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ABSTRACT

This paper introduces a new class of fractal dimensi
measures which we call relative multifractal measure
The relative multifractal measures developed are form
through a melding of the Rényi dimension spectrum
which is based on the Rényi generalized entropy, and re
tive entropy as given with the Kullback-Leibler distance
This new class of multifractal measures is then used to fi
the relative multifractal complexity differences betwee
two signals, an image and its lossy approximation. It
proposed that relative multifractal measures can be used
the basis for a new form of signal and image quality me
sure based on signal complexity.

1.  INTRODUCTION

Fractal dimension measures arguably date back to the
of Hausdorff and Besicovitch where coverings and bo
counting methods for measuring objects were propose
These and succeeding techniques for measuring signal
object complexity, such as Hurst’s approach with rang
scale statistics [7], led Mandelbrot [12-13] and van Ne
[14] to characterize an object through its fractal dimen
sion. The general goal behind a fractal dimension calcu
tion is to form a count over different scales in th
following power-law relation

The critical exponent satisfying this proportionality is
in general, the fractal dimension of the measured object

In more complex objects and signals, the power-la
relation in (1.1) is only capable of characterizing a sing
level of fractal complexity, the dominant complexity
Extensions of the fractal dimension to multifractal dimen
sions, i.e. more than one fractal contained in an obje
was given by Hentschel and Procaccia [5-6]. The mul
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fractal measures still follow the power-law relation o
(1.1), but allow for a moment order on the measuremen
based on that used in the Rényi generalized entropy
[15-17]. This moment order allows the suppression
dominant and enhancement of subdominant fractal co
ponents within the more complex multifractal objec
revealing specific fractals in the object [8].

A limitation of all of these methods is that the mea
surement is restricted to a single signal or object, even
the object is multifractal containing multiple fractal com
ponents. This paper addresses this limitation by defining
multifractal measure that can compare therelative multi-
fractal complexity between two objects. The applicabilit
of this relative multifractal measure is demonstrated with
set of image quality measurement experiments where
relative multifractal complexity difference between a
image and its approximations are measured.

2.  PROBABILITY MODEL COMPARISON

To perform the desired relative comparisons for this ne
relative multifractal measure, first consider the probabili
model comparison given by Landermanet. al [10]. As
suggested, a system’s true probability distribution and
approximation can be compared using the Kullbac
Leibler distance [9] as follows

where is the probability distribution for the true sys
tem and is the probability set for an approximatio
to the system.  The Kullback-Leibler distance is given by

for the probability distributions  and .
The use of the Kullback-Leibler distance in (2.1

allows the relative comparison of an approximation to th

Hq

0 D ptrue ptrue||( ) D ptrue pmodel||( )≤= (2.1)

ptrue

pmodel

D u v||( ) u x( ) u x( )
v x( )
-----------log

x χ∈
∑= (2.2)

u x( ) v x( )
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true model. This concept of model comparison can also
used to determine which of two model approximations a
better as follows

For (2.3), model(1) could be considered a better appro
mation relative to model(2) since the resulting distance
the true model is smaller.

What is now proposed is that the form of relative com
parison in (2.1) and (2.3) can be extended from the Ku
back-Leibler distance to the Rényi generalized entro

 if the following relative Rényi entropy is considered

for the probability distributions and , and where
is the moment order. It turns out this is nearly the Rén

information, so (2.4) can be expressed as

The reason for taking the absolute value in these equ
tions is to maintain the property that the measure is po
tive such as with the Kullback-Leibler distance wher

 is always true.

3.  RELATIVE MULTIFRACTAL
DIMENSION MEASURES

One of the common approaches to measuring multifrac
dimensions is to use the Rényi dimension spectrum
which is defined as follows [6]

where is the probability of the object intersecting wit
thevolume element(vel) , is the scale of the measure
ment, and  is the Rényi generalized entropy [17].

Culminating from some of our original experiments in
multifractal model comparisons [1-3], we have conclude
that the comparison of multifractal measures after the c
culation of is too prone to calculation errors. In add
tion as suggested by (3.1), the scale of measurement m
be taken to a limit of 0, but this is not possible given a re
data set with naturally finite resolution. These two prob
lems makes the comparison of multifractal results after t

D ptrue pmodel 1( )||( ) D ptrue pmodel 2( )||( )≤ (2.3)
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calculation of (3.1) too sensitive to difficult to control fac
tors. This gives extra credence to the move towards t
relative comparison models of (2.1) and (2.3).

Using (2.4) in place of , we can now form a mea
sure in the spirit of the Rényi dimension spectrum from
(3.1) as follows

This measure will be referred to as the relative Rén
dimension spectrum, .

Some observations about the behaviour of (3.2) shou
be noted. The first is that when the numerato
becomes zero, so . Also, is a mono
tonic non-increasing function in . This is similar to the
Rényi dimension spectrum which is also a monoton
non-increasing function in . These two characteristics
(3.2) give a general idea of the shape of an versus
curve which has one zero crossing at and is mon
tonic non-increasing.

