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ABSTRACT

The purpose of a voice conversion (VC) system is to change the
perceived speaker identity of a speech signal. In this paper, we pro-
pose a new algorithm based on converting the LPC spectrum and
predicting the residual as a function of the target envelope parame-
ters. We conduct listening tests based on speaker discrimination of
same/difference pairs to measure the accuracy by which the con-
verted voices match the desired target voices. To establish the level
of human performance as a baseline, we first measure the ability
of listeners to discriminate between original speech utterances un-
der three conditions: normal, fundamental frequency and duration
normalized, and LPC coded. Additionally, the spectral parame-
ter conversion function is tested in isolation by listening to source,
target, and converted speakers as LPC coded speech. The results
show that the speaker identity of speech whose LPC spectrum has
been converted can be recognized as the target speaker with the
same level of performance as discriminating between LPC coded
speech. However, the level of discrimination of converted utter-
ances produced by the full VC system is significantly below that
of speaker discrimination of natural speech.

1. INTRODUCTION

The goal of voice conversion (VC) is to modify a source speaker’s
utterance to sound as if a target speaker had spoken it. Its uses in-
clude customization of text-to-speech systems (e.g., to speak with
a desired voice or to read out email in the sender’s voice), as well
as entertainment and security applications. To measure the perfor-
mance of a VC system, the output must be evaluated by listening
tests, especially when considering naturalness and speaker recog-
nizability (defined as the degree by which listeners can recognize
the converted voice as the target voice or discriminate between
them).

There are several shortcomings in the previously published
methodologies of evaluating VC systems. Often, distortion mea-
sures or statistical tests are used, which by themselves are inade-
quate for a signal that is meant to be heard by a human. When lis-
tening tests are conducted, they are typically small-scale and con-
tain only a few source/target combinations. In addition, it is very
difficult to compare results across different works, because every
approach uses a different (often proprietary) speech database.
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In this paper, we propose a more rigorous testing framework,
in which we start with a corpus especially designed for the pur-
poses of VC training. The design and creation of this corpus,
planned for public release, is described in Section 2. In Section
3, we establish the degree by which listeners can distinguish dif-
ferent speakers in the corpus under various conditions, using a
same/different sentence-pair listening test. The results are used
to define a baseline against which conversion results can be com-
pared. In Section 4, the conversion function responsible for map-
ping LPC parameters is tested. Using the listening test design of
the previous section, subjects are asked to discriminate between
converted, source, and target voices as LPC coded speech. In Sec-
tion 5, we propose a novel way of constructing a converted utter-
ance by mapping parameters of a spectral envelope and then pre-
dicting the residual from it. This is in contrast to other approaches
which transform the residual. We present the algorithm and test it
in our listening test framework.

2. SPEAKER DATABASE

The systematic training and evaluation of a VC system is facili-
tated by using a speech database that offers recordings of many
different people producing the same sentences. Our goal was to
design and develop a speech database that contained a “phoneti-
cally rich” set of sentences produced by multiple speakers. Addi-
tionally, the recording procedure was designed to result in a natu-
rally good time-alignment between the same sentences of different
speakers, which allows focusing on research of the segmental cues
related to speaker identity as opposed to prosodic cues.

To select text that would provide coverage over the acousti-
cal space, we ran a greedy algorithm on the list of sentences from
the TIMIT and Harvard databases (a total of 1170 sentences). Our
selection criterion maximized the number of occurrences of rare
phonemes, while including as many unique diphones as possible.
Using the top 50 sentences, each phoneme was represented on av-
erage 41 and at least 17 times; the number of unique diphones was
693.

First, a recording of a template speaker reading the selected
sentences was made. Then, we invited 5 male and 5 female Amer-
ican English speakers, living in the US Pacific Northwest since
childhood and between the ages of 21 and 29, as corpus speak-
ers. During a recording session, they were asked to listen to a
template sentence, whose text was also displayed on a screen, be-
fore being instructed to mimic the timing and accentuation pattern
(but not pitch or voice quality) of that sentence on their own. The



speech and laryngograph signals were recorded at 22 kHz/16 bits
in a professional sound-booth, using a high-quality headset con-
denser microphone. The entire database was force-aligned using
the CSLU Speech Toolkit [1]. Time markers were created for each
speech utterance at the beginning of a new HMM state (up to 3 per
phoneme). The laryngograph track was processed to yield pitch
mark estimates. Both the time markers and the pitchmarks were
verified and corrected manually for a high degree of accuracy. An
analysis of the time markers showed that the average sentence du-
ration differences between mimicking speakers and the template
speaker were less than 0.2%.

