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ABSTRACT The theory was initially developed fointersecting

convex constraints sets by Bregman [4] and Gubin et al.
A new technique for designing digital allpass IIR filters is [5] and was first applied to image processing by Youla
proposed. The approach is based on the vector spaceand Webb [6]. In recent years the theory has been
projection method. Constraint sets, and their associated extended to non-convex, non-intersecting sets. In
projectors, that capture the properties of the desired particular, Combettes [7], building on the work of Pierra
group delay are given. Examples that demonstrate the [8], and Levi [9] described an algorithm based on the
advantages and flexibility of this method as well as following theorem:

comparisons with a well- known method are furnished Theorem.For everyx, [JH and every choice of positive
constant Wy, W,,---, W, such that :zlwi =1, the
1. INTRODUCTION sequencgX, } generated by
m
Some of the numerous allpass filter applications [1] are: Xps = ZWi Px,, Q)
approximation of a prescribed phase, e.g., a linear phase =1

(fractional delay elements); equalization of a phase or converges weakly to a pointx” such that
group delay of a given system; design of a Hilbert 0\ — M 2(,0 L

transformer; and design of recursive filters with the (D(X )=Ziz1wid (X ’Cf) is minimized.

desired magnitude response using a parallel allpassThis result applies whether the constraint sets intersect or
structure. A number of authors have approached the not. Moreover, it applies whether the sets are convex or
allpass filter design problem in the least square sense [2].not. In this Letter, we exploit the above Theorem to
The eigenfilter approach for least-squares allpass filter design a class of IR filters where the appropriate
design introduced in [3] is based in formulating the constraints are not necessarily convex, and where the
objective function in a quadratic form and obtaining the intersection of large number of constraint sets may be the
desired filter as an eigenvector of a suitably defined real, empty set.

symmetric, positive-definite matrix. In this paper, we will For the reader not familiar with the theory of VSPM, an
consider a new approach to the design of allpass filters for introduction with examples is furnished in [10].

the group-delay equalization problem and we shall

compare the results with the ones of the eigenfilter method 3. ALLPASS FILTER GROUP DELAY
3].
The most general form for the system function of an
2. VECTOR SPACE PROJECTION METHOD allpass system with real coefficients, is given by

N
The vector space projection meth@¥SPM) deals with zaN—iZ_l
the problem of finding a mathematical object (for H(z) = i=?\|—_ 2)
example, a signal, function, image brightness, etc.) that —i
satisfies multiple constraints in a vector space such as the Zai z

1=

L? space od square-integrable functions, Ithepace of

. The phase versus frequency characteristics can be
square-summable sequences, or the Euclidean $jace P q y

expressed as [10]



N _ Causality requires-df ,/dw > 0. Hence from the RHS
Z a, sin( ko) of Eq.(8):
6,(w) = ~Nw + 2arctag £¢—— do. |do
K > maxq- P+—A—6} 9
Z a, cog kw) 3) Oswswp{ do | dw ©)
=0 so thatk is absolutely bounded from below by

= -Nw+ 2arcta a’qw) , Kig = max{—%—d}. (10)

a dw) Osws<wp dw

Unfortunately the LHS of Eq.(8) cannot be used to
establish an upper bound Krthat is not overly
pessimistic and may lead to nonsense results.

where a is the allpass coefficient vector
=(ay, &, -+, a)' and the vectors(w) and qw) are

given by From Eq.(5) and Eq.(8) we obtain the important result
s(a)):EO sin a); .-« sin Na);]l (4) that
c(w)=[1 cogw ogNw -K-5-6'(w)+N _a'GAa -K+3-0'(w)+ N (11)
After differentiability Eq.(3) with respect ta) we obtain 2 < a'Ga < 2
the group delay of the allpass filter &,(w) 5,(w)
T In solving a problem by VSPM, the key is to define the
TA(w) = —M = a GAa (5) appropriate constraint sets. In this problem an appropriate
dw a'Ga cluster of constraints sets are defined by
where G = c(a))c(a))T + {w) $w)T and a"G. Aa
= A C E{a:al(wi)sT—|S62(wi)}’ (12)
A=diag0 1 --- NJ. a'G,a