4.  EXPERIMENTAL RESULTS

While there are many potential applications and expe
mental results that could be obtained for a relative mul
fractal measure, our particular interest in writing this pap
is to develop new image quality measures. In particula
we wish to develop image quality measures that consid
the overall image feature complexity content at multip
resolutions and are able to characterize the image feat
complexity. This is a perfect application of the propose
relative Rényi dimension spectrum in (3.2). To this en
we want to determine how (3.2) behaves for an origin
image and its lossy reconstruction/approximation.

The experiments performed for this paper consist
seeing how the relative Rényi dimension spectrum
characterizes the relative multifractal complexity differ
ences between original images and their approximatio
The experiments use the standard 8-bit gre
scale image of Lena. The original image of Lena acts
the true model and its lossy reconstructions act as t
approximated models in terms of (2.1).

For the lossy reconstructions, we decided to use a
of images easy to duplicate by using the discrete wave
transform (DWT) given by Mallat [11] with the
Daubechies 4-tap wavelet filter bank [4]. The specific s
of images used are approximated versions of the Le
image through hard thresholding of the wavelet coef
cients at a hard threshold level of for , an

Hq

RDq u v||( )

1
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Fig. 1. Plot of relative Rényi dimension spectrum
versus  for Lena approximated from a Daub4
DWT using a hard threshold of  for .
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Fig. 2. Plot of relative Rényi dimension spectrum
versus  for Lena approximated from a Daub4
DWT using a hard threshold of  for .

RDq
q

2n 0 n 4≤ ≤
integer. It should be understood that the image reconstr
tion quality for smaller values of are psychovisually be
ter than for larger values of .

Using this set of 11 image approximations, the relativ
Rényi dimension spectrum is calculated for eac
approximation, in (3.2), and the original image

in (3.2), over . These versus
results are plotted in Fig. 1 for each of the 11 hard thres
old levels.

A number of interesting observations can be mad
from Fig. 1 that can be generalized to other similar imag
approximation forms. The first observation is that all o
the measured versus curves are roughly “centre
around the abscissa origin. Also, the measured v
sus curves appear to follow the monotonic non-increa
ing predicted behaviour. Another point is that the curve
all cross the abscissa origin when , again as pr
dicted. These initial observations help verify that the me
surements are consistent with the theoretical behaviour

The next important consideration from the curves
Fig. 1 is whether they follow the relative model compar
sons outlined with (2.1) and (2.3). One note that should
made before addressing this matter is that and
are two different things. was designed to be simila
to the Kullback-Leibler distance. is a form of multi-
fractal measure resulting from , but negative value
are possible. Therefore, for we must use the mag
tude when using (2.1) and (2.3). From what is observed

n
n

RDq
u x( )

v x( ) 40 q 40≤ ≤– RDq q

RDq q
RDq

q

q 0=

RHq RDq
RHq

RDq
RHq

RDq
- Fig. 1, it is seen that as the image quality improves (i.e.
in the hard thresholding becomes smaller), the cur
converges towards the abscissa origin. Since from (2
we know that two identical models will result in

and that is monotonic non-increasing, i
follows that should converge, as observed, to th
abscissa origin as the image approximation improves.

Careful inspection of the plots in Fig. 1 actually show
some unexpected behaviour. This is only visible if w
zoom in to see the versus curves for the small
hard thresholds. Figure 2 shows the same versus
curves for a hard threshold of 1, 2, 4, 8, and 16. Th
curves actually depart from the theoretical monotonic no
increasing behaviour predicted. The trend to converge
the abscissa origin is still present, but it is clear that som
aspect of the calculation causes a non-monotonic beh
iour for larger magnitude values of . In the region
around , the curves follow the monotonic behaviou
much better. While we have not yet determined the sour
of this non-monotonic behaviour, it seems to only occu
when has a larger magnitude and when the valu
are close to zero. This behaviour may be a result of cum
lative errors in the calculation in conjunction with the
larger moments of order . The problem can likely b
ignored for the time being since the scale of the
value is many orders of magnitude smaller than at high
threshold values.

2n
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RHq 0= RDq
RDq

RDq q
RDq q
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5.  CONCLUSIONS

We have proposed a new class of multifractal measu
which is referred to as relative multifractal measures.
particular, we have developed a new measure based on
Rényi dimension spectrum that allows for the relativ
comparison of two different probability distributions
These measures have the advantage over other approa
we had developed [1-3] in that the relative comparison
the two probability distributions is done before the mai
calculation of the multifractal measure. In previou
efforts, the comparison was done after application of th
multifractal measure which resulted in a measure that
too sensitive to calculation difficulties.

The experiments in this paper have shown that t
implemented relative Rényi dimension spectrum large
follows the theoretical behaviour. The experiments pe
formed have shown that there is promising correlatio
between image quality of a lossy image reconstruction a
the convergence of the to the abscissa origin in

versus plot. Some measurement/calculation pro
lems do exist for smaller perceptual differences betwe
an image and its lossy reconstruction, but it is suspect
that this is primarily due to larger magnitudes of in th
moment order calculations. Regardless of these issu
there is potential for the relative Rényi dimension spe
trum to be used as an image quality measure, or in gene
as some form of signal quality or signal complexity mea
sure.
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