
OPTIMIZATION IN COMPANION SEARCH SPACES: THE CASE OF CROSS-
ENTROPY AND THE LEVENBERG-MARQUARDT ALGORITHM

Craig L. Fancourt and Jose C. Principe
Computational NeuroEngineering Laboratory

Department of Electrical Engineering
University of Florida, Gainesville, FL 32611

email: fancourt@cnel.ufl.edu, principe@cnel.ufl.edu

Abstract

We present a new learning algorithm for the supervised train-
ing of multilayer perceptrons for classification that is significantly
faster than any previously known method. Like existing methods,
the algorithm assumes a multilayer perceptron with a normalized
exponential (softmax) output trained under a cross-entropy crite-
rion. However, this output-criteria pairing turns out to have poor
properties for existing optimization methods (backpropagation
and its second order extensions) because second-order expansion
of the network weights about the optimal solution is not a good
approximation. The proposed algorithm overcomes this limitation
by defining a new search space for which a second-order expan-
sion is valid and such that the optimal solution in the new space
coincides with the original criterion. This allows the application
of the Levenberg-Marquardt search procedure to the cross-
entropy criterion, which was previously thought applicable only
to a mean square error criteria.

1. INTRODUCTION

In multilayer perceptron (MLP) design, some emphasis has
been placed on proper pairing of the network architecture and cri-
terion [2], [3]. Typically, the criterion is dictated by the nature and
statistics of the problem to be solved, while the final output trans-
fer function is matched to the criterion so that the gradient is not
attenuated by the derivative of the output function. In this paper,
we are primarily concerned with a particular criterion-output pair-
ing that is useful for classification; namely, the cross-entropy cri-
teria and the normalized exponential (softmax) output function.

Unfortunately, little consideration has been given to the effect
of such pairings on optimization techniques that utilize second-
derivatives. We will show shortly that choosing the output transfer
function on the basis of the gradient alone can cause the Hessian
to become ill-conditioned, rendering invalid the quadratic
assumption on which many advanced optimization search proce-
dures are based.

This has led us to postulate that a conceptually appealing cri-
terion may not necessarily be the best one for efficient optimiza-
tion. This idea is not new. Based on information geometric
considerations, the so-called natural gradient [4] utilizes in effect
the gradient from the original criteria in conjunction with a Hes-
sian-like term based on the Fisher information matrix.

Our approach is to find a companion search space that has a
one-to-one mapping with the original search space (i.e. an optimal

solution in one is an optimal solution in the other), but for which
the quadratic approximation is always valid. The simplicity of the
solution is startling. Conceptually, we envision a pseudo target at
the input side of the final output nonlinearity, which we train
under a mean squared error criterion. Unfortunately, we don’t
actually know what the pseudo target should be because it is a
complex function of the data. For example, for the classification
task, the pseudo target is a function of the separation of the classes
and the proximity of an exemplar to a discriminant plane. Since
we don’t know the pseudo target, we use the Levenberg-Mar-
quardt (L-M) approximation of the Hessian because it depends
only on the operating point of the network and not on the (pseudo)
target. This still leaves the question of how to estimate the gradi-
ent that clearly does depend on the pseudo target. Here, the proper
choice of the criteria and output function, when properly paired,
allows for backpropagating the gradient unattenuated through the
final nonlinearity. That is, for weight update we use the gradient
calculated at the output using the original criteria, and the L-M
approximation to the Hessian calculated at the input to the final
nonlinearity. This is shown symbolically in Figure 1(b) and is
contrasted to the more traditional approach in Figure 1(a).

2. SIMULATIONS

Because the experimental results are so strong, we break from
tradition and present them first. The benchmark data sets are clas-
sification tasks, which we divide into two categories.

2.1 Separable problems

The first category is data sets that are perfectly separable.
Generally, the purpose of such data sets is to test the ability of a
learning algorithm to find highly non-linear discriminant func-
tions, rather than to test generalization

2.2 Non-separable problems

Most real world data sets are not perfectly separable and do
not require discriminant functions as complicated as the previous
data sets. Here, the goal is to test the ability of the algorithm to
capture the underlying statistics of the problem, as indicated
through the trained network’s ability to generalize on previously
unseen data generated from the same underlying distributions. We
will not address the non-separable problem case in this paper.