3. SPEAKER DISCRIMINATION BASELINE

In this section, we measure the degree by which listeners can dis-
tinguish different speakers of the corpus. The level of discrimi-
nation can be viewed as a baseline against which later VC results
can be compared. Additionally, the database lends itself to dis-
covering trends in the relative contributions of intonation, average
fundamental frequency (F0), timing, and spectral detail to speaker
recognizability. For these purposes, we designed a listening test
with the following three conditions:

1. Natural: The unprocessed, original utterance, in which speaker-
specific intonation and timing characteristics closely resem-
ble those of the template speaker.

2. F0 and duration normalized: The durations and F0 of con-
dition 1 were processed using PSOLA to yield a generic
duration and F0 evolution. This was accomplished by “av-
eraging” F0 and durations of each sentence from speakers
of the same gender. Pitch, jitter, and duration information
contributing to speaker discriminization is thus lost. Lis-
teners can only make use of the short-term spectrum to dis-
criminate speakers.

3. LPC spectrum: We performed a 22
nd order LPC analysis

on condition 2 and synthesized utterances using only the
LPC spectrum. Listeners must perform speaker discrim-
ination based on the simplifying assumptions of the LPC
model, one of the most significant of which is that the phase
spectrum is minimum phase (except for unvoiced sounds
where random phase was substituted). The speech has a
coded quality.

A same/different task was chosen for the listening test, similar to
[2]. In this type of task, listeners are played two different sentences
and are asked whether they thought the sentences were spoken by
either the same or by two different speakers. The listeners selected
were completely unfamiliar with the speakers, since it is difficult to
measure or control the degree of familiarity. Speaker discrimina-
tion by humans has been shown to be more accurate than speaker
recognition, which is subject to memory limitations [3], and which
can be significantly affected by the specific composition of a small
speaker set [4]. Male and female voices were tested separately, be-
cause inter-sex confusions rarely occur (as an example of this see
[5]).

The following were additional design criteria. Balance: the
stimuli were balanced in regards to gender, the number of “same”
and “different” pairs, and the number of trials per condition. Con-
sistency: the same speaker and sentence combinations were de-
livered for each listener. Maximum variability: a speaker never
repeats the same sentence during the entire test. Minimum bias:

Condition / Experiment Males Females

1: natural 84 (81-88) 95 (92-98)
2: F0 and duration normalized 83 (79-87) 89 (85-92)
3: LPC spectrum 71 (65-76) 88 (84-91)

LPC map 73 (69-77) 87 (83-90)
LPC map + residual prediction 74 (70-78) 84 (80-87)

Table 1. Results of the perceptual listening tests. Shown is the
percent correct discrimination of speakers averaged over listeners
and trials. The 95% confidence interval is in parentheses.

the order of sentences, and the order of presentation of A and B
within a trial were randomized. Minimum learning of voices: the
order of gender presentation was switched from one to the other
to slow down the learning of the voices. Also, the conditions were
presented in sequence from 3 to 1 to delay the disclosure of full
voice characteristics as much as possible.

The average results of 16 listeners who each heard 120 sentence-
pairs are displayed in Table 1. As expected, the average discrimi-
nation performance increased as more information was made avail-
able in the speech signal. The difference in discrimination between
conditions 3 and 2 is significant for the set of male speakers, and
between 2 and 1 for the set of female speakers (� = 0:01). The
significant increase in discrimination for males when adding in-
formation in the form of the complex LPC residual suggests that
VC systems must be designed to be capable of producing spectral
details not found in the LPC spectrum. This issue is addressed in
Section 5.

4. LPC SPECTRUM MAPPING

There are two critical parts of a VC algorithm: the model and its
parameters by which speech is modified to change the perceived
speaker identity, and the function which is trained to predict target
parameters from source parameters. The model and the conver-
sion function have to be matched carefully to the task and avail-
able training data. The model must be effective in producing target
speech naturally and accurately; at the same time the conversion
function must be able to learn the source/target parameter relation-
ship from the training data. In this section, we aim at evaluating the
performance of the conversion function in isolation by listening to
both natural and converted sentences as LPC-coded speech.

