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ABSTRACT analysisfor the blind (anchored)detectoy which unfortu-

Adaptive leastmeansquare(LMS) filters with or without

training sequenceswyhich areknown astraining-basednd

blind detectorsespectiely, have beerformulatecto counter
interferencein CDMA systems. The corvergencecharac-
teristicsof thesetwo LMS detectorsaareanalyzedandcom-

paredin this paper We show thatthe blind detectoris su-

periorto thetraining-basedletectomwith respecto corver-

gencerate. On the otherhand,the training-basedletector
performsbetterin the steadystate,giving a lower excess
mean-squarerror (MSE) for a given adaptatiorstep-size.
A novel decision-directed MS detectomwhich achievesthe

low excessMSE of thetraining-basedietectorandthe su-

periorconvergenceperformancef theblind detectoiis pro-

posed.

1. INTRODUCTION

In a multiusercode-dvision multiple-acces§CDMA) sys-
tem, multiple-accesinterferencg MAI) is themainsource
of performancealegradation. Multiuser detection,which is
now an establishedand popularfield of researchhasthe
objective of suppressingVAl. In this paper we areinter-
estedn the LMS implementatiorof thelineartapped-delay
line MMSE detectoybothin its training-base@ndblind (or
anchoredforms.

A comprehensie comparisorof the corvergenceprop-
ertiesof the training-basedand blind adaptive LMS mul-
tiuserdetectorss thusfar notavailablein theliterature. The
training-baseddetectorwas closely studiedin [1], where
it is shavn that initialization of the filter tap-weightvec-
tor within the signalsubspacer to the origin leadsto faster
corvergenceomparedo initializationin thenoisesubspace,
andthat chip-spacedCS) andfractionally-spacedFS) de-
tectorswith the sametime-spanexhibit the samecorver-
gencebehavior. Honig et al. [2] gave asimplecorvergence

natelycontainssomeerrorsandis incompleteaswe pointed
outin [3]. Here,we expandon the precisecorvergencere-

sultsfor theblind (anchoredyletectorgivenin [3], compare
its convergencebehaior to thatof thetraining-basedetec-
tor, andsuggesanimprovedalgorithmbasednanadaptve

decisiondirectedimplementation.

2. ANALYSIS

2.1. System Mode

For simplicity, we considera synchronougime-invariant
K-userCDMA systemwith processingyain N, whereuser
k transmitsover a single-pathtime-invariantchannelchar
acterizedby the attenuatioruy, andall usersymbolbound-
ariesarealignedin time. Therecevedsignalvectoris then
written as

y(i) = SAd(i) + n(3), (1)

wherethekth columnof S representthereceivedspreading
codeof the kth userandis denotedby s; 1, d(i) is the data
vector A = diaday, az,- -+ ,ax], n() is thechannebhddi-
tive white Gaussiamoise(AWGN) vector, i is the symbol
index, andy(7) isan N x 1 columnvectorof thereceived
signalsampledat chip-rate.

The corvergenebehaiour of the LMS algorithmis de-
terminedby the input correlationmatrix. For thetraining-
basedletectorthecorrelatiormatrixis R, = E[y(i)y " (i)].
For theblind detectorasshaown in [3], therelevantcorrela-
tion matrixis R, = E[v(i)v (i)], wherev(i) = PLy(i),
P} =1-s;sf. SinceR,, is symmetrictheconvergence
behaviour of the blind detectorcanbe easilyobtained,un-
like whatwasimplied by theprocedureoutlinedin [2]. Fur-
thermore whenthe tap-weightsareinitialized in the signal

lWeassume|s|| = 1 fork = 1,-- - , K, withoutlossof generality



subspacegnly the eigervaluesin the signalsubspaceaffect
thecorvergencebehaviour [1, 3].

2.2. Convergence Analysis
2.2.1. Eigenvalue Spread

A comparisorof the corvergencebehaiors of thetraining-
basedandblind detectorsmay be madeby comparingthe
eigervaluespread4, 5]. Firstwe notethats; is aneigen-
vectorof R, with anassociateeigervalueof zero. How-
ever, this zeroeigervalueplaysno role in the corvergence
of theblind detectoysincethetap-weightsareneveradapted
in thedirectionof s;. It canbe easilyverifiedthato? is the
minimum eigervalueof bothR,, andR.,,, which repeats
N — K timesfor Ry, andN — K — 1 for R,,. Thus,

/\min(Ryy) = )\min(va) = 02 (2)

whereyin (-) denotegheminimumnon-zerceigervalueof
theindicatedmatrix.

