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ABSTRACT t is the dimension of the input data (the FIR convolution

A necessary and sufficient condition is given for the exis- [@kes place iri-space). For our purposes, thdransform
tence of a polynomial left inverse for a polynomial (FIR) ©f & data point: may be defined as
system. Additionally, random systems are defined, and a N
sﬁﬁicient condition i)é given for aﬁmost sure existence of a X(2) = 2(z) = Z 7(A)z (1)
polynomial inverse. The two results extend previous work A€Zo
in single-input, multiple-output systems to the case of mul- \\here, — (Z10-oy2), A = (M,..., )\ is at-tuple of
tiple mpL_Jt systems and to _fu_nctlons of sever_al varlables. nonnegative integers, and = leleAz fot Note that
An algorithm to compute minimal order equalizers is also {he sum above is always finite as all signals we consider
presented. Corollaries describe calibration of polarimetric, 5ve finite extent. Then, the equalization problem can be
wide-band radar imagery. rephrased as follows.
Let the input polynomials b&;(z), 1 < i < m. We
1. INTRODUCTION will suppress the independent variable Let the output

polynomialsY; be defined as
We consider finite impulse response (FIR) inverse filterbanks

for the inversion of FIR distortion filterbanks. Such systems
arise naturally in channel equalization for wireless commu-
nication systems with mutliple antennas [1], in space ob- _ '
ject recognition [2] and in polarimetric calibration of radars WhereH;; are polynomials. Now, we segolynomialsG;;
[3]. These inverse problems have three features in commonsuch that

First, the systems have multiple outputs. Second, the mea- n n om

surement operator from any one input signal to any one out-  X; = > Gi;¥; = > Y GyHyXy 1<i<m

put signal, with the suppression of the other inputs, if any, j=1 j=1k=1

can be modeled as linear and shift-invariant (LSI). Each of . . . .

o In matrix notation, the preceding equation becomes
the outputs can be modeled as a superposition of responses
from each of the inputs. Third, the distortion on any data GH =1, (3)
point is constrained to be in a finite neighborhood of that ) _ )
point. Thus, the distortion can be modeled as a bank of fi- where (notice the nonstandard indexing of the elements of

Y; =Y HyX; 1<j<n 2

i=1

nite impulse response filters. H),
Hll H21 oo Hm1
2. SYSTEM MODEL His Hsy ... Hpo
H= : o . 4
The data and the channel responses may be represented as : : - :
polynomials in the transform domait(z1, ... , z;] where Hy, Hap ... Hpp
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3. EXISTENCE of Berenstein and Yger [5] provides a tight upper bound on
the required filter order for the FIR inverse. Let

¢ = max deg(D;) )
Theorem 1 A matrix’H of sizen x m, whose elements are lsisN
polynomials with coefficients in a complete field, has a poly- Proposition 2 If D; do not share a common zero, then there
nomial left inverseg iff (1) n > m and (2) the ideal of  exist polynomials:; of order2(2¢)*~! such that equation

m x m minors of{ generates the ring of polynomialse., (6) is satisfied ([5], [7, Theorem 5] when= 2).
there is no zero common to all the x m minors ofH.

3.1. Necessary and Sufficient Conditions

Note that, for a givenp, there existD; such that the bounds
Proof. Let H; denote then x m submatrices of{. Let on thea; are achieved. However, for a givén, there may

D; denote the determinant 6{,. If the ideal ofm x m exist lower order solutionsg; which satisfy equation (6).
minors of H generates the ring of polynomials, there exist Now, after zero padding thB; so that they all have or-
polynomialsa; such that ifN = Trrzl ' derq), the following linear equations yield thg:
Ay
N Ax| |1
ZaiDi=1 ©6) [D;y D; ... Dy] = M (20)
AN
Then, for thoseH; such thatD; # 0, by Cramer's rule,  \yhereD; is the convolution matrix determined by;, 1 <
there exist square polynomial matriogs(adjoints ofH,) i < N andA; are the vectorized coefficients af. In [8],

such thag;H; = D;I,. Thus, there exist, x n matrices  thjs same approach is used whes 1, m = 1 resulting in
G; which areg; (with addmonal zero rows corresponding to - gyjvester matrices.

those columns irk which are not inf;) such thaig; % = If the equalizer is not restricted to be FIR, then the prob-
D; Iy, from which it follows that lem can be solved using techniques analogous to the Smith-
N N McMillan form and the matrix fraction description [6, chap-
Z(aiGi)H = Z a; DIy, = Iy, (7) ters 2 and 6].
=1 =1 Proposition 3 If there exists a polynomial left inversg
whence whose elements have (possibly) complex coefficients, for an
‘H whose elements have purely real coefficients, then there
G = Z(aigi) (8) exists a left invers¢ whose elements have purely real co-

efficents. Moreover, giveg, ¢ = 99 is one such left

inverse, wherg; denotes the matrix obtalned by conjugat-

Conversely, suppose that the x m minors of’ H do not ' 1S -
ing the coefficients of each polynomialgn

generate the ring of polynomials. Then, by the waakKI-
stellensat4, p. 169],3w = (w1, w2, ...w;) € k' suchthat  Proof. Polynomials are entire functions. Hence, féf; on

Di(w) = 0,1 <i < N. Thenrank(H(w)) < m. Then,  the real manifoldR?, which is a domain of uniqueness,

there does not exigt(w) such thatf(w)H(w) = I,,,. Thus, .

a polynomial left inverse of{ does not existm Z GiiHe =65 1<ik<m (11)
1] 7 — Y = b =

For the single-input, multiple-output (SIMO) case in one
variable, (e, t =1, m = 1,n > 1), Theorem 1 is the clas-
sical Bezout equation [5] for which solution techniques are Z GijHy; = bi = Z ij =5 (12)
well known [1, 5, 6]. For the multiple-input, multiple-output
(MIMO) case, Theorem 1 reduces the existence of a poly-
nomial inverse to the SIMO case. The constructive proof re- Note tha is a holomorphic function as it is a poly-
quires solution of equation (6); therefore, the MIMO prob- nomial. The result in equation (12) @ then follows from
lem withmn filters H;; is reduced to a SIMO problem with  the uniqueness theorem [9] for holomorphic functioms.

