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ABSTRACT

A necessary and sufficient condition is given for the exis-
tence of a polynomial left inverse for a polynomial (FIR)
system. Additionally, random systems are defined, and a
sufficient condition is given for almost sure existence of a
polynomial inverse. The two results extend previous work
in single-input, multiple-output systems to the case of mul-
tiple input systems and to functions of several variables.
An algorithm to compute minimal order equalizers is also
presented. Corollaries describe calibration of polarimetric,
wide-band radar imagery.

1. INTRODUCTION

We consider finite impulse response (FIR) inverse filterbanks
for the inversion of FIR distortion filterbanks. Such systems
arise naturally in channel equalization for wireless commu-
nication systems with mutliple antennas [1], in space ob-
ject recognition [2] and in polarimetric calibration of radars
[3]. These inverse problems have three features in common.
First, the systems have multiple outputs. Second, the mea-
surement operator from any one input signal to any one out-
put signal, with the suppression of the other inputs, if any,
can be modeled as linear and shift-invariant (LSI). Each of
the outputs can be modeled as a superposition of responses
from each of the inputs. Third, the distortion on any data
point is constrained to be in a finite neighborhood of that
point. Thus, the distortion can be modeled as a bank of fi-
nite impulse response filters.

2. SYSTEM MODEL

The data and the channel responses may be represented as
polynomials in the transform domaink[z1, . . . , zt] where
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t is the dimension of the input data (the FIR convolution
takes place int-space). For our purposes, thez-transform
of a data pointx may be defined as

X(z) = Z(x) =
∑
λ∈Zt≥0

x(λ)zλ (1)

wherez = (z1, . . . , zt), λ = (λ1, . . . , λt) is a t-tuple of
nonnegative integers, andzλ = zλ1

1 zλ2
2 . . . zλtt . Note that

the sum above is always finite as all signals we consider
have finite extent. Then, the equalization problem can be
rephrased as follows.

Let the input polynomials beXi(z), 1 ≤ i ≤ m. We
will suppress the independent variablez. Let the output
polynomialsYj be defined as

Yj =
m∑
i=1

HijXi 1 ≤ j ≤ n (2)

whereHij are polynomials. Now, we seekpolynomialsGij
such that

Xi =
n∑
j=1

GijYj =
n∑
j=1

m∑
k=1

GijHkjXk 1 ≤ i ≤ m

In matrix notation, the preceding equation becomes

GH = Im (3)

where (notice the nonstandard indexing of the elements of
H),

H =


H11 H21 . . . Hm1

H12 H22 . . . Hm2

...
...

...
...

H1n H2n . . . Hmn

 (4)

G = (Gij)1≤i≤m,1≤j≤n (5)

andIm denotes them×m identity matrix. Since constants
are polynomials too, it is immediate from linear algebra that
for solvability of the preceding equation, it is necessary that
n ≥ m.



3. EXISTENCE

3.1. Necessary and Sufficient Conditions

Theorem 1 A matrixH of sizen×m, whose elements are
polynomials with coefficients in a complete field, has a poly-
nomial left inverseG iff (1) n ≥ m and (2) the ideal of
m×m minors ofH generates the ring of polynomials,i.e.,
there is no zero common to all them×m minors ofH.

Proof. Let Hi denote them × m submatrices ofH. Let
Di denote the determinant ofHi. If the ideal ofm × m
minors ofH generates the ring of polynomials, there exist

polynomialsai such that ifN =
(

n
m

)
,

N∑
i=1

aiDi = 1 (6)

Then, for thoseHi such thatDi 6= 0, by Cramer’s rule,
there exist square polynomial matricesGi (adjoints ofHi)
such thatGiHi = DiIm. Thus, there existm × n matrices
G̃i which areGi (with additional zero rows corresponding to
those columns inH which are not inHi) such thatG̃iH =
DiIm, from which it follows that

N∑
i=1

(aiG̃i)H =
N∑
i=1

aiDiIm = Im (7)

whence

G =
N∑
i=1

(aiG̃i) (8)

Conversely, suppose that them × m minors ofH do not
generate the ring of polynomials. Then, by the weakNull-
stellensatz[4, p. 169],∃w = (w1, w2, ...wt) ∈ kt such that
Di(w) = 0, 1 ≤ i ≤ N . Thenrank(H(w)) < m. Then,
there does not existG(w) such thatG(w)H(w) = Im. Thus,
a polynomial left inverse ofH does not exist.

For the single-input, multiple-output (SIMO) case in one
variable, (i.e., t = 1,m = 1, n > 1), Theorem 1 is the clas-
sical Bezout equation [5] for which solution techniques are
well known [1, 5, 6]. For the multiple-input, multiple-output
(MIMO) case, Theorem 1 reduces the existence of a poly-
nomial inverse to the SIMO case. The constructive proof re-
quires solution of equation (6); therefore, the MIMO prob-
lem withmn filtersHij is reduced to a SIMO problem with
N filters Di. For the square case ofm = n, Theorem 1
states that an FIR equalizer exists iffdetH is a nonzero
constant.