A number of VC algorithms in the literature have focused on
converting the spectral envelope represented by a type of LPC pa-
rameter. In one of the earliest approaches, parameters were con-
verted using a vector quantization (VQ) approach [6]. The discrete
nature of this mapping was improved upon in [7] by using a Gaus-
sian Mixture Model (GMM) within the framework of a sinusoidal
synthesizer. In our earlier research, we mapped Bark-scaled Line
Spectral Frequencies (LSF) by using a GMM that was estimated
using a joint-density approach, creating the converted utterance by
means of a residual LPC synthesizer [8].

During feature extraction, we first perform a pitch-synchronous
sinusoidal analysis over 2 pitch periods. The discrete magnitude
spectrum is upsampled and warped using the bark scale. Then,
an application of the Levinson-Durbin algorithm on the autocorre-
lation sequence yields LPC filter coefficients [9]. It is important
to note that a certain amount of excitation information is present
in the LPC filter. Finally, the LPC filter parameters are converted
to LSFs, which have more favorable interpolation properties. For



the purpose of training, the features are time-aligned with the aid
of the time marker information and silences are removed. The
final database, containing approximately 16,000 vectors for each
speaker, is split into training (sentences 1-40) and test (sentences
41-50) sets.

The training and conversion procedures follow our previous
work closely, please see [8] for details. First, the source and tar-
get vectors are joined to form a new vector space; a GMM of this
space is estimated by the Expectation-Maximization (EM) algo-
rithm, initialized by a generalized Lloyd algorithm [10]. After the
log-likelihood stabilizes, a regression is performed which calcu-
lates the linear transformation components of the locally linear,
probabilistic conversion function.

There are two free parameters in the training procedure, the
number of mixture components Q and a scalar ". The latter rep-
resents the magnitude of a perturbation added to the diagonal ele-
ments of the covariance matrices at each iterative estimation for the
purpose of regularization. The choice of these parameters is prob-
lematic, because it is difficult to objectively measure speech qual-
ity and speaker accuracy. A spectral mean squared error (MSE)
measure on the test set had a weak relationship to the desired out-
come. For example, when Q was too high, the temporal evolu-
tion of the resulting spectra contained many discontinuities, even
though the MSE was lower than compared to the results produced
by a lower Q. An alternative measure is the signal to noise ra-
tio (SNR), where the signal is defined as the converted sentence,
and the error between it and the target sentence is defined as noise.
This approach seemed to relate better with the desired speech qual-
ity of the output, as verified by an informal listening test. The
final choices were Q = 6 and " = 0:0001. The fact that the
optimal number of components was so low (compared to earlier
work) suggests that the mapping performed best when applying
very broad transformations to the source vectors, which may in-
dicate that there were not enough data to reliably estimate more
components, and/or the data were “noisy” due to time-alignment
problems during training.

During the conversion process, the source speech file is ana-
lyzed, its features transformed by the conversion function, and the
target magnitude spectrum envelope is calculated by evaluating the
predicted LPC system function, from which the converted speech
is synthesized using a sinusoidal overlap/add system. The LPC
system phase is used during voiced segments and random phase
during unvoiced segments.

To evaluate the mapping performance, we conducted a listen-
ing test similar to Section 3, except we were now interested in the
ability to discriminate between the converted speakers and their
respective source and target speakers, which were reproduced by
the same LPC synthesizer used during conversion. In this manner,
listeners could only make use of differing feature information for
discrimination. It should be noted that this test is very different
from the conventional ABX test, which is based on forced choice:
listeners are to decide whether the converted utterance is closer to
the source or to the target speaker. The latter case does not imply
that the converted speaker cannot be distinguished from the target
speaker; thus, the speaker may in actuality not be recognizable.

Results from 12 listeners of the original listening group can
be found in Table 1. The speaker distinction performance com-
pares favorably to that of condition 3. This demonstrates that the
conversion function is effective in producing a change in speaker.
However, some degradation of the speech signal occurred, notice-
able as a muffling effect.

5. RESIDUAL PREDICTION

Clearly, signal details beyond the LPC envelope contribute to the
naturalness of speech and may also contain vital speaker infor-
mation, apparent in the test results in Section 3 for the set of
male speakers. To address this, several authors proposed ways
of improving VC beyond changing the LPC spectral envelope by
also changing the LPC residual. In [11], the authors formulated a
codebook-based transformation of the source excitation character-
istics by using a weighted combination of codeword filters, which
were derived from the average source and target codeword excita-
tion spectra. In [12], the excitation is modeled by a long delay neu-
ral net predictor whose parameters are mapped based on the max-
imum occurrence in a 2D histogram of vector correspondences.
There exist also approaches based on estimating and modeling the
glottal source, for example in [13] the voice type of a speaker can
be converted between modal, breathy, or creaky.