The phase and group delay of an allpass filter are related

to the coefficients in a very nonlinear manner, as the where w; =
above equations show. This means that one cannot expect
as simple a design procedure for computing the
appropriate allpass filter coefficient vectas in the case ~ Ci 1 = 0.+, M —1 are non-convex.

for FIR filters. Instead, one usually uses iterative We note thaB” G,a= 0. Then, assuming’ Gaz0
optimization techniques for minimization of traditional we can rewriteC, in Eq.(12) as

error criteria.
C ={ad,(w).a"Gas ad GAa<d,(w). d G § (13)
4. DESIGN OF ALLPASS FILTER USING VSPM which can be further combined as
C ={aa'Ra=0andd B a0}, (14)

Wy

i, is discretized version of the

continuousw andi =0,---,M =1. In general the sets

Suppose we want to equalize a ph#&sgw) over the
range0< w< w,,. After phase equalization by the allpass where
filter 0 ,(w), the total phasé; (w), should be a linear 51 EE%//\\ % ))G (15)

function of frequency i.e., :
d y Because G, is of rank two and

0:(w) = 0(w) +6 \(w) = -Kw, ®)  rank(G,A) < min (rankG,}, rankAl) it follows that
where K >0 for causality. A question that arises is what {he asymmetrical matricd®; andP, are at most of rank
shouldK be? An appropriate value &f must take into two. Indeed, it can be shown, they have rank two. Since
congideration q.ues.tions of tolerable delay, Sta,b”“y' and real symmeiric matrices have’ the desirable properties of
quality of equalization. The overall group defay is the having real eigenvalues and real, orthogonal eigenvectors,
negative of the derivative, with respect to frequency, of \ye create such matrices frdfy andP, as
the total phase, hence

Py + PR Py + Py
%—%:K>O 7) Fy :—( ) and FZiZ—( ) .
do dw 2 2
However, it is more realistic to introduce a tolerance Fy andF, are symmetrical and of rank four (in this
paramete® and replace the strict equality of Eq.(7) with ~ particular case). The quadratic form generated by
d6, do, Fy (orF;) is identical with that generated by
K-d0<- <K+o (8) P, (or Py). To show this leF denote eitherF; or F

dw  dw .
and letP denotes the correspondify or P,. Then

(16)

TT—_



1+ Ay2)2(1+ Ay3)2(1+ )‘V4)2

—~

P+P X Px Y ni(A) = yiy,
xTFx=xT( }<= +(PX)

5 > > +y2y.(1+ Ayl):(lﬂ\vs):(lﬂ\h): 22)
. i (17) +YiVs(L+ Ay ) (1+ Ay ) (1+ Ay )
XPX XY FYIY LA Ay )P Ay ) (1% Ay o)’
2 2 = 0.
With the result in Eq.(17), we can rewri€ in Eq.(14) The roots ofn;(A) can be found numerically, for example
as the rootg n) function in MATLAB.
C = {a a'Fa=0andd F, a< o} We are now in a position to describe the key steps in

(18) realizing the projection onto the generic set
C" ={a: a" Fa=0}. We omit describing such user-

< . . @ . determined steps as initializations and tests for
The reason for resolvin€; into an intersection of two convergence

simpler sets is that it is easier to compute the projectionsStelo 1For a giverg, checkifg"F,g>0. If g"F.g=0
onto C; and C, separately than computing a single ’ e e

projection ontoC,. Once again letting~ denote either

={a a'Raz0}n{a d K a< 0}

g is already in the set and adjusti +1. Otherwise, go

o to step 2.
Fy orF5, we note that projecting onto C; or Cy Step 2 Find the roots ofi,(A) and consider only the real
amounts to finding a poird on the surfacea’ Fa=0 roots. For each real rodt compute

that is nearestto an arbitrary pointg outside the set.  a, from Eq.(19).
Since the projectors ontG; or C, have identical form,  Step 3 For eacha, as computed in step 2, compute
we  consider projecting onto the generic set |jg—g,|. Thea, that gives themallest norniig - a, || is

C ={a a'Fa=0}. the projection.