On the other hand, the maximum eigervalue of R,
may be obtainedby applyingthe minimax theoremwhich
stateq4, 5]

Amax(Ryy) = maxq”R,,q, subjectoq?q=1. (3)
a

Similarly, themaximumeigervalueof R,,, canbe obtained
from

Amax(Ryv) = maxp”R,,p, subjecttop”p =1. (4)
P

Decomposing asp = p; + pz2, Wherep; is the projec-
tion of p ontos;, andnotingthatR,,, = P;Rnysﬁ and
P.ip1 = 0, PJip» = p2, we obtain

Amax (va) = rrg;x pglRyyp% (5)

subjectto ||p2||? = 1 — ||p1]|?. SinceR,, is positive semi-
definite,x¥R,,,x is a corvex function of x. Thus, maxi-
mizing (5) with respecto p requiresusto make p, aslarge
aspossiblewhile keeping||p|| = 1. Consequentlyp; must
besetto 0 andwe arrive atthefollowing result,

Amax (va) = mgx pHRyyp7 (6)

subjectto pp = 1 andpfs; = 0.

Comparing(3) and(6), we seethatboth Ay« (R, ) and
Amax(Ryy) @areobtainedby maximizingthe samequadratic
expressionput the latter hasan additionalconstraint. This
impliesthat

)\max (va) S )\max(Ryy)- (7)
Furthermorefrom (2) and(7), we obtain

)\max (va) )\max (Ryy)
Amin (va ) ~ Amin (Ryy)

(8)

which indicatesthat the blind detectorhasan eigervalue
spreadthatis smallerthanor equalto its counterpartn the
training-basedletector

The sameresultas(8) hasalsobeendevelopedby Ray
[6], usinga someavhatdifferentapproach.However, using
our obsenationthatthe HermitianR.,, canbetakenasthe
corvergence-controllig correlationmatrix for theblind de-
tector furtherresultscanbederived,asdiscussedh thenext
few sections.

2.2.2. Initialization Effects

In somerecentworks[1], we have studiedthe phenomenon
of differentcorvergencebehaiorsof MMSE detectorsvhen
the adaptve tap-weightvector is initialized in the signal
andnoisesubspacesTherelative performanceof theblind
and training-basedhdaptie detectorsmustalso be exam-
inedfrom thisangle.

Let As-max.) and Ag_min(.) denotethe maximumand
minimum eigervaluesin the signal subspaceof the indi-
catedmatrices,respectiely. Obviously As-maxRyy) =
)\max(Ryy) and /\s-ma)(Rm,) = /\max(Rm)). Thus, in
view of (7), As-maxRuv) < As-maxXRyy). Following the
sameline of derivationsto thosewhich led to (7), we also
obtain

As-min(Ryy) = mqin qHRyyqa 9)
subjectoqq = 1 andq € S, whereS indicateghesignal
subspacspannedysy, so, - - -, sg. Similarly,

As-min(Ruww) = mgn p”R,,p, (10)

subjectto p¥p = landp € S, whereS indicatesthe
signal subspacespannedy §s, 83, ---, Sk, wheres;, =
Pi‘lsk.

Noting thatS is asubspacef S, from (9) and(10), we
obtain

)‘s-min(va) > /\s-min(Ryy)- (11)

Thus,
As-ma{Ruy) _ As-maxRyy) _ (12)
As-min(Rov) = As-min(Ryy)

Thatis, with signal-subspacaitialization of thetapweight

vectors,the blind detectoralsohasa lower effective eigen-
valuespreadhanthetraining-basedietector

2.2.3. Misadjustment and excess MSE

The misadjustmenfor the training-basedand blind LMS
detectorss givenby [4, 3]



respectiely. wheretr[.] denoteshe traceof the indicated
matrix. But tr[R,,] < tr[R,,]. Hence,for equalstep-size
parameters,

Mpg < Myg- (14)

Even thoughcomparedto the training-basedietector
theblind detectorhassmallereigervaluespreadandlower
misadjustmentpne should not concludethat, in terms of
cornvergencebehaior, the blind detectorhasmoreto offer
thanthetraining-basedletector In fact,the oppositeresult
may be obtainedf we considertheexcessMSE.

Theerrorin theblind detectoiis the desiredoutputplus
channelnoise. This resultsin a significantly larger tap-
weightperturbatiorandthusa muchhigherexcessMSE in
theblind detectoyascomparedo thetrainingbaseddetec-
tor whereerroris almostat channehoiselevel. We assume
thatthe channehoiseis significantlylower thanthedesired
signallevel. This point hasalsobeenmentionedby Honig
etal[2]. In thenext sectionwe proposeahybrid CDMA de-
tectorwhich works blindly whenit is started,but switches
to a specialdecisiondirectedmodelater so that, similar to
the training-basedietectoy it achievesa small steady-state
excessMSE.