.

3. EXPOSITION OF THE ALGORITHM

We now present an intuitive development of the algorithm.
Consider the network in Figure 1(a) where x is the input, a is the
input to the final transfer function that produces the output y, and t
is the target (desired response). The criteria J(y,t) compares the
output and target in some fashion. Assuming an infinite data set,
the expectation of the criteria yields the cost: . Mini-
mizing the cost with respect to the free weights, w, in the network
yields the best fit of the network to the data.

Newton’s algorithm assumes that the cost in the region of
weight space around the optimal weights can be well approxi-
mated by a 2nd order Taylor series expansion. If this is true, then

it is easy to show that the weight update at each iteration is given
by

(1)

where g is the gradient and H is the Hessian, to be defined
shortly.

3.1 Natural pairing between criteria and output func-
tion

The gradient of the cost function commutes with the expecta-
tion operator.

(2)

where w is a vector of all the weights in the network. The
derivative of the criteria is given by

(3)

It can be shown that if the criteria is derived from the expo-
nential family of distributions [5], then we can always find an out-
put function such that

(4)

and the gradient is proportional to the error between the net-
work output and target:

. (5)

The advantage of finding a natural pairing between the criteria
and output function is that the error is not attenuated as it is back-
propagated through the dual of the output nonlinearity.

3.2 The true Hessian

From (2), the Hessian is

(6)

 Figure 1. (a) standard optimization methods; (b) proposed hybrid optimization.

a yf(w)x

t

g, H

a y
f(w)

x

t

g

MSE

H (Levenberg-Marquardt)

original
criteria

original
criteria

Table 1: Benchmark results: perfectly
separable problems

Problem
Result

2-class
spiral

4-bit
parity

9-bit
parity

Exemplars 194 16 512

MLP Architecture 2-40-1 4-4-1 9-9-1

Total # of weights 161 25 100

Runs converging
(out of 100)

97 99 65

Mean # epochs
(also back passes)

112 137 170

Mean # forward
passes

333 394 491

Mean # matrix
inversions

221 257 321

C E J[]=

w∆ H
1–

g⋅–=

g
w∂

∂C
E

w∂
∂J

= =

w∂
∂J

y†∂
∂J

a†∂
∂y

w†∂
∂a⋅ ⋅ 

 
†

=

y†∂
∂J

a†∂
∂y⋅ y t–()†

w∂
∂J a†∂

w∂-------- y t–()⋅=⇒=

g E
a†∂
w∂-------- y t–()⋅=

H
∂2

C
w∂ w†∂

---------------- E
∂2

J
w∂ w†∂

----------------= =

but

(7)

where the second term in (7) is a tensor product. In the limit
of an infinite data set, if the network outputs approximate the pos-
terior probabilities, then it is easy to show [6] that this term goes
to zero. That leaves us with the first term, which contains the
derivative of the output function with respect to its input: .
For a nonlinear transfer function, this represents an attenuation of
the Hessian which, under certain circumstances, can cause the
Hessian to become very small, in turn implying that the a second
order Taylor expansion is no longer a good approximation. This
can seriously impair the performance of second-order optimiza-
tion methods, as we will see shortly. If we try to remove the
effects of the derivative by using a linear output unit, then through
(3) we are immediately led back to a mean squared error criteria:

. (8)

In other words, the only output-criteria pairing that neither
attenuates the gradient nor the Hessian is a linear output and mean
squared error criteria, respectively. For any other output-criteria
pairing, we cannot simultaneously create a component that is lin-
ear in the backpropagation plane for both the calculation of the
gradient and Hessian.

3.3 The Levenberg-Marquardt approximation to the
Hessian

For a linear processing element (PE) and a MSE cost function,
the L-M approximation to the Hessian yields directly [6],

, (9)

, (10)

. (11)

Notice that the advantage of the L-M approximation is that the
modified Hessian becomes only dependent on the state of the net-
work, and independent of the target value.

