or CRLB detector provides the more accurate predic-
tion of the trend in human performance as a function of level.

A different conclusion must be drawn, however, when com-
paring normal and impaired results. Table 2 lists the ratio of DLFs
between impaired and normal systems (�fI=�fN ) as a function
of sensation level for the experimental data and the theoretical de-
tectors. It appears that the count-based detector represents the re-
lation between normal and impaired hearing better than the opti-
mal or CRLB detectors which actually indicate that the impaired
model performs better than the normal model (�fI=�fN < 1). It
can be concluded that the impaired model is not an accurate repre-
sentation of hearing impairment and requires further modification.

�fI=�fN

L [dBSL] Expt. Optimal CRLB Count-
Based

10 1.9 0.5 0.6 2.4

20 1.9 0.5 0.5 2.1

30 1.9 0.6 0.5 2.0

40 1.9 0.3 0.7 1.7

Table 2. The experimental and theoretical ratios of the DLF in
impaired and normal ears as a function of sensation level.

6. SUMMARY

Two different detectors were derived using signal detection the-
ory to analyze information transmission in the auditory system.
The difference in the detectors highlights the contribution tem-
poral information may make in a frequency discrimination task.
The results support the hypothesis that the human auditory system
uses temporal information to perform this task but that a second
mechanism dominates at higher frequencies. The combination of
SDT and computational models has be shown to do a fairly good

job at predicting trends in performance for most normal and some
impaired-hearing cases. However, the comparison between theo-
retical and experimental predictions for normal and impaired cases
suggests that the model used to simulate impairments needs to be
further modified to improve the predictive power of this approach.
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