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ABSTRACT

This paper proposes animportance samplingmethodology for the
performance evaluation of a class of open-loop receivers with ran-
dom carrier phase tracking in additive white Gaussian noise chan-
nels. The receivers, consisting of a bank of extended Kalman-Bucy
filters and a decision algorithm based on the filters’ innovations
processes, perform symbol-by-symbol phase detection while kep-
ping track of the random phase process within the symbol interval.
We use a large deviations approach to start a stochastic importance
sampling optimization, both for the irreducible error floor and for
the general noisy operation of the receiver. Our simulations show a
practical coincidence with conventional Monte Carlo results, with
considerable simulation time gains.

1. INTRODUCTION

Digital phase detection and random carrier phase tracking inad-
ditive white Gaussian noise(AWGN) channels are problems con-
sidered in reference [1]. The receivers therein proposed consist of
a bank of ‘matched’ stochasticnonlinear filters(NLF) and a deci-
sion algorithm driven by the filters innovations processes. Model-
ing random carrier phase as Brownian motion, the NLF developed
in [1] represents the conditional densities asTikhonovfunctions
whose parameters are recursively propagated. The resulting NLF-
based receiver is then evaluated and compared with an alternative
structure where the estimation units areextended Kalman-Bucy fil-
ters (EKBF). This comparative evaluation has been performed by
conventional, time-consuming, Monte Carlo (MC) simulation. To
further test and refine the approach and the algorithms developed,
fast simulation tools have to be devised. This was the purpose of
the work reported in [2], dealing only with the NLF-based receiver.
With the same objective, this paper considers theimportance sam-
pling (IS) assessment of EKBF-based receiving structures.

The paper is organized as follows: In Section 2 we present the
adopted communications model and receiver and some IS consid-
erations relevant to the analysis. In section 3 we derive the ideal
error set and show how to take advantage of its characteristics to
support the IS optimization process. In section 4 we address some
implementation issues and present simulations results.
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2. PROBLEM FORMULATION

2.1. Model and receiver description

Consider the discrete base-band phase modulated received signal
consisting ofN samples perkth symbol interval,[kTs; (k + 1)Ts],
of durationTs:

sn = exp
h
j
�
�
(s)
n + �n

�i
+ vn; n = 1; : : : ; N

where�(s)n is the digital phase sequence associated to one of theM
symbols,�s 2 f�1; � � � ; �Mg, �n is a discrete Brownian motion
described by�n = �n�1 + Æn, whereÆn is a zero mean white
Gaussian sequence of variance�2�; vn is a complex zero mean
white Gaussian sequence of variance�2v. The purpose is to ana-
lyze a receiver consisting of a bank of EKBF driven by the same
input sn and a decision algorithm driven by the filters innovations
processes as sketched in Fig. 1. The detector decides, at the end
of the current symbol interval, according to a minimum Euclidean
metric computed from those innovations. Parameters of the se-
lected EKB filter are used as initial conditions to all EKB filters
for the next symbol interval (see [1] for details).

Matching to symbol�s is achieved by eliminating the modu-
lating sequence from the observation vector giving rise to observa-
tionsz(s)n . The EKBF equations, implementing density mean (�̂)
and variance (�) propagation, are, for the filtering (F) and predic-
tion (P) steps:
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Figure 1: Diagram of receiver with branch matched to�m

2.2. Modeling for importance sampling

Fig. 2 is a schematic representation of the above described com-
munication model, withAk = �s being the transmitted symbol
with �s 2 f�1; � � � ; �Mg, andYNk

andSNk
being the transmit-

ted and received signal vectors respectively containingN samples
each within symbol interval[kTs; (k + 1)Ts]. VNk

is the AWGN
vectorVNk

= [v1; : : : ;vN ]
k
, and�Nk

= [Æ1; : : : ; ÆN ] the phase
increment vector. In our IS simulation model, an additional vari-
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Figure 2: Model for the communication system

ableIk, normally ‘hidden’ under MC simulation, will be generated
to model the influence of estimatêAk�1 on Âk. This variable will
replace the internal decision feedback mechanism, allowing the
implementation of anevent simulation(see [3] and [4]), (as op-
posed tostream simulationin MC), using a record ofN samples
(one symbol) plus one initialization variableIk. The unbiased IS
Pe estimator will be in this context