In contrast to transforming an excitation waveform, we pro-
pose a method in which we predict the target residual from LPC
parameters during voiced speech. The underlying assumption of
this approach is that for a particular speaker and within some phonetically-
similar class of voiced speech, the residuals are similar and pre-
dictable. Specifically, the residual’s magnitude spectrum contains
errors made by the spectral envelope fit (e.g., zeros during a nasal),
and the phase spectrum contains important information about the
natural phase dispersion of the signal, as opposed to the minimum
phase assumption of the LPC model. Another way of viewing this
approach is as a speech coder with a speaker-dependent excitation
codebook.

During training of the residual prediction module, a LPC cep-
strum representation of all available voiced segments from the train-
ing set is clustered by a GMM with 32 mixture components. Each
cepstral vector has a residual complex spectrum associated with
it; the residual magnitude spectrum is calculated by subtracting
the LPC log-magnitude envelope from the original log-magnitude
spectrum, whereas the residual phase was given by the difference
between the LPC system phase and the original phase spectrum.
To make the codewords pitch-independent, the original residual
vectors were upsampled to a common length using a nearest-neighbor
interpolation scheme.

For each class, the residual codeword is calculated as follows:
The magnitude spectrum is calculated by a weighted mean of all
magnitude vectors, corresponding to the normalized probability of
belonging to that class; the phase spectrum is set to the centroid
phase. In the decoding stage, the posterior likelihood of an incom-
ing cepstral vector is calculated and used as weights in predict-
ing the residual magnitude by a weighted mean scheme from the
residual codewords. The residual phase belonging to the class with
maximum likelihood is chosen as the predicted phase. After this
stage, the phases are unwrapped in time and smoothed by a 8-point
FIR filter to reduce audible artifacts due to sudden changes in the
residual phase. Finally, the residual spectrum is added to the LPC
spectral envelope (see Figure 1).

The residual prediction module was tested by synthesizing sen-
tences from their original spectral parameters only and was found
to produce an output nearly indistinguishable from the original in
informal listening tests.

We integrated the module with the spectral mapping system
and also added a last stage in which the mean and variance of the
source F0 is modified to match that of the target F0. The generated
conversion sentences were compared to the original speech wave



Fig. 1.

Voice conversion algorithm based on converting the LPC spectrum and predicting the residual from the target LPC parameters.

files of the source and target speaker in a listening test in the same
format as described earlier.

The results of the listening test in Table 1 show that the level
of discrimination is significantly below that of the baseline for nat-
ural speech utterances within the speaker database. At first it may
seem surprising that the level of discrimination dropped slightly
as compared to the previous experiment. While it is true that the
converted utterances contain more speaker information than be-
fore, they are also compared against natural waveforms, which in
turn also contain many more speaker identity cues. The net effect
is that the task had become more difficult. These results can be
considered as a performance indicator of the “real world” task of
mimicking another human with precision.

6. CONCLUSION

We have proposed a new VC algorithm based on predicting the
LPC target residual from the target spectral envelope instead of
transforming the source residual. To evaluate the level of accuracy
by which the algorithm can convert voices such that they are indis-
tinguishable from the target voice, a listening test was performed
and the results compared with the appropriate baseline. The listen-
ing test was based on a same/different sentence-pair methodology,
using combinations of 5 male and 5 female speakers. In another
listening test, the conversion function implementing the transfor-
mation of LPC parameters was tested in isolation by listening to
source, target, and converted voices as LPC coded speech.

The results show that a GMM can successfully transform the
spectral envelope of a source speaker to be recognized as the spec-
tral envelope of a target speaker. When comparing converted ut-
terances with natural wavefiles, discrimination is still significantly
lower than among natural samples. Additionally, the quality of
converted speech is degraded. We speculate that improvements to
the speech quality can be made in making changes to the manner in
which the spectral mapping is trained to prevent problems that oc-
cur when the time-alignment is less than perfect. Another area of
research is the optimal selection of mixture components and LPC
order in the residual prediction module, as well as a more reliable
way of extracting residual phase codewords.

A selection of the audio files used in this paper are available at
http://cslu.cse.ogi.edu/tts.
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