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Abstract
In 3D object detection and recognition, the object of interest

in an image is subject to changes in view-point as well as illumi-
nation. It is benifit for the detection and recognition if a represen-
tation can be derived to account for view and illumination changes
in an effective and meaningful way. In this paper, we propose a
method for learning such a representation from a set of un-labeled
images containing the appearances of the object viewed from var-
ious poses and in various illuminations. Topographic Independent
Component Analysis (TICA) is applied for the unsupervised learn-
ing to produce an emergent result, that is a topographic map of
basis components. The map is topographic in the following sense:
the basis components as the units of the map are ordered in the 2D
map such that components of similar viewing angle are group in
one axis and changes in illumination are accounted for in the other
axis. This provides a meaningful set of basis vectors that may be
used to construct view subspaces for appearance based multi-view
object detection and recognition.

1. INTRODUCTION

Many image and vision applications have to deal with images con-
taining objects of interest seen from various viewing points and
under various illumination conditions. A challenge for such tasks
is how to represent the object under the varying conditions.

Appearance based methods [15, 16, 7] avoid difficulties in 3D
modeling by using images or appearances of the object viewed
from possible viewpoints. The appearance of an object in a 2D im-
age depends on its shape, reflectance property, pose as seen from
the viewing point, and the external illumination conditions. The
object is modeled by a collection of appearances parameterized by
pose and illumination. Object detection and recognition is per-
formed by comparing the appearances of the object in the image
and in the model.

In a view-based representation, the pose is quantized into a set
of discrete values such as the view angles. A view subspace de-
fines the manifold of possible appearances of the object viewed at
a certain angle, subject to illumination. One may use one of the
following two methods when constructing subspaces: (1) Quan-
tize the pose into several discrete ranges and decompose the whole
data set into corresponding subsets, each composed of appearances
viewed from a particular pose; then construct a subspace for each
subset. A subspace thus constructed represents the object in that
pose and also explains variation in illumination. This is the strat-
egy used in [18]. This method requires that the training data be
labeled according to the pose. (2) With training data labeled and
sorted according to the pose value (and perhaps also illumination
values), one may be able to construct a manifold describing the
distribution across views [15, 6, 1]. This requires more detailed

labeling of the training data.
In the past two decades, many methods are explored to extract

features from training data and these can be useful for image and
vision applications. Principal component analysis (PCA) has been
a popular tool in data analysis and has been used in image and vi-
sion for constructing object subspaces. PCA decorrelates second
order moments corresponding to low frequency property. How-
ever, interpretation of an image has to deal with important infor-
mation contained in high-order relationships among three or more
image pixels, which has been ignored by PCA.

Independent component analysis (ICA) is a linear non- orthog-
onal transform which makes unknown linear mixtures of multi-
dimensional random variables as statistically independent as pos-
sible. It not only decorrelates the second order statistics but also
reduces higher-order statistical dependencies [5]. It extracts inde-
pendent components even if their magnitudes are small whereas
PCA extracts components having largest magnitudes.

Originally for solving the blind source separation problem in
signal processing, the ICA mixture model is also applied to unsu-
pervised learning of basis functions for representation of images.
When performed on image patches randomly sampled from natu-
ral images, ICA produces some interesting results. Olshausen and
Field [17] obtain spatially localized, oriented, bandpass basis func-
tions comparable to those in certain wavelet tansforms. Bell and
Sejnowski [3] find that independent component of natural scenes
are edge-like filters. Lee, Lewicki and Sejnowski [11] derive an
ICA model to represent a mixture of several mutually exclusive
classes each of which is described as a linear combination of inde-
pendent non-Gaussian densities. It is found that the two different
class of images have different types of basis functions. In image
analysis applications, ICA has also been used for face recognition
and texture analysis [2, 14, 12, 13], as a hopefully a better method
than PCA.

Topographic ICA (TICA) [8] is an extension to ICA, in which
the independence assumption is relaxed. Higher-order dependency
is allowed within a scope defined by a neighborhood system, as in
self-organizing maps [10]. The TICA model thus defined has the
following properties: (1) All the components are uncorrelated. (2)
Components that are not neighbors to each other are independent,
at least approximately. (3) Components that are neighbors tend to
be active (nonzero) at the same time, i.e. have correlated energies,
the energies being high order statistics. In TICA, every neighbor-
hood defines the scope of one feature subspace and corresponds to
one complex cell in visual cortex. TICA applied to image patches
results in simultaneous emergence of topography and complex cell
properties [8]. A linear representation is thus obtained in which
the basis vectors and hence the coefficients have a topographic or-
ganization that reveals information on the statistical higher-order
structure of the data.



