
VARIABLE STEP-SIZE LMS BLIND CDMA MULTIUSER DETECTOR

Yu Gong B. Farhang-Boroujeny Teng Joon Lim

Centrefor SignalProcessing
NanyangTechnological

University,
Singapore639798

Departmentof Electrical
Engineering,

Universityof Utah,
SaltLakeCity,

UT 84112-9206,USA.

Departmentof Electricaland
ComputerEngineering
Universityof Toronto

Toronto,ON M5S 3G4,Canada

ABSTRACT

Adaptive leastmeansquare(LMS) filters with or without
trainingsequences,which areknown astraining-basedand
blinddetectorsrespectively, havebeenformulatedtocounter
interferencein CDMA systems.The convergencecharac-
teristicsof thesetwo LMS detectorsareanalyzedandcom-
paredin this paper. We show that the blind detectoris su-
periorto thetraining-baseddetectorwith respectto conver-
gencerate. On the otherhand,the training-baseddetector
performsbetter in the steadystate,giving a lower excess
mean-squareerror (MSE) for a given adaptationstep-size.
A novel decision-directedLMS detectorwhichachievesthe
low excessMSE of the training-baseddetectorandthe su-
periorconvergenceperformanceof theblind detectoris pro-
posed.

1. INTRODUCTION

In a multiusercode-division multiple-access(CDMA) sys-
tem,multiple-accessinterference(MAI) is themainsource
of performancedegradation.Multiuserdetection,which is
now an establishedand popularfield of research,hasthe
objective of suppressingMAI. In this paper, we are inter-
estedin theLMS implementationof thelineartapped-delay
line MMSE detector, bothin its training-basedandblind (or
anchored)forms.

A comprehensivecomparisonof theconvergenceprop-
ertiesof the training-basedand blind adaptive LMS mul-
tiuserdetectorsis thusfarnotavailablein theliterature.The
training-baseddetectorwas closely studiedin [1], where
it is shown that initialization of the filter tap-weightvec-
tor within thesignalsubspaceor to theorigin leadsto faster
convergencecomparedto initializationin thenoisesubspace,
andthatchip-spaced(CS)andfractionally-spaced(FS)de-
tectorswith the sametime-spanexhibit the sameconver-
gencebehavior. Honig et al. [2] gavea simpleconvergence

analysisfor the blind (anchored)detector, which unfortu-
natelycontainssomeerrorsandis incomplete,aswepointed
out in [3]. Here,we expandon thepreciseconvergencere-
sultsfor theblind (anchored)detectorgivenin [3], compare
its convergencebehavior to thatof thetraining-baseddetec-
tor, andsuggestanimprovedalgorithmbasedonanadaptive
decisiondirectedimplementation.

2. ANALYSIS

2.1. System Model

For simplicity, we considera synchronoustime-invariant�
-userCDMA systemwith processinggain � , whereuser�
transmitsovera single-path,time-invariantchannelchar-

acterizedby theattenuation��� , andall usersymbolbound-
ariesarealignedin time. Thereceivedsignalvectoris then
writtenas ���
	���
���������	��������
	���� (1)

wherethe
�
thcolumnof � representsthereceivedspreading

codeof the
�
th userandis denotedby � � 1, ���
	�� is thedata

vector, ��
 diag ��! � �#" �%$&$%$�� �#')( , ���
	�� is thechanneladdi-
tive white Gaussiannoise(AWGN) vector, 	 is thesymbol
index, and ���
	�� is an �+*�, columnvectorof the received
signalsampledat chip-rate.

Theconvergenebehaviour of theLMS algorithmis de-
terminedby the input correlationmatrix. For the training-
baseddetector, thecorrelationmatrixis -/.0. 
 E  ����	����213�
	�� ( .
For theblind detector, asshown in [3], therelevantcorrela-
tion matrixis -/4�4 
 E  5 �
	�� 5 16�
	�� ( , where5 �
	���
87:9; ! ���
	�� ,7 9; ! 
=<?> �@!0� 1 ! . Since-/4�4 is symmetric,theconvergence
behaviour of the blind detectorcanbe easilyobtained,un-
likewhatwasimpliedby theprocedureoutlinedin [2]. Fur-
thermore,whenthetap-weightsareinitialized in thesignal

1WeassumeA�BDCEA2FHG for IJFHG�KML�LMLNK�O , without lossof generality



subspace,only theeigenvaluesin thesignalsubspaceaffect
theconvergencebehaviour [1, 3].