3. HYBRID DETECTOR

In orderto developanalgorithmwhichkeepgheadwantages
of both blind and training-baseddetectors we define the
performancdunction

n = Ellad (i) — (s1 + %)y ()],

wherethe scalara andvectorx are adjustableparameters
which arechoserto minimizen. We show thattheoptimum
choicesof a andx areindependenbf eachother To this
end,by expanding(15), recallingsfx = 0 andnotingthat
E[d; (i)sHy(i)] = a1, we obtain

(15)

n=lo* - aai — a*ar + E[|(s1 +x)"y(0)’].  (16)
We clearly seethat optimizationof « involves minimiza-
tion of the first threetermson the right-handside of (16)
which leadsto agpt = a1, andoptimizationof x requires
minimizationof thelasttermontheright-handsideof (16).
Moreover, the lasttermis nothingbut the costfunction of
the blind detector This meansthe optimumvalueof x in
(15)is identicalto thatof the blind detector
Consideringhatagoodguessof d; (i) is availableupon
convergenceof x, we may startto adaptx with a = 0, and
thenbegin to adapta. whenx hasapproachedts optimum
value. Thuswe needa mechanisnto automaticallyidentify
whenx is closeto its optimumvalue. For this we suggest
usingthe variablestep-size.MS (VSLMS) algorithmdis-
cussedn [4, 7]. In VSLMS, the step-sizeis large when
thefilter tapweightsarefarfrom their optimumvaluesand

is smallwhenthe filter tap weightshave approachedheir
optimumvalues.A possibleadaptationrule for y is thefol-
lowing [4]:

pu(i) = (1+p (gr()gr(i — 1) + g7 (i)gr(i — 1)) u((il—7;)
wherep is the step-sizeparameteifor adaptationof p(7),
g(i) andg(i — 1) arethe stochastigradientat the present
iterationandthe onebefore,andthe subscriptsk andI in-
dicatethe real andimaginary parts,respectiely. In addi-
tion, to make surethatthe LMS algorithm remainsstable,
1(4) hasto be checled after every iteration not to exceed
a predeterminedevel, u*. The step-sizeparametenu(s)
shouldalso be checled againsta minimum predetermined
level, u—, andlimited. The step-adaptationecursion(17)
belongsto the classof VSLMS algorithmwhich was pro-
posedby Mathevs and Xie [7]. A recentwork, [8], has
shown thatthe VSLMS algorithmwill be improvedif the
SGvectorg(i — 1) (but notg(7)) in (17) is replacedby its
short-timeaveragedvaluesobtainedusingtherecursion

Y(i) =By -P(i—1) + (1 - By) -g(i)

wheref, is aconstansmallerthancloseto one.Moreover,
it is notedthat normalizationof the parametep to an es-
timate of the gradientpower, E[g¥ (i)g(i)], alsoimproves
thebehavior of thealgorithm.

Clearly, the abore proceduramplies that u(¢) will re-
main relatively large whenx hasnot yet corverged, and
dropsto lower valueswhenx hascorverged. Accordingly,
the adaptatiorof « is activatedby comparingu(z) against
athresholdevel; say uyn. Theadaptatiorof « is activated
whenpu(i) < pyp, andstoppeddtherwise.

We usethe LMS algorithmto adaptthe parameter.
Here,theerroris é(i) = a(i)d; (i) — (s1 + x(i)) 7 y (i), and
thetapinputis dy (¢). Sincein practiced; (i) is notavailable,
we useits estimatewhich for binarydatais signz(z)]. This
leadto thefollowing updateequation

a(i +1) = ai) — po - €(i) - signz(i)].

Computesimulationsareperformedo confirmthereliabil-
ity of theabove hybrid algorithm.

Becauseof the stochasticnatureof the algorithm, the
starttime of adaptatiorof the coeficient o variesfor dif-
ferentruns, even whenall simulation parametersare kept
fixed. Fig. 1 presentsa histogramof the resultsof 5,000
independentuns with the following parameters:(i) pro-
cessinggain = 16; (ii) numberof active users= 4; (iii)
desireduserandtwo interferingusershave power of 0 dB;
(iv) fourthuserpower= 10 dB; (v) spreadingodesareran-
domly generatedor eachrun; (vi) backgroundhoiselevel
= —20 dB. For the VSLMS algorithm the following pa-
rametersare used: (i) u(0) = 0.1; (i) = = 0.03; (iii)
pt = 0.5; (i) pin = 0.06; (V)pa = 0.02; (vi) By = 0.99.

(18)

(19)



FromFig. 1, we seethatin mostof the casesadaptatiorof
a beginswithin thefirst 1000iterations.

Theoutputsignalto interferenceandnoiseratio (SINR)
for the blind detectorandthe hybrid algorithm are shavn
in Fig. 2, wherethe VSLMS algorithmis usedfor bothde-
tectors,andtime averagingis usedto smootherthe curves.
As expectedatthebeginningof adaptationbothalgorithms
behae exactlythesame However, uponcorvergenceof the
blind detectorandthestartof adaptatiorof «, thehybrid al-
gorithmbeginsto performbetter achieving a higherSINR.
It is alsoobsenedthatthe hybrid algorithmcorvergesto a
stableSINR, while in the blind detectorSINR hassignifi-
cantfluctuations.

4. CONCLUSION

In this paperwe comparedhe cornvergencebehaior of the
training-basedietectorandthe blind detector It is shavn
that the blind detectorhas superiorcorvergencebehaior
to the training-basedletectoy while the training-basedas
smallerexcessMSE thanthe blind detector A hybrid de-
tectorwhich combinesthe advantagesf the above detec-
tors wasthen proposed. Computersimulationswere done
to verify thereliability of thenew detector
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