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ABSTRACT

This paper introduces a new class of fractal dimension
measures which we call relative multifractal measures.
The relative multifractal measures developed are formed
through a melding of the Rényi dimension spectrum,
which is based on the Rényi generalized entropy,
tive entropy as given with the Kullback-Leibler distance.

This new class of multifractal measures is then used to find
the relative multifractal complexity differences between

two signals, an image and its lossy approximation. It is

and rela-

fractal measures still follow the power-law relation of
(1.1), but allow for a moment order on the measurements
based on that used in the Rényi generalized entrldgy
[15-17]. This moment order allows the suppression of
dominant and enhancement of subdominant fractal com-
ponents within the more complex multifractal object,
revealing specific fractals in the object [8].

A limitation of all of these methods is that the mea-
surement is restricted to a single signal or object, even if
the object is multifractal containing multiple fractal com-
ponents. This paper addresses this limitation by defining a

proposed that relative multifractal measures can be used as, itifractal measure that can compare thative multi-

the basis for a new form of signal and image quality mea-
sure based on signal complexity.

1. INTRODUCTION

Fractal dimension measures arguably date back to the era

of Hausdorff and Besicovitch where coverings and box
counting methods for measuring objects were proposed.

fractal complexity between two objects. The applicability
of this relative multifractal measure is demonstrated with a
set of image quality measurement experiments where the
relative multifractal complexity difference between an
image and its approximations are measured.

2. PROBABILITY MODEL COMPARISON

These and succeeding techniques for measuring signal andyq perform the desired relative comparisons for this new

object complexity, such as Hurst's approach with range-
scale statistics [7], led Mandelbrot [12-13] and van Ness
[14] to characterize an object through its fractal dimen-
sion. The general goal behind a fractal dimension calcula-

tion is to form a countN over different scales in the
following power-law relation
N O sP. (1.2)

The critical exponenD  satisfying this proportionality is,
in general, the fractal dimension of the measured object.
In more complex objects and signals, the power-law
relation in (1.1) is only capable of characterizing a single
level of fractal complexity, the dominant complexity.
Extensions of the fractal dimension to multifractal dimen-
sions, i.e. more than one fractal contained in an object,
was given by Hentschel and Procaccia [5-6]. The multi-

relative multifractal measure, first consider the probability
model comparison given by Landermah al [10]. As
suggested, a system’s true probability distribution and its
approximation can be compared using the Kullback-
Leibler distance [9] as follows

0= D(ptrue” ptrue) < D(ptrue” pmodel) (2_1)
where pt"'€ s the probability distribution for the true sys-
tem andp™°de! is the probability set for an approximation
to the system. The Kullback-Leibler distance is given by

D(ullv) = > u(x)logH4
xTx

e (2.2)

for the probability distributionsi(x) ane( x)
The use of the Kullback-Leibler distance in (2.1)
allows the relative comparison of an approximation to the



true model. This concept of model comparison can also be
used to determine which of two model approximations are
better as follows

D(ptrue [ pmode( 1)) <D( ptrue [ pmode( 3) (2.3)

For (2.3), model(1) could be considered a better approxi-
mation relative to model(2) since the resulting distance to
the true model is smaller.

What is now proposed is that the form of relative com-
parison in (2.1) and (2.3) can be extended from the Kull-
back-Leibler distance to the Rényi generalized entropy
Hq if the following relative Rényi entropy is considered

(!
1 2 IRGo0
RHq(ull V) = log*=X (2.4)
q-1 g u(x)
xTX
for the probability distributionsi(x) and(x) , and where

g is the moment order. It turns out this is nearly the Rényi

information, so (2.4) can be expressed as
RHq(ull V) = [l4(u | V)| (2.5)

The reason for taking the absolute value in these equa-

tions is to maintain the property that the measure is posi-

tive such as with the Kullback-Leibler distance where
D(ull v) =0 is always true.

3. RELATIVE MULTIFRACTAL
DIMENSION MEASURES

One of the common approaches to measuring multifractal
dimensions is to use the Rényi dimension spectrIDHn
which is defined as follows [6]

log pq|
J H
g lim —3

s 0 log(s)

D

(3.1)

i
9 s.0l-9 log(s)

wherep. is the probability of the object intersecting with
thevolume elemen(vel) j, s is the scale of the measure-
ment, andH , is the Rényi generalized entropy [17].
Culminating from some of our original experiments in
multifractal model comparisons [1-3], we have concluded
that the comparison of multifractal measures after the cal-
culation of D, is too prone to calculation errors. In addi-

calculation of (3.1) too sensitive to difficult to control fac-
tors. This gives extra credence to the move towards the
relative comparison models of (2.1) and (2.3).

Using (2.4) in place qu , we can now form a mea-
sure in the spirit of the Rényi dimension spectrum from
(3.1) as follows

(3.2)

RD,(u [v) = lim

s-0

This measure will be referred to as the relative Rényi
dimension spectrunRD

Some observations about the behaviour of (3.2) should
be noted. The first is that wheq = 0  the numerator
becomes zero, s& Dq _0=0 . AIs(RDq is a mono-
tonic non-increasing function iq . This is similar to the
Rényi dimension spectrurD which is also a monotonic
non-increasing function i . These two characteristics of
(3.2) give a general idea of the shape Oﬂ%q Versus
curve which has one zero crossingspt 0 and is mono-
tonic non-increasing.

