IMPORTANCE SAMPLING EVALUATION OF DIGITAL PHASE DETECTORS
BASED ON EXTENDED KALMAN-BUCY FILTERS

Francisco A. S. Silva JésM. N. Leifio

Instituto de Telecomunicé@es - Instituto Superiordcnico 1049-001 Lisboa, PORTUGAL
{sena, jleitag @Ix.it.pt

ABSTRACT 2. PROBLEM FORMULATION

This paper proposes amportance samplingnethodology for the 2.1. Model and receiver description

performance evaluation of a class of open-loop receivers with ran- ) ) ) )

dom carrier phase tracking in additive white Gaussian noise chan-Consider the discrete base-band phase modulated received signal

nels. The receivers, consisting of a bank of extended Kalman-BucyConsisting ofV samples pek*" symbol interval[k T, (k + 1)T.],

filters and a decision algorithm based on the filters’ innovations of durationT:

processes, perform symbol-by-symbol phase detection while kep-

ping track of the random phase process within the symbol interval. Sn = exp [j (97(5) + ¢n>] + Va, n=1,...,N

We use a large deviations approach to start a stochastic importance

sampling optimization, both for the irreducible error floor and for (o) ; o ]

the general noisy operation of the receiver. Our simulations show awherefy,” is the digital phase sequence associated to one dfthe

practical coincidence with conventional Monte Carlo results, with Symbolsas € {a1,- -+, an}, ¢ is a discrete Brownian motion

considerable simulation time gains. described byp, = ¢n-1 + 6., Whered, is a zero mean white
Gaussian sequence of variang v, iS a complex zero mean
white Gaussian sequence of variarce The purpose is to ana-
lyze a receiver consisting of a bank of EKBF driven by the same

1. INTRODUCTION inputs,, and a decision algorithm driven by the filters innovations

processes as sketched in Fig. 1. The detector decides, at the end

Digital oh q . d rand ier oh il of the current symbol interval, according to a minimum Euclidean
_|g|ta phase ete_ctlon and random carrier phase trackiraglin metric computed from those innovations. Parameters of the se-
ditive white Gaussian noiS®@WGN) channels are problems con- ¢

. . / . . ected EKB filter are used as initial conditions to all EKB filters
sidered in reference [1]. The receivers therein proposed consist 0

. - L - ; or the next symbol interval (see [1] for details).
a bank of ‘matched’ stochastimnlinear filters(NLF) and a deci- Matching to symboky, is achieved by eliminating the modu-

sion algorithm driven by the filters innovations processes. Model- , _.. . L
; : - : lating sequence from the observation vector giving rise to observa-
ing random carrier phase as Brownian motion, the NLF developed (s)

in [1] represents the conditional densities khonovfunctions ~ tonszx . The EKBF equations, implementing density meg (
whose parameters are recursively propagated. The resulting NLF-&Nd varianceX,) propagation, are, for the filtering (F) and predic-
based receiver is then evaluated and compared with an alternativ&ion (P) steps:
structure where the estimation units astended Kalman-Bucy fil-
ters (EKBF). This comparative evaluation has been performed by
conventional, time-consuming, Monte Carlo (MC) simulation. To CF . aP sy . ap “p
further test and refine the approach and the algorithms developed, ZE P+ o2 [ —sindry  cosdy ] x
fast simulation tools have to be devised. This was the purpose of 21 — COS 4;5

[ 22 n — sin 4@5 ]

e Filtering

the work reported in [2], dealing only with the NLF-based receiver.
With the same objective, this paper considersitiygortance sam-
pling (IS) assessment of EKBF-based receiving structures. oF  _ oix? @)

The paper is organized as follows: In Section 2 we present the 2L + o3
adopted communications model and receiver and some IS consid- o
erations relevant to the analysis. In section 3 we derive the ideal ¢ Prediction
error set and show how to take advantage of its characteristics to ¢§P _ 4F 3
N . . n+1 - ¢n ( )
support the IS optimization process. In section 4 we address some P r )
implementation issues and present simulations results. Yo = X, toyg. (4)

1)

- . In the next symbol interval, all the EKBF are initialized with
This work was supported by Portuguese program Praxis XXI, under -p » -
project 2/2.1/TIT/1583/95. parameter{q& N+l 2 N+1) from the previously selected branch.
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Figure 1: Diagram of receiver with branch matchedvtp