In this paper, we propose a method for learning such a repre-
sentation from a set of un-labeled images containing the appear-
ances of the object viewed from various poses and in various illu-
minations. Topographic Independent Component Analysis (TICA)
[8] is applied for the unsupervised learning to produce an emer-
gent result, that is, a topographic map of basis components. The
map is topographic in the following sense: the basis components
as the units of the map are ordered in the 2D map such that view-
correlated basis components are located nearby in the topographic
map; more specifically, components of similar viewing angle are
grouped in one axis and changes in illumination are accounted
for in the other axis. The emergent topographic map not only re-
veals relationships between the basis components but also provides
a means for describing appearances viewed from various angles.
View subspaces can be constructed based on the components for
appearance based multi-view object detection and recognition.

The rest of the paper is organized as follows: Section 2 intro-
duces basic concept of ICA in signal processing and its applica-
tion in image processing. Section 3 presents the use of TICA for
unsupervised learning of topographic maps of basis components.
Section 4 presents experimental results.

2. LEARNING OF MULTI-BASED TOPOGRAPHIC MAP

TICA is used to learn, in an unsupervised way, a topographic map
of basis components from a set of un-labeled training data, such
that the components are ordered according to the view.

2.1. Data Description

The training set is composed of training examples. Here in this
work, each example is an image patch containing a face viewed at
a certain unknown left-right rotation angle between �90Æ and 90Æ

(from left side view to right side view). Every patch is normalized
to the size of 20�20 pixels. Without loss of generality, left-rotated
face patches are mirrored to the right-rotated, and so only images
of faces rotated between 0Æ and 90Æ are used in the experiments.
Fig.1 shows some examples. The main causes of variations in face
images include changes in the view of face, in illumination, in
facial shape.

Fig. 1. Some multi-view face samples.

Fig. 2. Schematic illustration of ICA representation of images.

2.2. Classic ICA

In ICA based image analysis, a gray-level image x = fx(u; v)g,
where (u; v) is the pixel location, is represented as a linear combi-
nation of m basis functions b = fb1(u; v); : : : ; bm(u; v)g:

x(u; v) =

mX

i=1

bi(u; v)si (1)

as illustrated by Fig. 2, where the coefficients s = (s1; : : : ; sm)
are different for each image given b’s. We restrict the bi(u; v) to
be an invertible linear system, so that the equation above could be
inverted by using the dot-product

si =< wi;x >=
X

u;v

wi(u; v)x(u; v) (2)

where the w = b
�1 is the inverse filter.

The crucial assumption made in ICA is that si are non-gaussian,
mutually independent random variables. The latter means

ps(s) =

mY

i=1

ps;i(si) (3)

where ps denotes the density of the s. This is a factorial coding.
The ICA learning problem is to estimate both the basis functions
bi(u; v) and the realizations of the si, for all i and (u; v), using
a sufficiently large set of the training images fxk(u; v)g; so that
for any given sample xk(u; v) from the training set, information
about one of the si gives as little information as possible about the
others. In other words, the si are as independent as possible.

There are several approaches for formulating independence in
the ICA model [9] such as minimum mutual information, maxi-
mum neg-entropy; a very popular approach is the maximum like-
lihood [19, 4]. Let w = (w1; : : : ;wm) represent an ICA model
and the density of s be given as ps in Eq.(3). The density of the
observation x, or the likelihood of the model, can be formulated
as p(x j w; ps) = j detbj�1ps(b

�1
s) = j detwjps(ws). Given

NT training images, x = fxk j k = 1; : : : ; NT g, the logarithm
likelihood can be derived as

log p(x jw; ps) =

NTX

k=1

mX

i=1

log ps;i +NT log j detwj (4)

where ps;i = ps;i(si;k) = ps;i(< wi;xk >) (the forms of ps;i
are assumed to be known). Learning an ICA model can be simply
achieved by maximizing the likelihood function with respect to w.

2.3. Topographic ICA

In classic ICA, there is no order relationship between independent
components (ICs) si. This is due to the assumption of complete
statistical independence. For this reason. classic ICA is unable
to describe relationships between different ICs. In many appli-
cations, the independence assumption is not always satisfied, and
dependent can be seen between some estimated ICs. This can be
the case for images containing appearances of an object viewed
from different poses. In this case, it is desirable to make use of
such dependencies to reveal relationships between ICs.

Topographic ICA (TICA) [8], an extension of ICA, is a learn-
ing method by which the basis components are ordered by some
higher-order statistic. In TICA, the independence assumption is



relaxed. Components that are close to each other, i.e. those within
a neighborhood, are not assumed to be independent; they are al-
lowed to be correlated in their energies. For example, the residual
dependency structure of the compoenents, which cannot be can-
celed by ICA, is allowed to exist. The scope of the dependency
is defined by a neighborhood system, as in self-organizing maps
[10].

A kind of higher order correlations that can be used to define
the topographic ordering is the correlation between the energies of
the components [8]

cov(s2i ; s
2

j) = Efs2i s
2

jg �Efs2i gEfs
2

jg (5)

Intuitively, such a correlation means that the components tend to
be active, i.e. nonzero, at the same time. The TICA model thus
defined has the following properties: (1) All the components are
uncorrelated. (2) Components that are not neighbors to each other
are independent, at least approximately. (3) Components that are
not neighbors tend to be active (nonzero) at the same time, i.e.
have correlated energies.

