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ABSTRACT

A new technique for designing digital allpass IIR filters is
proposed. The approach is based on the vector space
projection method. Constraint sets, and their associated
projectors, that capture the properties of the desired
group delay are given. Examples that demonstrate the
advantages and flexibility of this method as well as
comparisons with a well- known method are furnished

1. INTRODUCTION

Some of the numerous allpass filter applications [1] are:
approximation of a prescribed phase, e.g., a linear phase
(fractional delay elements); equalization of a phase or
group delay of a given system; design of a Hilbert
transformer; and design of recursive filters with the
desired magnitude response using a parallel allpass
structure. A number of authors have approached the
allpass filter design problem in the least square sense [2].
The eigenfilter approach for least-squares allpass filter
design introduced in [3] is based in formulating the
objective function in a quadratic form and obtaining the
desired filter as an eigenvector of a suitably defined real,
symmetric, positive-definite matrix. In this paper, we will
consider a new approach to the design of allpass filters for
the group-delay equalization problem and we shall
compare the results with the ones of the eigenfilter method
[3].

2.    VECTOR SPACE PROJECTION METHOD

The vector space projection method (VSPM) deals with
the problem of finding a mathematical object (for
example, a signal, function, image brightness, etc.) that
satisfies multiple constraints in a vector space such as the
L2 space od square-integrable functions, the l2 space of
square-summable sequences, or the Euclidean space Rn.

The theory was initially developed for intersecting,
convex, constraints sets by Bregman [4] and Gubin et al.
[5] and was first applied to image processing by Youla
and Webb [6]. In recent years the theory has been
extended to non-convex, non-intersecting sets. In
particular, Combettes [7], building on the work of Pierra
[8], and Levi [9] described an algorithm based on the
following theorem:
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This result applies whether the constraint sets intersect or
not. Moreover, it applies whether the sets are convex or
not. In this Letter, we exploit the above Theorem to
design a class of IIR filters where the appropriate
constraints are not necessarily convex, and where the
intersection of large number of constraint sets may be the
empty set.
For the reader not familiar with the theory of VSPM, an
introduction with examples is furnished in [10].

3.    ALLPASS FILTER GROUP DELAY

The most general form for the system function of an
allpass system with real coefficients, is given by
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The phase versus frequency characteristics can be
expressed as [10]
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where a is the allpass coefficient vector

a = a a aN
T

0 1, , ,�0 5  and the vectors s cω ω0 5 0 5 and  are
given by
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After differentiability Eq.(3) with respect to ω  we obtain
the group delay of the allpass filter
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where G c c s s≡ +ω ω ω ω1 6 1 6 1 6 1 6
T T

 and

Λ ≡ diag 0 1 � N .

The phase and group delay of an allpass filter are related
to the coefficients in a very nonlinear manner, as the
above equations show. This means that one cannot expect
as simple a design procedure for computing the
appropriate allpass filter coefficient vector a as in the case
for FIR filters. Instead, one usually uses iterative
optimization techniques for minimization of traditional
error criteria.

4.   DESIGN OF ALLPASS FILTER USING VSPM

Suppose we want to equalize a phase θ ωP0 5  over the

range 0 ≤ ≤ω ω p . After phase equalization by the allpass

filter θ ωA0 5 , the total phase θ ωT 0 5 , should be a linear
function of frequency i.e.,

            θ ω θ ω θ ω ωT P A K1 6 1 6 1 6≡ + = − , (6)

where K > 0 for causality. A question that arises is what
should K be? An appropriate value of K must take into
consideration questions of tolerable delay, stability, and
quality of equalization. The overall group delay τ T  is the
negative of the derivative, with respect to frequency, of
the total phase, hence
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However, it is more realistic to introduce a tolerance
parameter δ  and replace the strict equality of Eq.(7) with
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Causality requires − >d dAθ ω 0. Hence from the RHS
of Eq.(8):
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so that K  is absolutely bounded from below by
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Unfortunately the LHS of Eq.(8) cannot be used to
establish an upper bound on K that is not overly
pessimistic and may lead to nonsense results.

From Eq.(5) and Eq.(8) we obtain the important result
that
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In solving a problem by VSPM, the key is to define the
appropriate constraint sets. In this problem an appropriate
cluster of constraints sets are defined by
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, is discretized version of the

continuous ω  and i M= −0 1, ,� . In general  the sets

Ci  i M= −0 1, ,�  are non-convex.

We note that a G aT
i ≥ 0. Then, assuming a G aT

i ≠ 0
we can rewrite Ci  in Eq.(12) as

  Ci
T

i
T

i
T

i= ≤ ≤a a G a a G a a G a: . .δ ω δ ω1 20 5 0 5; @Λ (13)

which can be further combined as
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Because G i  is of rank two and

rank rank ranki iG GΛ Λ0 5 : ? : ?0 5≤ min ,  it follows that

the asymmetrical matrices P1i  and P2i  are at most of rank
two. Indeed, it can be shown, they have rank two. Since
real symmetric matrices have the desirable properties of
having real eigenvalues and real, orthogonal eigenvectors,
we create such matrices from P1i  and P2i  as
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F F1 2i i and  are symmetrical and of rank four (in this
particular case). The quadratic form generated by
F F1 2i ior 0 5  is identical with that generated by

P P1 2i ior 0 5 . To show this let F denote either F F1 2i ior 
and let P denotes the corresponding P P1 2i ior . Then
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With the result in Eq.(17), we can rewrite Ci  in Eq.(14)
as
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The reason for resolving Ci  into an intersection of two
simpler sets is that it is easier to compute the projections
onto C i1  and C i2  separately than computing a single

projection onto Ci . Once again letting Fi  denote either

F F1 2i ior , we note that projecting onto C i1  or C i2

amounts to finding a point a  on the surface a F aT
i = 0

that is nearest to an arbitrary point g outside the set.