2.2. Modeling for importance sampling

Fig. 2 is a schematic representation of the above described co
munication model, withA, = «; being the transmitted symbol
with s € {a1, -+, am}, andYy, andSy, being the transmit-
ted and received signal vectors respectively contaitNnsamples
each within symbol intervdkTy, (k + 1)T5]. Vi, is the AWGN
vectorVy,, = [vi,...,vn],, andAy, = [d1,...,dn] the phase
increment vector. In our IS simulation model, an additional vari-
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Figure 2: Model for the communication system

ableI;, normally ‘hidden’ under MC simulation, will be generated
to model the influence of estimatg,_; on Aj. This variable will

replace the internal decision feedback mechanism, allowing the

implementation of arevent simulatior(see [3] and [4]), (as op-
posed tostream simulatiorin MC), using a record ofV samples
(one symbol) plus one initialization variablg. The unbiased IS
P, estimator will be in this context

Nrg

B = NL g 1 (Y, U)W (Y, U];)

wherelg(-) is the error set indicator functiod] = [An; Vi; I]
andW ([Y,U];) = p (Y, Ul;) /p* ([Y, U);) is the likelihood ra-
tio between the unbiased simulation dengity) and the biased
onep*(-). Withp*(-), we generate the recorfls, U]* for a higher
error rate in order to minimize the estimator variance

1
ofs = N V 1 (y, w)W (y,u)p(y, u)dydu — P?

We will seek its minimization for a giveiV; s, not considering the
infeasible unconstrained solution fpt(-) which depends on the
unknownP. (see Lemma 1 in [5]).

In practice we will take advantage of the event simulation sys-
tem through the implementation of a conditional IS (CIS) scheme
in which the biasing of(-) will be conditioned on the symbol
under test and the variable. As I, derives from the decision
process at symbd — 1, there is always a discrete component of
I}, allowing conditioning.

In our analysis we seek the minimizationagf; using a stochas-
tic technique that consists in estimating the characteristics of the
optimal multimodal density. The major problem is to start this
search and keep it yielding useful results in the presence of a com-
plex unknown error set.

For the purpose of starting and guiding the minimization of
0?5 we use the results established in large deviations theory [5].

3. IMPORTANCE SAMPLING METHODOLOGY

3.1. Theideal error set derivation

Error set analysis becomes very difficult due to non-linear recur-
sion in equations (1) to (4) and the adopted decision algorithm.
Restricting our analysis to th¥ dimensional space of the random

mPhase increments denoted By (o # 0,0, = 0), we obtain the

simplified filter equations:

¢r = éF +sin (arg (zn) — <;§5> (5)
ufo= 0

$ni1 = b

Ei—&-l = Udzn

where we still find a degree of recursion that prevents an useful
analysis of the error set. However, if we assume an ideal situation
where the EKB filter operates in close tracking, we may replace

the sin (arg (zn) — 435) term in equation (5) by its argument,

obtaining ¢Z (¢n),,- With this approximation, and consid-
ering the binary cas@/ = 2, the decision metric for a generic
branch t in the receiver, when symha] is transmitted, is

2
)

N
1= 3 e (00 0 0) e
n=1

where
pre) 08 =0 41, n>1

TP(t) Iilj + ¢0.

L =
The receiver initializatiors, ) is in the present context the sum
of the random phasg, with an error terny; ; = 95\],) —9%) result-

ing from the(k — 1)** election of branchi given the transmitted
symbolea;. We now defineA y, = [d1,...,dn] and

D N
Et|s,1i|j = {AN ER" :mgs > Wt\s}

as the error set irD conditioned on transmission of symbeo}

and initialization errotl; ;. Although equationr,|, = ), defin-

ing the decision boundary can not be solved in general, we may
identify a denumerable s&A of infinite solutions satisfying

cos (61 — I;j;) = cos (eils + 61 — Ii|j)

t)s

cos 0, = CoS (en +6n), n=2,...,N



where
ils o -6l — (602, —6l2,), m=2,..N
€ 6 — o1

A finite set of solution® A, C A containing only2” elements
is obtained by the intersection

sy = DAN {AN € [-mm] x - x [-m, Woa,, } .