2.2. Convergence Analysis

2.2.1. Eigenvalue Spread

A comparisonof theconvergencebehaviorsof thetraining-
basedandblind detectorsmay be madeby comparingthe
eigenvaluespread[4, 5]. First we notethat �P! is aneigen-
vectorof -/4�4 with anassociatedeigenvalueof zero.How-
ever, this zeroeigenvalueplaysno role in the convergence
of theblind detector, sincethetap-weightsareneveradapted
in thedirectionof �P! . It canbeeasilyverifiedthat Q " is the
minimum eigenvalueof both - .&. and -/4�4 , which repeats
� > � timesfor - .0. and � > � > , for -/4�4 . Thus,

RTSVU W � - .0. �?
 RTSVU W � -�4�4 �?
 Q " (2)

where
RXSVU W �M$ � denotestheminimumnon-zeroeigenvalueof

theindicatedmatrix.
On the other hand, the maximum eigenvalue of - .0.

may be obtainedby applyingthe minimax theoremwhich
states[4, 5]
RXSVY[Z � - .&. �?
]\3^P_`ba 1 - .0. a � subjectto a 1 a 
 ,Nc (3)

Similarly, themaximumeigenvalueof -/4�4 canbeobtained
from
R SVY[Z � - 4�4 �?
]\3^P_dfe 1 - 4�4 e � subjectto e 1 e 
 ,gc (4)

Decomposinge as e 
 e ! � e " , where e ! is the projec-
tion of e onto � ! , andnoting that - 4�4 
h7:9; ! -�.0. 7:9; ! and7:9; ! e ! 
=i , 7:9; ! e " 
 e " , we obtain

R SVY[Z � - 4�4 �?
]\3^P_dkj e 1" -/.&. e " � (5)

subjectto l e "gl " 
 , > l e !El " . Since - .0. is positivesemi-
definite, m 1 - .0. m is a convex function of m . Thus,maxi-
mizing(5) with respectto e requiresusto make e " aslarge
aspossible,while keepingl e l 
 , . Consequently, e ! must
besetto n andwearriveat thefollowing result,

RXSVY[Z � -/4�4 �?
8\3^P_d e 1 - .0. e � (6)

subjectto e 1 e 
 , and e 1 � ! 
=i .
Comparing(3) and(6),weseethatboth

R SVY[Z � -/.0. � andR SVY[Z � - 4�4 � areobtainedby maximizingthesamequadratic
expression,but the latterhasanadditionalconstraint.This
impliesthat

R SVY[Z � - 4�4 ��o R SVY[Z � -�.0. � c (7)

Furthermore,from (2) and(7), we obtainRXSVY[Z � -�4�4 �R SVU W � - 4�4 � o
RTSVYMZ � - .0. �R SVU W � -�.0. � (8)

which indicatesthat the blind detectorhasan eigenvalue
spreadthat is smallerthanor equalto its counterpartin the
training-baseddetector.

Thesameresultas(8) hasalsobeendevelopedby Roy
[6], usinga somewhatdifferentapproach.However, using
our observationthat theHermitian - 4�4 canbetakenasthe
convergence-controllingcorrelationmatrix for theblind de-
tector, furtherresultscanbederived,asdiscussedin thenext
few sections.

2.2.2. Initialization Effects

In somerecentworks[1], wehavestudiedthephenomenon
of differentconvergencebehaviorsof MMSEdetectorswhen
the adaptive tap-weightvector is initialized in the signal
andnoisesubspaces.Therelative performanceof theblind
and training-basedadaptive detectorsmust also be exam-
inedfrom this angle.

Let
R

s-max
� c � and

R
s-min

� c � denotethe maximumand
minimum eigenvaluesin the signal subspaceof the indi-
catedmatrices,respectively. Obviously

R
s-max

� -/.0. �p
R
max

� - .0. � and
R

s-max
� -�4�4 �q
 R

max
� -�4�4 � . Thus, in

view of (7),
R

s-max
� -�4�4 �ro R

s-max
� - .0. � . Following the

sameline of derivationsto thosewhich led to (7), we also
obtain R

s-min
� - .0. ��
s\6tvu`wa 1 - .0. a � (9)

subjectto a 1 a 
 , and ayx/z , wherez indicatesthesignal
subspacespannedby �P! , �%" , $&$%$ , �%' . Similarly,

R
s-min

� - 4�4 �?
8\rtvud{e 1 -�.0. e � (10)

subjectto e 1 e 
 , and e+x}|z , where |z indicatesthe
signal subspacespannedby ~ ��" , ~��� , $&$%$ , ~�%' , where ~��� 
7:9; ! ��� .

