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Abstract solution in one is an optimal solution in the other), but for which
the quadratic approximation is always valid. The simplicity of the
We present a new learning algorithm for the supervised train-solution is startling. Conceptually, we envision a pseudo target at
ing of multilayer perceptrons for classification that is significantly the input side of the final output nonlinearity, which we train
faster than any previously known method. Like existing methods, under a mean squared error criterion. Unfortunately, we don't
the algorithm assumes a multilayer perceptron with a normalizedactually know what the pseudo target should be because it is a
exponential (softmax) output trained under a cross-entropy crite-complex function of the data. For example, for the classification
rion. However, this output-criteria pairing turns out to have poor task, the pseudo target is a function of the separation of the classes
properties for existing optimization methods (backpropagation and the proximity of an exemplar to a discriminant plane. Since
and its second order extensions) because second-order expansitre don’t know the pseudo target, we use the Levenberg-Mar-
of the network weights about the optimal solution is not a good quardt (L-M) approximation of the Hessian because it depends
approximation. The proposed algorithm overcomes this limitation only on the operating point of the network and not on the (pseudo)
by defining a new search space for which a second-order expantarget. This still leaves the question of how to estimate the gradi-
sion is valid and such that the optimal solution in the new spaceent that clearly does depend on the pseudo target. Here, the proper
coincides with the original criterion. This allows the application choice of the criteria and output function, when properly paired,
of the Levenberg-Marquardt search procedure to the cross-allows for backpropagating the gradient unattenuated through the
entropy criterion, which was previously thought applicable only final nonlinearity. That is, for weight update we use the gradient

to a mean square error criteria. calculated at the output using the original criteria, and the L-M
approximation to the Hessian calculated at the input to the final
1. INTRODUCTION nonlinearity. This is shown symbolically in Figure 1(b) and is

contrasted to the more traditional approach in Figure 1(a).
In multilayer perceptron (MLP) design, some emphasis has
been placed on proper pairing of the network architecture and cri- 2. SIMULATIONS
terion [2], [3]. Typically, the criterion is dictated by the nature and

statistics_ of t_he problem to be sqlveq, while the final output t_rans- Because the experimental results are so strong, we break from
fer function is matched to the criterion so that the gradient is N0ty gition and present them first. The benchmark data sets are clas-
attenuate_d by_ the derivative qf the out_put fun(_:tlo_n. In this Paper, sification tasks, which we divide into two categories.

we are primarily concerned with a particular criterion-output pair-

ing that is useful for_classification;_namely, the cross-entropy cri- 5 1 Separable problems

teria and the normalized exponential (softmax) output function.

Unfortunately, little consideration has been given to the effect  The first category is data sets that are perfectly separable.
of such pairings on optimization techniques that utilize second-Generally, the purpose of such data sets is to test the ability of a
derivatives. We will show shortly that choosing the output transfer learning algorithm to find highly non-linear discriminant func-
function on the basis of the gradient alone can cause the Hessiations, rather than to test generalization
to become ill-conditioned, rendering invalid the quadratic
assumption on which many advanced optimization search proce2.2 Non-separable problems
dures are based.

This has led us to postulate that a conceptually appealing cri- ~ Most real world data sets are not perfectly separable and do
terion may not necessarily be the best one for efficient optimiza-Not require discriminant functions as complicated as the previous
tion. This idea is not new. Based on information geometric data sets. Here, the goal is to test the ability of the algorithm to
considerations, the so-called natural gradient [4] utilizes in effectcapture the underlying statistics of the problem, as indicated

the gradient from the original criteria in conjunction with a Hes- through the trained network’s ability to generalize on previously
sian-like term based on the Eisher information matrix. unseen data generated from the same underlying distributions. We

Our approach is to find a companion search space that has will not address the non-separable problem case in this paper.

one-to-one mapping with the original search space (i.e. an optimal
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Figure 1. (a) standard optimization methods; (b) proposed hybrid optimization.