4. EXPERIMENTAL RESULTS

While there are many potential applications and experi-
mental results that could be obtained for a relative multi-
fractal measure, our particular interest in writing this paper
is to develop new image quality measures. In particular,
we wish to develop image quality measures that consider
the overall image feature complexity content at multiple
resolutions and are able to characterize the image feature
complexity. This is a perfect application of the proposed
relative Rényi dimension spectrum in (3.2). To this end,
we want to determine how (3.2) behaves for an original
image and its lossy reconstruction/approximation.

The experiments performed for this paper consist of
seeing how the relative Rényi dimension spectrEhﬁq
characterizes the relative multifractal complexity differ-
ences between original images and their approximations.
The experiments use the standd&ti2x 512 8-bit grey-
scale image of Lena. The original image of Lena acts as
the true model and its lossy reconstructions act as the
approximated models in terms of (2.1).

For the lossy reconstructions, we decided to use a set
of images easy to duplicate by using the discrete wavelet
transform (DWT) given by Mallat [11] with the

tion as suggested by (3.1), the scale of measurement mustDaubechies 4-tap wavelet filter bank [4]. The specific set

be taken to a limit of O, but this is not possible given a real
data set with naturally finite resolution. These two prob-
lems makes the comparison of multifractal results after the

of images used are approximated versions of the Lena
image through hard thresholding of the wavelet coeffi-
cients at a hard threshold level 8f  foxn<10 n, an
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Fig. 1. Plot of relative Rényi dimension spectriRb
versusq for Lena approximated from a Daub4
DWT using a hard threshold &' fér<n<10

integer. It should be understood that the image reconstruc-
tion quality for smaller values afi  are psychovisually bet-
ter than for larger values of

Using this set of 11 image approximations, the relative
Rényi dimension spectrunRD is calculated for each
approximation,u(x) in (3.2), and the original image,
v(X) in (3.2), over—40<q<40 . ThesdRkD, versus
results are plotted in Fig. 1 for each of the 11 hard thresh-
old levels.

A number of interesting observations can be made
from Fig. 1 that can be generalized to other similar image
approximation forms. The first observation is that all of
the measuredRD, versup curves are roughly “centred”
around the abscissa origin. Also, the meas ver-
susq curves appear to follow the monotonic non-increas-
ing predicted behaviour. Another point is that the curves
all cross the abscissa origin when= 0 , again as pre-
dicted. These initial observations help verify that the mea-
surements are consistent with the theoretical behaviour.

The next important consideration from the curves in
Fig. 1 is whether they follow the relative model compari-
sons outlined with (2.1) and (2.3). One note that should be
made before addressing this matter is tR&i
are two different things.RH, was designed to be similar
to the Kullback-Leibler distanceRD, is a form of multi-
fractal measure resulting froRH_ , but negative values
are possible. Therefore, f&D, we must use the magni-
tude when using (2.1) and (2.3). From what is observed in
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Fig. 2. Plot of relative Rényi dimension spectrirb
versusg for Lena approximated from a Daub4
DWT using a hard threshold @' fér<sn<4

Fig. 1, itis seen that as the image quality improves @'e.
in the hard thresholding becomes smaller), i curve
converges towards the abscissa origin. Since from (2.1)
we know that two identical models will result in
RH_, = 0 and thatRD, is monotonic non-increasing, it
follows that RDq should converge, as observed, to the
abscissa origin as the image approximation improves.
Careful inspection of the plots in Fig. 1 actually shows
some unexpected behaviour. This is only visible if we
zoom in to see th&RD, versus curves for the smaller
hard thresholds. Figure 2 shows the saRi® versus
curves for a hard threshold of 1, 2, 4, 8, and 16. The
curves actually depart from the theoretical monotonic non-
increasing behaviour predicted. The trend to converge to
the abscissa origin is still present, but it is clear that some
aspect of the calculation causes a non-monotonic behav-
iour for larger magnitude values aof In the region
aroundq = 0 , the curves follow the monotonic behaviour
much better. While we have not yet determined the source
of this non-monotonic behaviour, it seems to only occur
whenq has a larger magnitude and when Rig, values
are close to zero. This behaviour may be a result of cumu-
lative errors in the calculation in conjunction with the
larger moments of ordeq The problem can likely be
ignored for the time being since the scale of tR®
value is many orders of magnitude smaller than at higher
threshold values.



5. CONCLUSIONS

We have proposed a new class of multifractal measures
which is referred to as relative multifractal measures. In
particular, we have developed a new measure based on the
Rényi dimension spectrum that allows for the relative
comparison of two different probability distributions.
These measures have the advantage over other approache
we had developed [1-3] in that the relative comparison of
the two probability distributions is done before the main
calculation of the multifractal measure. In previous
efforts, the comparison was done after application of the
multifractal measure which resulted in a measure that is
too sensitive to calculation difficulties.

The experiments in this paper have shown that the
implemented relative Rényi dimension spectrum largely
follows the theoretical behaviour. The experiments per-
formed have shown that there is promising correlation
between image quality of a lossy image reconstruction and
the convergence of th&D, to the abscissa origin in a
RDq versusg plot. Some measurement/calculation prob-
lems do exist for smaller perceptual differences between
an image and its lossy reconstruction, but it is suspected
that this is primarily due to larger magnitudesef in the
moment order calculations. Regardless of these issues,
there is potential for the relative Rényi dimension spec-
trum to be used as an image quality measure, or in general
as some form of signal quality or signal complexity mea-
sure.
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