For a nonlinear PE, there are two modifications to be consid-
ered as shown in (7), and in [6] algorithms are developed to han-
dle nonlinearities. However, we can always use (11) allowing one
to use the same L-M training algorithm for both regression and
classification problems. This is dangerous for nonlinear PEs and
MSE because the direction of the gradient is altered and there is
no guarantee that the global minimum is obtained. Our goal was
exactly to seek a cost function for which the gradient before a sig-
moidal nonlinearity was undisturbed from the one obtained with a
linear PE and MSE criterion such that (11) could be applied. We
reasoned that in such case the direction of the gradient would be

maintained, although the cost function for which we will be com-
puting the Hessian was not the original cost function (i.e. the val-
ues of the gradient would differ). Of course, the ultimate test is
how well the approximations hold up under simulation, but Table
I shows that there is good reason to study further this idea.

4. APPLICATION TO A SOFTMAX OUTPUT AND
A CROSS-ENTROPY CRITERION

We now show how this reasoning can be applied to a multi-
layer perceptron with a softmax output trained under a cross-
entropy criteria. The cross entropy criterion

(12)

is used in conjunction with a softmax activation function at
the final layer, where the softmax transfer function is given by

(13)

where the ak are the inputs to the softmax. Since derivatives
distribute over summation, we can find the gradient and Hessian
of the instantaneous cost, J(n), and then sum the results over the
entire data set. Dropping the temporal index for ease of reading,
the ith component of the instantaneous gradient is

(14)

This is easily evaluated using the properties of the softmax.
Since

(15)

it immediately follows that

(16)

Plugging (16) into (14), the instantaneous gradient results

. (17)

Note that this gradient is equivalent to a mean square error
cost function where the softmax acts like a linear transfer function
in the backpropagation plane and does not attenuate the back-
propagated error. This is a great advantage over using a mean
square error criteria in conjunction with sigmoid activation func-
tions at the output layer. Although the outputs of both networks
tend to sum to one after training, the attenuation of the error
through the sigmoid layer slows down the training relative to an

∂2
J

w∂ w†∂

a†∂
w∂

a†∂

∂y
w†∂

∂a⋅ ⋅ ∂2
a

w∂ w†∂
---------------- y t–()⋅+=

y∂ a†∂⁄

a†∂
∂y

I=
y∂

∂J y t–= J y t–
2

=⇒ ⇒

Jmse n() 1
2
--- yk tk–()2

k 1=

K

∑=

wi∂
∂

Jmse n() yk tk–()
wi∂

∂ak⋅
k 1=

K

∑=

∂2
Jmse n()

wi∂ wj∂

wi∂

∂ak
wj∂

∂ak⋅
k 1=

K

∑≈

J J n()

n 1=

N

∑ tk n() yk n()[]log⋅

k 1=

K

∑
n 1=

N

∑–= =

yk

ak[]exp

al[]exp

l 1=

K

∑
----------------------------=

wi∂
∂

J n()
tk
yk

wi∂
∂yk⋅

k 1=

K

∑–=

al∂
∂yk yk δkl yl–()=

wi∂
∂yk

al∂
∂yk

wi∂
∂al⋅

l 1=

K

∑ yk wi∂
∂ak yl wi∂

∂al⋅

l 1=

K

∑–
 
 
 
 

= =

wi∂
∂

J n() yk tk–()
wi∂

∂ak⋅

k 1=

K

∑=

equivalently sized softmax network. This is well known in the lit-
erature [6]. The interesting part is when we compute the Hessian
to this network and cost function.

4.1 Relationship between the exact and pseudo Hessian

The exact Hessian of the instantaneous cost function can be
found by taking the partial derivative of (17) and using (16):

. (18)

If we assume that the second derivatives are approximately
the same for all K outputs, then the third term is zero, since

(19)

and to the constraints that the outputs and targets sum to one.
This should be contrasted with the analogous term in the Leven-
berg-Marquardt approximation for mean square error and sigmoid
outputs. There, a summation over also results but,
because there are no constraints on the outputs, the vanishing of
the summation can only be justified when considering an expecta-
tion over the entire data set at the optimal solution. Thus, there is
good reason to expect the L-M approximation to the Hessian to be
better for a softmax output, at least early in the training. The latter
caveat is required due to the vanishing of the Hessian at the opti-
mal solutions previously mentioned.