it is easy to show that the weight update at each iteration is given

by
Table 1: Benchmark results: perfectly .
separable problems Aw=-H"1g @
whereg is the gradient an#l is the Hessian, to be defined
Problem 2-class 4-bit 9-bit shortly.
Result spiral parity parity 3.1 Natural pairing between criteria and output func-
tion
Exemp|ars 194 16 512
The gradient of the cost function commutes with the expecta-
MLP Architecture 2-40-1 4-4-1 9-9-1 tion operator.
. oc 0J
161 25 100 == = El==
Total # of weights 9=3n E[aw] 2
Runs converging | 97 99 65 wherew is a vector of all the weights in the network. The
(out of 100) derivative of the criteria is given by
+
Mean # epochs | 112 137 170 0 _ @ py fap )
(also back passes ow Loyt gat owtt
It can be shown that if the criteria is derived from the expo-
Mean # forward | 333 394 491 nential family of distributions [5], then we can always find an out-
passes put function such that
Mean # matrix 221 257 321 0J y _ t aJ _ oaf
Wy _ oyt g Mgy 4
inversions ay" oaf =9 aw_ ow ) “)

and the gradient is proportional to the error between the net-

3. EXPOSITION OF THE ALGORITHM work output and target:

_ [oaf

We now present an intuitive development of the algorithm. g= E[a—w E(y—t)] (5)
Consider the network in Figure 1(a) wheres the inputa is the
input to the final transfer function that produces the outpandt The advantage of finding a natural pairing between the criteria
is the target (desired response). The critdfjet) compares the  and output function is that the error is not attenuated as it is back-
output and target in some fashion. Assuming an infinite data setpropagated through the dual of the output nonlinearity.
the expectation of the criteria yields the cdst= E[ J] . Mini-
mizing the cost with respect to the free weightsn the network
yields the best fit of the network to the data.

Newton’s algorithm assumes that the cost in the region of 2 5
weight space around the optimal weights can be well approxi- H = 0C _ E[ 0°J } (6)
mated by a 2nd order Taylor series expansion. If this is true, then owow’ owow'

3.2 The true Hessian

From (2), the Hessian is




but maintained, although the cost function for which we will be com-
) 2a puting the Hessian was not the original cost function (i.e. the val-
0J _ 0_aT y -pa Qy—t) @ ues of the gradient would differ). Of course, the ultimate test is
Jwowt | ow oa ow' awawT how well the approximations hold up under simulation, but Table
| shows that there is good reason to study further this idea.

where the second term in (7) is a tensor product. In the limit
of an infinite data set, if the network outputs approximate the pos- 4. APPLICATION TO A SOFTMAX OUTPUT AND

terior probabilities, then it is easy to show [6] that this term goes A CROSS-ENTROPY CRITERION
to zero. That leaves us with the first term, which contains the
derivative of the output function with respect to its inpyt/ 0a’ . We now show how this reasoning can be applied to a multi-

For a nonlinear transfer function, this represents an attenuation ofayer perceptron with a softmax output trained under a cross-
the Hessian which, under certain circumstances, can cause thentropy criteria. The cross entropy criterion
Hessian to become very small, in turn implying that the a second

order Taylor expansion is no longer a good approximation. This N NOK
can seriously impair the performance of second-order optimiza- J= UM =-% 5 4(n) Hogly(n] (12)
tion methods, as we will see shortly. If we try to remove the n=1 n=1k=1

effects of the derivative by using a linear output unit, then through

(3) we are immediately led back to a mean squared error criteria: 1S USed in conjunction with a softmax activation function at

the final layer, where the softmax transfer function is given by

ay 0J

o=l 0 S=y-t O J=|y-t 8 expLa,

o oy =Y ly—ti”. ®) gy = S0 13
In other words, the only output-criteria pairing that neither Z explay]

attenuates the gradient nor the Hessian is a linear output and mean
squared error criteria, respectively. For any other output-criteria
pairing, we cannot simultaneously create a component that is lin- ~ where thea, are the inputs to the softmax. Since derivatives
ear in the backpropagation plane for both the calculation of thedistribute over summation, we can find the gradient and Hessian