Since the projectors onto C i1  or C i2  have identical form,
we consider projecting onto the generic set
Ci

T
i= ≥a a F a: 0; @ .

Projecting onto C i0 5 . Finding the projection onto C i0 5  of
an arbitrary vector g involves finding the extremum of the

functional J T
i= − +a g a F a2 λ  where λ  is the

Lagrange multiplier. Setting ∂ ∂J a = 0 and solving for

the projection aλ , we get
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where λ  is to be determined. Since aλ  must satisfy
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Now Fi  is real-symmetric of rank four. The eigenvectors

of Fi  are orthogonal and there are only four non-zero

eigenvalues, say γ γ γ γ1 2 3 4, , , . If E i  and Γ i  denote,
respectively, the eigenvector and eigenvalues matrices of

Fi  then F E Ei i i i
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these results in Eq.(20), with y E g≡ i
T , yields
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Equation (21) can be written in the form n di iλ λ0 5 0 5 = 0
where ni λ0 5  and di λ0 5  are numerator and denominator

polynomials in the unknown λ .
Since n di iλ λ0 5 0 5 = 0 implies ni λ0 5 = 0, we finally
obtain a polynomial of degree six from which the
appropriate value of λ  can be recovered. After some
tedious but elementary algebra, we obtain
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The roots of ni λ0 5  can be found numerically, for example

the roots n0 5  function in MATLAB.
We are now in a position to describe the key steps in

realizing the projection onto the generic set
C i T

i
0 5 ; @= ≥a a F a: 0 . We omit describing such user-

determined steps as initializations and tests for
convergence.
Step 1. For a given g, check if g F gT

i ≥ 0. If g F gT
i ≥ 0,

g is already in the set and adjust i i= +1. Otherwise, go
to step 2.
Step 2. Find the roots of ni λ0 5  and consider only the real

roots. For each real root λ  compute
aλ  from Eq.(19).

Step 3. For each aλ  as computed in step 2, compute

g a− λ . The aλ  that gives the smallest norm g a− λ  is
the projection.
Step 4. Go on to the next frequency ω i  by setting
i i= +1.
Note. For projecting onto a generic set of the form
C i T

i
0 5 ; @= ≤a a F a: 0 , the steps are the same except for

step 1. Here the appropriate operation is:
Step 1. For a given g, check if g F gT

i ≤ 0. If g F gT
i ≤ 0,

g is already in the set and adjust i i= +1. Otherwise, go
to step 2.

5.    EXAMPLES AND NUMERICAL RESULTS

In both the following examples, the algorithm used is
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 where M is the number of sets

associated with the discrete frequencies see Eq.(18) .

Example 1 - Group Delay Equalization for Chebyshev
Filter.

We consider the equalization of the non-linear group
delay of a 6th-order Chebyshev II lowpass filter with a 40
dB stopband attenuation and 0 3. π  stopband cutoff
frequency by a 4th-order equalizer. These parameters were
chosen to enable us to compare our method with
published results. We use the algorithm described above
to equalize the phase in the passband 0 0 2, . π . We

discretize the range 0 02, . π  into 40 samples. We chose
the nominal group delay K = 19 that satisfies Eq.(10) and



a tolerance δ = 0 5. . Not every value of K in this range
will produce a stable filter. We tried few different values
of K before the algorithm produced a stable filter for the
prescribed tolerance δ . Figure 1 shows the original and
the equalized group delay. The VSPM yielded a filter with
smaller maximum peak-to-peak fluctuations in group
delay than the one designed by eigenfilter method
∆ ∆τ τVSPM EM= =10 27. . versus 0 5  [3]. The proposed

algorithm for this example converged after about 20,000
iteration cycles.

Example 2 - Group Delay Equalization for a
Quadratic Phase.

In this example, we chose to equalize the group delay of a

filter whose phase is quadratic i.e., θ ω ωP( ) = − 2 in the

passband 0 02, . π . We discretized the range 0 02, . π
into 40 samples and chose a tolerance δ = 0 5.  and a
nominal group delay K = 12 that satisfies Eq. (10). Figure
2 shows the group delay before and after compensation.
As in example 1, the VSPM yielded a filter with smaller
maximum peak-to-peak fluctuation in-group delay than
the one designed by the eigenfilter method
∆ ∆τ τVSPM EM= =10 81. . versus 0 5 . Moreover, the

eigenfilter method [3] failed to provide any compensation.
The VSPM algorithm for this example converged after
about 15,000 iteration cycles.
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Fig. 1. Original and equalized group delayed of
both EM and VSPM designed filters.
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Fig. 2. Original and equalized group delayed
of both EM and VSPM designed filters.