TICA can also be defined using a likelihood function by in-
troducing a neighborhood weighting into Eq.(6). Let there be m
components and denote byNj the set of indices of the components
neighboring to component j. The log likelihood can be defined as

log p(x jw) =

NTX

k=1

mX

i=1

log ps(
X

j2Ni

s
2

j;k) +NT log j detwj (6)

where ps are the known density functions of the norm, and sj;k =<
wj ;xk >. Learning a TICA model can be simply achieved by
maximizing the likelihood function with respect to w and can be
implemented by using a gradient ascent algorithm [8].

2.4. Learning View-Based Topographic Map

The objective here is to use TICA to learn a topographical map
of basis components so that the basis components are ordered ac-
cording to left-right rotation angle. In the resulting TICA map,
we can see a gradual change in the pose in one of the two TICA
map directions, and changes in the illumination and other factors
such as facial shape in the other direction. As such, basis compo-
nents of similar view are grouped together. They can be used to
form the subspace of faces in the corresponding view. The span of
these components in a view group defines the manifold of possible
appearances of human face viewed at that angle, subject to illumi-
nation and so on. In other words, it represents the view-subspace
of facial appearances in the whole face space. These may be used
for applications in appearance based multi-view object detection
and recognition.

3. EXPERIMENTAL RESULTS

The following experiments demonstrate unsupervised TICA learn-
ing of view subspaces which produces emergent topographic maps
of view-ordered basis components for representing multi-view face
images. There are about 30,000 face examples in the database,
roughly evenly distributed with respect to the view angle in the
range between 0Æ and 90Æ.

There are several parameters to choose in a TICA algorithm:
the dimensions (H � W ) of the map, where H and W are the
height and width, and the shape and mode of the neighborhood

system. Two neighborhood shapes are used, respectively: (1) 3�3
and (2) H � 3. Two modes are: (1) the “torus” mode which takes
into account the dependence around the basis on the edge of the
TICA map so that the left- and right- most columns are neigh-
bors, and so are top- and bottom- rows; (2) the “standard” mode in
which there are no neighboring relations between left-right most
columns and top-bottom most rows. The TICA software down-
loaded from www.cis.hut.fi/projects/ica is used. As
a standard practice of ICA, the training data is preprocessed by
whitening and then dimensionality reduction using PCA.

Figure 3 shows a 5� 18 TICA topographic map obtained us-
ing the 3 � 3 “torus” neighborhood. Initialized at random, the
view-angle related topographic ordering emerges as the iteration
goes on, and the map always converges orderly whatever the ini-
tialization is. From the left to the right of the map, we can see the
orderly change from the frontal view to the side view and then to
near frontal view again. Such a fashion of view change is due to
the constraint that the left- and right- most columns are neighbors.
Vertically, we can see variations in other aspects such as illumina-
tion and facial shape. In this case, the components in every 3 � 3
neighborhood form an independent subspace.

Figure 4 shows a 20� 9 TICA topographic map obtained us-
ing the 20� 3 “standard” neighborhood. In this case, the left- and
right- most columns are no longer neighbors and are therefore in-
dependent. From the left to the right of the map, we can see the
orderly change from the side view to the frontal view. Although an
ordering always emerge, however in this non-torus neighborhood,
the ordering can be reversed (to from frontal view to side view)
depending the initialization. Nonetheless, we can set proper ini-
tialization to induce desired ordering. Another note is that using
the 20�3 neighborhood, there is no ordering between components
within a column. Similar to the previous case, we can see vertical
variations in illumination and facial shape. In the latter, the com-
ponents in every 3 columns form an independent subspace.

4. CONCLUSION

The contribution of this paper is the use of the TICA method for
learning a view-based representation of a 3D object from its 2D
appearances. It is shown that the TICA algorithm is able to form
topographic of basis components in which the components are or-
dered by its view. The ordering provides a natural way for clus-
tering the basis components into view subsets. As such, a view-
subspace can be constructed by the span of components of that
view. This is the significance of the view-based topographic map.

Potential applications of such a view-subspace representation
is 2D appearance based multi-view object detection and recogni-
tion. An appearance or image of the object can be represented
as its projection point in a view-subspace. The amplitude of the
projection coefficients for that view corresponds the activity of the
complex cell tuned for the view. This suggests a means of de-
tecting the object in a particular view by thresholding the norm of
the coefficient vector in the corresponding view-subspace. Multi-
view object recognition may be performed by comparing distances
between the projection points of the observed image and the pro-
totype image.
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Fig. 3. A topographic map of 5 � 18 basis components learned
using 3� 3 “torus” neighborhood.

Fig. 4. A topographic map of 20 � 9 basis components learned
using 20� 3 “standard” neighborhood.