3.2. Computing the Inverse

The constructive proof of Theorem 1 provides means for
computing the FIR inverse in the MIMO case. First, a result

of Berenstein and Yger [5] provides a tight upper bound on
the required filter order for the FIR inverse. Let

ψ = max
1≤i≤N

deg(Di) (9)

Proposition 2 If Di do not share a common zero, then there
exist polynomialsai of order 2(2ψ)t−1 such that equation
(6) is satisfied ([5], [7, Theorem 5] whent = 2).

Note that, for a givenψ, there existDi such that the bounds
on theai are achieved. However, for a givenDi, there may
exist lower order solutionsai which satisfy equation (6).

Now, after zero padding theDi so that they all have or-
derψ, the following linear equations yield theai:

[
D1 D2 . . . DN

] 
A1

A2

. . .
AN

 =
[

1
0

]
(10)

whereDi is the convolution matrix determined byDi, 1 ≤
i ≤ N andAi are the vectorized coefficients ofai. In [8],
this same approach is used whent = 1, m = 1 resulting in
Sylvester matrices.

If the equalizer is not restricted to be FIR, then the prob-
lem can be solved using techniques analogous to the Smith-
McMillan form and the matrix fraction description [6, chap-
ters 2 and 6].

Proposition 3 If there exists a polynomial left inverseG
whose elements have (possibly) complex coefficients, for an
H whose elements have purely real coefficients, then there
exists a left inversêG whose elements have purely real co-
efficents. Moreover, givenG, Ĝ = (G+Ḡ)

2 is one such left
inverse, wherēG denotes the matrix obtained by conjugat-
ing the coefficients of each polynomial inG.

Proof. Polynomials are entire functions. Hence, forHkj on
the real manifoldRt, which is a domain of uniqueness,

n∑
j=1

GijHkj = δik 1 ≤ i, k ≤ m (11)

n∑
j=1

ḠijHkj = δik ⇒
n∑
j=1

(Gij + Ḡij)
2

Hkj = δik (12)

Note that(Gij+Ḡij)2 is a holomorphic function as it is a poly-
nomial. The result in equation (12) onCt then follows from
the uniqueness theorem [9] for holomorphic functions.

3.3. Computation ofai, t = 1

The problem of findingG reduces to finding the polynomials
ai of equation (6). Ift = 1, there exist standard techniques
based on the Euclidean division algorithm to solve for the
ai. Consider the order of the polynomials in the inverse
matrix, which depend upon the order of the polynomialsai.



Lemma 4 For the caset = 1, m = 1, andn = 2, if there
exista1, a2 such that

a1(z)D1(z) + a2(z)D2(z) = u(z), (13)

and if 0 ≤ deg u(z) < max(degD1(z),degD2(z)), then
∃r(z), b(z) such that [10]

r(z)D1(z) + b(z)D2(z) = u(z) (14)

wheredeg r(z) < degD2(z) anddeg b(z) < degD1(z).

Now, supposeD1 andD2 have lengthsl1 and l2 respec-
tively, and further that they have no common zero. Note
that li = degDi + 1, i = 1, 2. Then, Lemma 4 implies
that there exista1 anda2 of lengths atmostl2−1 andl1−1
respectively such that (13) holds. Then the convolution can
be written as[

F1︸︷︷︸
(l1+l2−2)×(l2−1)

F2︸︷︷︸
(l1+l2−2)×(l1−1)

]
︸ ︷︷ ︸

F̃

[
a1

a2

]
=
[

1
0

]

whereF1 andF2 are the convolution matrices determined
uniquely byD1 andD2 respectively. Note that the matrix
F̃ is square. Then, sinceD1 andD2 do not share a common
zero, the matrix has full rank by Theorem 1, anda1 anda2

can be uniquely determined. Thus, there exist uniquea1 and
a2 of minimal order.

Given the polynomialsDi, 1 ≤ i ≤ n, theai can be
calculated recursively. Henceforth, it will be assumed that
there is no zero common to all of theDi and the explicit
dependence onz will be dropped. The key elements in the
recursion are Lemma 4 and the algorithm for calculating the
greatest common divisor (gcd) of two polynomials [4]). The
algorithm proceeds as follows:

LetH1 = D1 and letH2 = gcd(H1, D2). Then,
H1 = H2v11 D2 = H2v12

wherev11 andv12 do not share common zeros. Then, from
Lemma 4,∃u11, u12 such thatdeg(u11) < deg(v12),
deg(u12) < deg(v11) and

u11v11 + u12v12 = 1 (15)

⇒ u11H1 + u12D2 = H2 (16)

Now, supposeHk has been defined. LetHk+1 = gcd(Hk, ak+1).
Then,

Hk = Hk+1vk1 Dk+1 = Hk+1vk2

wherevk1 andvk2 do not share common zeros. Then, from
Lemma 4,∃uk1, uk2 such thatdeg(uk1) < deg(vk2),
deg(uk2) < deg(vk1) and

uk1vk1 + uk2vk2 = 1 (17)

⇒ uk1Hk + uk2Dk+1 = Hk+1 (18)

If Hk = 1 for somek, we setui1 = 1 and ui2 = 0,
i > k. Now, sincegcd(Hk, ak+1) = gcd(a1, . . . , ak+1),
HN = 1. Thus we obtainH1, . . . , HN , u11, . . . , uN−1,1,
andu12, . . . , uN−1,2. Now, going back up the recursion
ladder,

ak = uk−1,2

N−1∏
i=k

ui1 1 ≤ k < N

whereu0,2 = 1, aN = uN−1,2 anda1D1 + . . .+ aNDN =
1.