N filters D;. For the square case ef = n, Theorem 1
states that an FIR equalizer exists dt H is a nonzero 3.3, Computation ofa,, t = 1
constant.

j=1

t(Gij"l‘Gij)

The problem of findingj reduces to finding the polynomials
a; of equation (6). Ift = 1, there exist standard techniques
based on the Euclidean division algorithm to solve for the
The constructive proof of Theorem 1 provides means for a;. Consider the order of the polynomials in the inverse
computing the FIR inverse in the MIMO case. First, a result matrix, which depend upon the order of the polynomials

3.2. Computing the Inverse



Lemma 4 For the case = 1, m = 1, andn = 2, if there
existaq, as such that

a1(2)D1(2) 4+ a2(2)D2(z) = u(z2), (13)

and if0 < degu(z) < max(deg D;(z),deg D2(2)), then
3r(z), b(z) such that [10]

r(2)D1(2) + b(2)D2(2) = u(z) (14)

wheredeg r(z) < deg D2(z) anddegb(z) < deg D1 (z).

Now, supposeD; and D, have lengthd; andls respec-
tively, and further that they have no common zero. Note
thatl; = deg D; + 1, i = 1,2. Then, Lemma 4 implies
that there exist; andas of lengths atmosk, — 1 andi; — 1

If H, = 1 for somek, we setu;; = 1 andu;s = 0,

i > k. Now, sinceged(Hy, ap+1) = ged(a, ..., ak+1),
Hy = 1. Thus we obtairy, ... ,Hy, u11,... ,UN—1,1,
anduis, ... ,un—1,2. Now, going back up the recursion
ladder,

N-1
ak:Uk—l,QHUil 1<k<N
i—k

Whereuo,z =1l,ay = UN—-1,2 anda;D;+...+anyDy =
1.

Since theu;; obtained at each step have minimal order,
the filtersa; have minimal orders, which are determined by
the ordering of the polynomial®;. To obtain the absolute
minimal filter orders, we minimize over aN'! permutations

respectively such that (13) holds. Then the convolution canof D;. The search complexity can be decreased by using

be written as

~ Fz { s } [ ; ]
~— ~— =
(Li4la—2)x(I2—1) | (l14+12—2)x (11 —1) as 0

F

whereF; andF5 are the convolution matrices determined
uniquely by D, and D, respectively. Note that the matrix
Fis square. Then, sind@; andD- do not share a common
zero, the matrix has full rank by Theorem 1, andanda,
can be uniquely determined. Thus, there exist uniguend

ao of minimal order.

Given the polynomiald;, 1 < ¢ < n, thea; can be
calculated recursively. Henceforth, it will be assumed that
there is no zero common to all of the; and the explicit
dependence on will be dropped. The key elements in the
recursion are Lemma 4 and the algorithm for calculating the
greatest common divisor (gcd) of two polynomials [4]). The
algorithm proceeds as follows:

Let H; = Dy and letH, = ged(Hy, Ds). Then,

Hy = Hovpy Dy = Havio
wherev;; andvi, do not share common zeros. Then, from
Lemma 4,3’&11, u12 SUch thaﬁeg(un) < deg(vlg),
deg(ui2) < deg(vy1) and

(15)
(16)

U111 + u12v12 = 1
= w1 Hi +upDy = Hy

Now, supposéT;, has been defined. Léf; 1 = ged(Hg, ag41)-
Then,

Hy, = Hiqvp D1 = Hpp1vk2
wherevy; andvg, do not share common zeros. Then, from
Lemma 4, 3ug1, uke such thatdeg(ug1) < deg(vga),
deg(ur2) < deg(vy1) and

(17)
(18)

Up1Vk1 + UkoUko = 1
= U1 Hy + Uk D1 = Hy

a Viterbi decoder-like algorithm. In section IV.B of [11],

it was shown that if two filtersf; and f, have the same
orderr, then there exist inverse filters, each of order 1.

The algorithm presented here extends the result with sharper
bounds on the filter orders.

4. ALMOST SURE EXISTENCE

Definition 5 Let H be as in equation (4). Let denote a
fixed upper bound on the total degree of the polynomials
H;;. Suppose that the coefficients#f; are chosen from
a continuous probability density (pdy on C™"®, where

1+t—1
o= 52, (

i1 > Then the system is said to be
random

Theorem 6 Let H be a matrix of sizex x m, whose ele-
ments are polynomial#/,; in ¢ variables, wheren > m

and > t. Suppose eacH/;; is a linear combina-

tion of elements from a s&v;; of monomials, and that the
coefficients of the linear combinations are chosen randomly
from a continuous probability density functidnon C*,

m n
Q=32 #Wi

i=1 j=1
where#W;,; denotes the cardinality df’;;. Suppose fur-
ther that® and;; are such that atleast one of the minors
Dy, of sizem x m contains a nonzero constant term almost
surely. Then, there almost surely exists a polynomial left
inverseg for H.

Proof. Note that the coefficients of the minaky, are poly-
nomials of the coefficients off;;. Without loss of gener-
ality, let D; have a nonzero constant term. Consider the

homogeneous polynomials
21 22 2t
Ey(z0,21, ..., 2t) = 20828 Dy, < — )

) ey
20 20 20
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