=1

gradient and Hessian. of the instantaneous cos{n), and then sum the results over the
) ) entire data set. Dropping the temporal index for ease of reading,
3.3 The Levenberg-Marquardt approximation to the thei™ component of the instantaneous gradient is
Hessian
For a linear processing element (PE) and a MSE cost function, J(n) B tk 0y (14)
the L-M approximation to the Hessian yields directly [6], - Z y ]5
_1 YA This is easily evaluated using the properties of the softmax.
Jmse(n) T2 Z (yk tk) ' ©) Since
oy
= Y& =y (15)
, 10 0a
aw mse‘n) Z (yk_tk) (10)
it immediately follows that
2 K K
9 Jmse(n): ﬁ 02y _ (11) ayk _ ayk aa| &y aa,g (16)
ow;ow, W4 lawi 5Wj =) 6a| Yk m PR B()TVE
=1 =1

Notice that the advantage of the L-M approximation is that the
modified Hessian becomes only dependent on the state of the net-
work, and independent of the target value.

For a nonlin_ear PE, the_re are two_modifications to be consid- iJ(n) = Z V=t [gﬂ_ (17)
ered as shown in (7), and in [6] algorithms are developed to han- W
dle nonlinearities. However, we can always use (11) allowing one
to use the same L-M training algorithm for both regression and Note that this gradient is equivalent to a mean square error
classification problems. This is dangerous for nonlinear PEs andcost function where the softmax acts like a linear transfer function
MSE because the direction of the gradient is altered and there isn the backpropagation plane and does not attenuate the back-
no guarantee that the global minimum is obtained. Our goal waspropagated error. This is a great advantage over using a mean
exactly to seek a cost function for which the gradient before a sig-square error criteria in conjunction with sigmoid activation func-
moidal nonlinearity was undisturbed from the one obtained with ations at the output layer. Although the outputs of both networks
linear PE and MSE criterion such that (11) could be applied. Wetend to sum to oneafter training, the attenuation of the error
reasoned that in such case the direction of the gradient would béhrough the sigmoid layer slows down the training relative to an

Plugging (16) into (14), the instantaneous gradient results



equivalently sized softmax network. This is well known in the lit- 5. CONCLUSIONS
erature [6]. The interesting part is when we compute the Hessian

to this network and cost function. Using this reasoning, we may be lead to expect that (21)

would perform poorly because there are many approximations.
However, the results presented in Table | show the power of the
The exact Hessian of the instantaneous cost function can be&ombination of cross-entropy criterion and the pseudo Hessian, so

4.1 Relationship between the exact and pseudo Hessian

found by taking the partial derivative of (17) and using (16): there is something fundamental here that needs to be further
investigated. The results in Table | are orders of magnitude better
azJ(n) K da, 0a, K day, 0a than the ones presented by [2] and even better than the ones pre-
B ow = z aw. BGWJ O (1-y) - z aw, D‘W Oy sented in [4] using the natural grgdient. anortuhately, Amari and
k=1 Ki1=1 co-workers never compared their algorithm with second order
K o%a k1 methods, just with the straight gradient descent.
ok
+ Z =t ow; 0w, Underlying this work is the hint that faster adaptation can be
k=1 achieved in companion performance surfaces, that is, performance
(18) surfaces that preserve the location of the global minimum of the

- . true performance surface but that have higher slopes everywhere.
If we assume that the second derivatives are approximately_. : . L .

. ; . Since adaptation seeks the location of the minimum in parameter
the same for aK outputs, then the third term is zero, since

space while the value at the point is irrelevant, we the designers

K a2 2 K have an extra degree of freedom for fast adaptation. This reason-
z (y,—t )Dai =~ 0a z (y,—t,) = 0 (19) ing leads to the design of new search methods that preserve the
k=1 k= k Wiawj aWi aWj K1 k= k gradient direction of the original performance surface, but alter its

“slopes”. The combination of the cross-entropy criterion and the
and to the constraints that the outputs and targets sum to oné.-M approximation of the Hessian seems to be such a combina-
This should be contrasted with the analogous term in the Levention, but others may exist.
berg-Marquardt approximation for mean square error and sigmoid . .
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