There are2™ disjoint quadrantg); € D defined wrt the center
of symmetryCa, . Ca, is derived from the points i®Az.
An example of the shape of such error set /r= 2 is shown
in Fig. 3 where the solution sé&A,, = {A,,, A, Agy, Agy }

is also represented. The error region exhibits a periodic structure

generally non-connected and extending all der

Figure 3: Ideal error set example. N=2,= 0, e1 = 2/3m,
e2=m/3

3.2. Large deviations aspects

If Eﬁs,li‘j was the true error set, we would be concerned with the

identification of the unique dominating pointe 8Eﬁs,,i‘j (see
[5]) for the optimal biasing of the Gaussian density

) Fyren).

of the independent phase incremetts € D. The dominating
point for Eﬁs, Iy does not exists, as can be inferred by the pe-
riodicity of the solution forr,, = m,. Besides, as we are not
dealing with the true error set, the use of the dominating point for

pan = (

density biasing (or any equivalent procedure based on the mini-

mum rate points as required in [5] - Theorem 2) would lead to a

referred theorem, and the symmetry exhibitecﬂﬁg,lilj , we syn-
thesize a biased simulation density consisting of a finite combina-
tion of Gaussian terms for the sampling of each one of the disjoint
subset¥g, = Eﬁs,li‘j NQ;. Then we perform a stochastic search
(based on the technique presented in [6]) of the shift terms for the
biased simulation density. We estimate

ni = E{An|AN € Eq;}

for each quadrant of interest considering that only a small number
of them contribute significantly for the total mass of the error prob-
ability in Efl’s,,l_lj. Only the most important shift terms, namely

{u1,...,un,, } from a total of2" are considered. We start the
guadrant-wise estimation of th¥,,, biasing solutiongu; in the
minimum rate point (see Definition 2 in [5]) of eadly,, C E,
which are found by a constrained quadrant-wise minimization of
the large deviationsate functionstarting in the solutions contained
in Ao,

3.3. Biaging for full range analysis

In the preceding section we dealt with biasinglin This refers to

IS simulation for the error floor assessment. As we are interested in
the full range analysis of the receiver} # 0, o, # 0), we define
the3N + 1 dimensional product spa@ x V x Z containing the
error setEPV!, This error set contains all the vectors of phase
incrementA y, noiseVy and initialization errod;; samples (we
are now modeling;j; as a continuous rv) that jointly produce an
error event. Estimation of density biasing terms as explained in
the previous subsection apply to this more general cagtatis
mutandis We start the optimization process in the product space
D x V x Z in the points{(u:;0;0), ..., (un,,;0;0)}.

4. SIMULATION ASPECTSAND RESULTS

4.1. Practical considerations

For M > 2, (the m-ary case), the error set conditioned on trans-
mission ofas and initialization errorl;; is the unionEfIi‘J_ =
utL, Eﬁs,,iu of generally non-disjoint error sets similar to the
or;ngerived above. This implies the introduction of another level
of multiple biasing with\/ — 1 terms - one bias term for each error
target symbol when; generation occurs.

For the error floor analysis (ideal cask); is a discrete rv
taking values on a finite set with unknow(Z;;), while for the
full range analysis, it becomes a continuous rv lacking character-
ization. Our tests showed that all tg; values have the same
impact onP, asl;j;. Although our simulators are prepared to re-
cursively estimate® (I;;), we simulated only;;; = 0 (as condi-
tioning event) withP (Ii|i) = 1. For the full range analysis we
usedI ~ AN (0,s7) instead ofl;; = 0, with s7 estimated in a
short preamble due to its dependence figirando; .

Our stopping criterion consists of using the traditional test on
the empirical precision (see [4] for instance) with the threshold set
to 10%. This corresponds to stopping the MC simulation after the

non-efficient simulation density. Regarding the statements in the occurrence of 100 independent errors.



4.2. Results
Results were obtained for orthogonal 4-FSK signaling wkth =

1/T, rads ! between adjacent symbols. The number of samples

per symbol was set t&V = 10. The simulation gain < - is
defined as the ratio between tMC simulation time, Ty, and
the correspondindS time, s, (vs = Tamce/T1s). Simulations
were stopped at an empirical precision value lower th.

o-1IS
x - MC
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/oy (rad-2)

Figure 4: BER estimates comparison (IS with MC) in the error

floor (Pb) versuss, .

af 143 | 154 16.7 | 18.2
Vs 10 |17 |24 |77

20.0
171

222 25
514 | 2142

Table 1: Simulation time gains in the error floor

In Fig. 4, simulation results are presented for the error floors,

with o comprised betweef.1 rad® (1/0; = 10) and0.03 rad®

(1/0% =33.3). Notice the coincidence between MC (mark x)
and IS (mark o)P, estimates. In Table 1, the simulation gains are

presented for the error floor MC/IS estimates. The valu&ef
for 15,, (052 = 25) is 13.7 hours for a PIII@450MHz computer.

10° ‘ ‘ ‘ ‘ ‘ ‘

o-1IS
x - MC

64=0.040 rad?

64=0.035 rad?
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Figure 5: P, versusE; /N, for two values oir;

techniques herein developed to higher order carrier phase dynam-
ics with simultaneous channel fading. We are currently working
toward that objective.
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