Projecting ontoC"” . Finding the projection ont€" of Step 4 Go on to the next frequencyw; by setting
an arbitrary vectog involves finding the extremum of the i =i +1.

functional J :||a—g||2+}\aTFia where A is the Note For projecting onto a generic set of the form

C" ={a: a" Fa<0}, the steps are the same except for
step 1. Here the appropriate operation is:
Step 1 For a giverg, check ifg"Fg< 0. If g"Fg<0,

Lagrange multiplier. SettingJ/da =0 and solving for
the projectiom, , we get

—_— -1 . .

a, =(1+AF) g, (19) g is already in the set and adjusti +1. Otherwise, go
where A is to be determined. Sinca, must satisfy to step 2.
a'Fa=0, we get

_ - 5. EXAMPLES AND NUMERICAL RESULTS
g"(1 +AF)F(I +#;)7g =0. (20)

Now F; is real-symmetric of rank four. The eigenvectors |n both the following examples, the algorithm used is
of F, are orthogonal and there are only four non-zero I R P hereM is th b ¢
eigenvalues, say,,V,, Vs V4 If E; and [, denote, A = M ;; @, whereM Is the number of sets

respectively, the eigenvector and eigenvalues matrices ofassociated with the discrete frequencies see Eq.(18) .
F thenF, =E,[ E', E,E,' =1, andE] = E*. Using

these results in Eq.(20), witji = EiTg , yields

yT(L+AM)' I (1 +AM) 7Y =0. (21).

Equation (21) can be written in the formn(A)/d (1) = 0 We consider the equalization of the non-linear group

d (21) mi(A)/d(2) . delay of a 8-order Chebyshev Il lowpass filter with a 40
where n;(A) and d;(A) are numerator and denominator dB stopband attenuation an@.3T stopband cutoff
polynomials in the unknown .

) S ) frequency by a%order equalizer. These parameters were
Since n;(A)/d(A)=0 implies n(A)=0, we finally chosen to enable us to compare our method with

obtain a polynomial of degree six from which the published results. We use the algorithm described above
appropriate value ofA can be recovered. After some g equalize the phase in the passbeiﬁc{). 271] We

tedious but elementary algebra, we obtain discretize the rangf0, 0.277] into 40 samples. We chose
the nominal group delal =19 that satisfies Eq.(10) and

Example 1 - Group Delay Equalization for Chebyshev
Filter.



a toleranced = 0.5. Not every value oK in this range
will produce a stable filter. We tried few different values
of K before the algorithm produced a stable filter for the
prescribed toleranc®. Figure 1 shows the original and

the equalized group delay. The VSPM vyielded a filter with [7]

smaller maximum peak-to-peak fluctuations in group
delay than the one designed by eigenfilter method
(ATyspy =10VersusATt ¢, =27 [3]. The proposed

algorithm for this example converged after about 20,000 [8]

iteration cycles.

Example 2 - Group Delay Equalization for a
Quadratic Phase.

10
In this example, we chose to equalize the group delay of a

filter whose phase is quadratic i.8, (W) = —w? in the
passband0,0.2r7]. We discretized the rangf®, 0.2r]
into 40 samples and chose a toleradce 0.5 and a
nominal group delai = 12 that satisfies Eq. (10). Figure

2 shows the group delay before and after compensation.

As in example 1, the VSPM yielded a filter with smaller
maximum peak-to-peak fluctuation in-group delay than
the one designed by the eigenfilter method
(ATyspy =10VersusAT ¢, = 8).  Moreover, the
eigenfilter method [3] failed to provide any compensation.
The VSPM algorithm for this example converged after
about 15,000 iteration cycles.
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Fig. 1. Original and equalized group delayed of
both EM and VSPM designed filters.
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Fig. 2. Original and equalized group delayed
of both EM and VSPM designed filters.