Since theuij obtained at each step have minimal order,
the filtersai have minimal orders, which are determined by
the ordering of the polynomialsDi. To obtain the absolute
minimal filter orders, we minimize over allN ! permutations
of Di. The search complexity can be decreased by using
a Viterbi decoder-like algorithm. In section IV.B of [11],
it was shown that if two filtersf1 and f2 have the same
orderπ, then there exist inverse filters, each of orderπ − 1.
The algorithm presented here extends the result with sharper
bounds on the filter orders.

4. ALMOST SURE EXISTENCE

Definition 5 LetH be as in equation (4). Letφ denote a
fixed upper bound on the total degree of the polynomials
Hij . Suppose that the coefficients ofHij are chosen from
a continuous probability density (pdf)Ψ on CmnΦ, where

Φ =
∑φ
i=0

(
i+ t− 1
t− 1

)
Then the system is said to be

random.

Theorem 6 LetH be a matrix of sizen × m, whose ele-
ments are polynomialsHij in t variables, wheren ≥ m

and

(
n
m

)
> t. Suppose eachHij is a linear combina-

tion of elements from a setWij of monomials, and that the
coefficients of the linear combinations are chosen randomly
from a continuous probability density functionΨ onCΩ,

Ω =
m∑
i=1

n∑
j=1

#Wij

where#Wij denotes the cardinality ofWij . Suppose fur-
ther thatΨ andWij are such that atleast one of the minors
Dk of sizem×m contains a nonzero constant term almost
surely. Then, there almost surely exists a polynomial left
inverseG forH.

Proof. Note that the coefficients of the minorsDk are poly-
nomials of the coefficients ofHij . Without loss of gener-
ality, let D1 have a nonzero constant term. Consider the
homogeneous polynomials

Ek(z0, z1, . . . , zt) = z0
deg(Dk)Dk

(
z1

z0
,
z2

z0
, . . . ,

zt
z0

)



Ek share a common zero inCt+1−{0} wheneverDk share
a common zero inCt−{0}. The resolventR(ρ1, . . . , ρt+1)
of t + 1 homogeneous polynomialsρ1, . . . , ρt+1 in t + 1
variables is a polynomial in the coefficients ofρ1, . . . , ρt+1

which vanishes iff the polynomialsρ1, . . . , ρt+1 share a
common zero inCt+1 − {0}. ThenR(D1, . . . , Dt+1) is
a polynomial inΩ variables [12, p. 427, Prop. 1.1]. Hence,
it vanishes only on an affine variety which is a closed and
nowhere dense set of measure zero. Also, the set of coef-
ficients whereD1 vanishes at the origin is a closed linear
subspace ofCΩ which is a nowhere dense set of measure
zero. Thus, for almost every choice of the coefficients of
Hij , the minorsDk do not share a common zero. Hence,
by Theorem 1, and since the Lebesgue integral on a set of
measure zero of an atomless function vanishes, a polyno-
mial left inverse almost surely exists.

Corollary 7 LetH be as in Definition 5. IfN > t, and if
the region of support ofΨ is not a proper subspace ofCΦ,
the inverse filter bank almost surely exists.

Corollary 7 has been proved for the casest = 1, m ≥ 1
[5], and t = 2, m = 1 [13]. Harikumar and Bresler [7]
show that fort = 2, m = 1, n > 2, for almost every
choice of distortion filters, there is no common zero shared
by these filters. They then present an algorithm for the blind
estimation ofX1. The basic idea is that if the filters do not
share a common zero, thenX1 must be the greatest common
divisor of theYj .

5. WIDE-BAND RADAR CALIBRATION

In polarimetric synthetic aperture radar imaging, signals are
transmitted and received in two polarizations. By reciprocity,
the response of the target is identical in the crosspolarized
(HV, VH) channels. The observed responsesoab can be
modeled as follows [3]:[
ohh ohv
ovh ovv

]
=
[
rhh rhv
rvh rvv

] [
sh sx
sx sv

] [
thh thv
tvh tvv

]
whererab andtab represent the receive and transmit antenna
responses, and wheresa represent the response of the tar-
get. Now, assuming that these functions are polynomials,
i.e., FIR filters witht = 2, we obtain the following system
description:

ohh
ohv
ovh
ovv

 =


rhhthh rhvthh + rhhtvh rhvtvh
rhhthv rhvthv + rhhtvv rhvtvv
rvhthh rvvthh + rvhtvh rvvtvh
rvhthv rvvthv + rvhtvv rvvtvv


shsx
sv


Following the proof of Theorem 6, it can be shown that

this system is invertible almost surely if the antenna re-

sponse functions are drawn from a continuous pdf, as

(
4
3

)
=

4 > 2.
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