Dropping the second-order derivatives and rearranging the
remaining terms, there results

. (20)

Note that the factor in the first summation tends
to leave small outputs unchanged and reduces large outputs. It
will thus have a more uniform distribution across the outputs than
yk itself and can be ignored to a first approximation. In addition, if
one output dominates the others, as would be expected once some
learning has occurred, then all the cross terms in the second
summation will be small. Finally, we arrive at the approximation

(21)

which is exactly (11), obtained for the linear PE case. We call
this approximation the pseudo Hessian.

5. CONCLUSIONS

Using this reasoning, we may be lead to expect that (21)
would perform poorly because there are many approximations.
However, the results presented in Table I show the power of the
combination of cross-entropy criterion and the pseudo Hessian, so
there is something fundamental here that needs to be further
investigated. The results in Table I are orders of magnitude better
than the ones presented by [2] and even better than the ones pre-
sented in [4] using the natural gradient. Unfortunately, Amari and
co-workers never compared their algorithm with second order
methods, just with the straight gradient descent.

Underlying this work is the hint that faster adaptation can be
achieved in companion performance surfaces, that is, performance
surfaces that preserve the location of the global minimum of the
true performance surface but that have higher slopes everywhere.
Since adaptation seeks the location of the minimum in parameter
space while the value at the point is irrelevant, we the designers
have an extra degree of freedom for fast adaptation. This reason-
ing leads to the design of new search methods that preserve the
gradient direction of the original performance surface, but alter its
“slopes”. The combination of the cross-entropy criterion and the
L-M approximation of the Hessian seems to be such a combina-
tion, but others may exist.

Acknowledgment: This work was partially supported by NSF
grant ECS-990394.

References

[1] Duda R. and Hart P., Pattern classification and scene
analysis, John Wiley & Sons, New York, 1973.

[2] Moller M.F., A scaled conjugate gradient algorithm for
fast supervised learning, Neural Networks, vol. 6, pp. 525-
533, 1993.

[3] Osowski S., Bojarczak P., and Stodolski M., Fast sec-
ond order learning algorithm for feedforward multilayer
neural networks and applications, Neural Networks, vol. 9,
no. 9, pp. 1583-1596, 1996.

[4] Park H., Amari S., and Fukumizu K., Adaptive natural
gradient learning algorithms for various stochastic models,
submitted to Neural Networks, 1999.

[5] Rumelhart D., Durbin R., Golden R., and Chauvin Y.,
Backpropagation: the basic theory, in Chauvin Y. and
Rumelhart D. (eds.), Backpropagation: Theory, Architec-
tures, and Applications, Lawrence Earlbaum Associates,
Hillsdale, New Jersey, (1995).

[6] Bishop C., Neural Networks for Pattern Recognition,
Oxford Press, 1996.

∂2
J n()

wi∂ wj∂-----------------
wi∂

∂ak

wj∂
∂ak yk 1 yk–()⋅ ⋅

k 1=

K

∑ wi∂
∂ak

wj∂
∂al ykyl⋅ ⋅

k l, 1=

k l≠

K

∑–=

yk tk–()
∂2

ak

wi∂ wj∂
-----------------⋅

k 1=

K

∑+

yk tk–()
∂2

ak
wi∂ wj∂------------------⋅

k 1=

K

∑ ∂2
a

wi∂ wj∂------------------ yk tk–()
k 1=

K

∑≈ 0=

yk tk–

∂2
J n()

wi∂ wj∂

wi∂

∂ak
wj∂

∂ak
yk 1 yk–()⋅ ⋅

k 1=

K

∑ wi∂

∂ak
wj∂

∂al
ykyl⋅ ⋅

k l, 1=
k l≠

K

∑–≈

yk 1 yk–()

ykyl

∂2
J n()

wi∂ wj∂------------------
wi∂

∂ak
wj∂

∂ak⋅
k 1=

K

∑≈