Noting that |z is a subspaceof z , from (9) and(10),we
obtain R

s-min
� - 4�4 ��� R s-min

� -/.&. � c (11)

Thus, R
s-max

� -/4�4 �R
s-min

� -/4�4 � o
R

s-max
� - .0. �R

s-min
� - .0. � c (12)

Thatis, with signal-subspaceinitializationof thetapweight
vectors,theblind detectoralsohasa lower effective eigen-
valuespreadthanthetraining-baseddetector.

2.2.3. Misadjustment and excess MSE

The misadjustmentfor the training-basedand blind LMS
detectorsis givenby [4, 3]

�
td

8i c �E� tr  - .0. ( � �

bd

=i c��P� tr  -/4�4%( � (13)



respectively. wheretr  �c ( denotesthe traceof the indicated
matrix. But tr  -/4�4�(J� tr  - .&. ( . Hence,for equalstep-size
parameters, �

bd � � td c (14)

Even thoughcomparedto the training-baseddetector,
theblind detectorhassmallereigenvaluespreadandlower
misadjustment,one shouldnot concludethat, in termsof
convergencebehavior, the blind detectorhasmoreto offer
thanthetraining-baseddetector. In fact,theoppositeresult
maybeobtainedif we considertheexcessMSE.

Theerrorin theblind detectoris thedesiredoutputplus
channelnoise. This resultsin a significantly larger tap-
weightperturbationandthusa muchhigherexcessMSE in
theblind detector, ascomparedto thetrainingbaseddetec-
tor whereerroris almostatchannelnoiselevel. We assume
thatthechannelnoiseis significantlylower thanthedesired
signallevel. This point hasalsobeenmentionedby Honig
etal [2]. In thenext sectionweproposeahybridCDMA de-
tectorwhich worksblindly whenit is started,but switches
to a specialdecisiondirectedmodelaterso that,similar to
the training-baseddetector, it achievesa small steady-state
excessMSE.

3. HYBRID DETECTOR

In orderto developanalgorithmwhichkeepstheadvantages
of both blind and training-baseddetectors,we definethe
performancefunction

�6
8�  �� ���#! ��	���>s� �P! � m � 1 ����	�� � " ( � (15)

wherethe scalar � andvector m areadjustableparameters
whicharechosento minimize � . Weshow thattheoptimum
choicesof � and m areindependentof eachother. To this
end,by expanding(15), recalling � 1 ! m 
�i andnotingthat
E  �#�! �
	�� � 1 ! ���
	�� ( 
 �X! , we obtain

�6
 � ��� " > ��� �! > � � � ! ���  �� � � ! � m � 1 ����	�� � " (�c (16)

We clearly seethat optimizationof � involvesminimiza-
tion of the first threetermson the right-handsideof (16)
which leadsto � opt


 �X! , andoptimizationof m requires
minimizationof thelasttermontheright-handsideof (16).
Moreover, the last term is nothingbut the costfunction of
the blind detector. This meansthe optimumvalueof m in
(15) is identicalto thatof theblind detector.

Consideringthatagoodguessof � ! �
	�� is availableupon
convergenceof m , we maystartto adaptm with � 
�i , and
thenbegin to adapt� when m hasapproachedits optimum
value.Thusweneedamechanismto automaticallyidentify
when m is closeto its optimumvalue. For this we suggest
usingthe variablestep-sizeLMS (VSLMS) algorithmdis-
cussedin [4, 7]. In VSLMS, the step-sizeis large when
thefilter tapweightsarefar from theiroptimumvalues,and

is small whenthe filter tap weightshave approachedtheir
optimumvalues.A possibleadaptationrule for � is thefol-
lowing [4]:

� �
	���
�� , ���������� ��	���� � �
	2> , �������� ��	���� � ��	2> , �M��� � ��	�> , �
(17)

where � is the step-sizeparameterfor adaptationof � �
	�� ,� �
	�� and � �
	V> , � arethestochasticgradientat thepresent
iterationandtheonebefore,andthesubscripts¡ and ¢ in-
dicatethe real and imaginaryparts,respectively. In addi-
tion, to make surethat the LMS algorithmremainsstable,
� �
	�� hasto be checked after every iterationnot to exceed
a predeterminedlevel, ��£ . The step-sizeparameter� �
	��
shouldalsobe checked againsta minimum predetermined
level, � ¤ , andlimited. The step-adaptationrecursion(17)
belongsto the classof VSLMS algorithmwhich waspro-
posedby Mathews and Xie [7]. A recentwork, [8], has
shown that the VSLMS algorithmwill be improved if the
SGvector � �
	V> , � (but not � �
	�� ) in (17) is replacedby its
short-timeaveragedvaluesobtainedusingtherecursion

¥ �
	��?
8¦¨§�$ ¥ ��	2> , �2�=� , >y¦¨§�� $%����	�� (18)

where¦©§ is aconstantsmallerthancloseto one.Moreover,
it is notedthat normalizationof the parameter� to an es-
timateof the gradientpower, E  ��1���	���� �
	�� ( , alsoimproves
thebehavior of thealgorithm.

Clearly, the above procedureimplies that � ��	�� will re-
main relatively large when m hasnot yet converged, and
dropsto lower valueswhen m hasconverged.Accordingly,
the adaptationof � is activatedby comparing� �
	�� against
a thresholdlevel; say, � th. Theadaptationof � is activated
when � ��	�� �q� th, andstoppedotherwise.

We usethe LMS algorithm to adaptthe parameter� .
Here,theerroris ª«k��	��?
 � �
	�� ª� ! �
	��©>y� � ! � m �
	��M�M1¬���
	�� , and
thetapinputis �#! �
	�� . Sincein practice�#! �
	�� is notavailable,
we useits estimatewhich for binarydatais sign ­ ��	�� ( . This
leadto thefollowing updateequation

� �
	�� , �?
 � �
	�� > �2® $ ª«#��	���$ sign ­ �
	�� (�c (19)

Computersimulationsareperformedto confirmthereliabil-
ity of theabovehybrid algorithm.

Becauseof the stochasticnatureof the algorithm, the
start time of adaptationof the coefficient � variesfor dif-
ferent runs,even whenall simulationparametersarekept
fixed. Fig. 1 presentsa histogramof the resultsof 5,000
independentruns with the following parameters:(i) pro-
cessinggain 
 ,%¯ ; (ii) numberof active users 
+° ; (iii)
desireduserandtwo interferingusershave power of 0 dB;
(iv) fourthuserpower 
 , i dB; (v) spreadingcodesareran-
domly generatedfor eachrun; (vi) backgroundnoiselevel
b>)±Ei dB. For the VSLMS algorithm the following pa-
rametersare used: (i) � �²iN�³
+i c�, ; (ii) � ¤ 
+i c iN´ ; (iii)
� £ 
�i c � ; (iv) � th


µi c i ¯ ; (v) �2® 
µi c iN± ; (vi) ¦©§¶
µi c ·g· .



FromFig. 1, we seethat in mostof thecasesadaptationof
� beginswithin thefirst 1000iterations.

Theoutputsignalto interferenceandnoiseratio (SINR)
for the blind detectorandthe hybrid algorithmareshown
in Fig. 2, wheretheVSLMS algorithmis usedfor bothde-
tectors,andtime averagingis usedto smoothenthecurves.
As expected,atthebeginningof adaptation,bothalgorithms
behaveexactlythesame.However, uponconvergenceof the
blind detectorandthestartof adaptationof � , thehybridal-
gorithmbeginsto performbetter, achieving a higherSINR.
It is alsoobservedthat thehybrid algorithmconvergesto a
stableSINR, while in the blind detectorSINR hassignifi-
cantfluctuations.

4. CONCLUSION

In this paper, wecomparedtheconvergencebehavior of the
training-baseddetectorandthe blind detector. It is shown
that the blind detectorhassuperiorconvergencebehavior
to the training-baseddetector, while the training-basedhas
smallerexcessMSE thanthe blind detector. A hybrid de-
tectorwhich combinesthe advantagesof the above detec-
tors wasthenproposed.Computersimulationsweredone
to verify thereliability of thenew detector.
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