P̂ �

e =
1

NIS

NISX
i=1

1E ([Y; U ]�i )W ([Y; U ]�i )

where1E(�) is the error set indicator function,U = [�N ;VN ; I]
andW ([Y; U ]�i ) = p ([Y; U ]�i ) =p

� ([Y; U ]�i ) is the likelihood ra-
tio between the unbiased simulation densityp(�) and the biased
onep�(�). With p�(�), we generate the records[Y; U ]� for a higher
error rate in order to minimize the estimator variance
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We will seek its minimization for a givenNIS , not considering the
infeasible unconstrained solution forp�(�) which depends on the
unknownPe (see Lemma 1 in [5]).

In practice we will take advantage of the event simulation sys-
tem through the implementation of a conditional IS (CIS) scheme
in which the biasing ofp(�) will be conditioned on the symbol
under test and the variableIk. As Ik derives from the decision
process at symbolk � 1, there is always a discrete component of
Ik allowing conditioning.

In our analysis we seek the minimization of�2IS using a stochas-
tic technique that consists in estimating the characteristics of the
optimal multimodal density. The major problem is to start this
search and keep it yielding useful results in the presence of a com-
plex unknown error set.

For the purpose of starting and guiding the minimization of
�2IS we use the results established in large deviations theory [5].

3. IMPORTANCE SAMPLING METHODOLOGY

3.1. The ideal error set derivation

Error set analysis becomes very difficult due to non-linear recur-
sion in equations (1) to (4) and the adopted decision algorithm.
Restricting our analysis to theN dimensional space of the random
phase increments denoted byD,

�
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�
, we obtain the

simplified filter equations:
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where we still find a degree of recursion that prevents an useful
analysis of the error set. However, if we assume an ideal situation
where the EKB filter operates in close tracking, we may replace

the sin
�
arg (zn)� �̂Pn

�
term in equation (5) by its argument,

obtaining�̂Fn = (�n)2�. With this approximation, and consid-
ering the binary caseM = 2, the decision metric for a generic
branch t in the receiver, when symbol�s is transmitted, is

�tjs =
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The receiver initialization̂�P (t)1 is in the present context the sum
of the random phase�0 with an error termIijj = �

(j)
N ��(i)N result-

ing from the(k � 1)th election of branchi given the transmitted
symbol�j . We now define�Nk

= [Æ1; : : : ; ÆN ] and

E
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o
as the error set inD conditioned on transmission of symbol�s
and initialization errorIijj . Although equation�sjs = �tjs defin-
ing the decision boundary can not be solved in general, we may
identify a denumerable set@4 of infinite solutions satisfying
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A finite set of solutions@42� � @4 containing only2N elements
is obtained by the intersection

@42� = @4\
n
�N 2 [��; �]� � � � � [��; �]C�N

o
:

There are2N disjoint quadrantsQi 2 D defined wrt the center
of symmetryC�N

. C�N
is derived from the points in@42�.

An example of the shape of such error set forN = 2 is shown
in Fig. 3 where the solution set@42� = f�s1 ;�s2 ;�s3 ;�s4g
is also represented. The error region exhibits a periodic structure
generally non-connected and extending all overD.
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Figure 3: Ideal error set example. N=2,I = 0, �1 = 2=3�,

�2 = �=3

3.2. Large deviations aspects

If ED
tjs;Iijj

was the true error set, we would be concerned with the

identification of the unique dominating point� 2 @EDtjs;Iijj (see
[5]) for the optimal biasing of the Gaussian density
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of the independent phase increments�N 2 D. The dominating
point for ED

tjs;Iijj
does not exists, as can be inferred by the pe-

riodicity of the solution for�sjs = �tjs. Besides, as we are not
dealing with the true error set, the use of the dominating point for
density biasing (or any equivalent procedure based on the mini-
mum rate points as required in [5] - Theorem 2) would lead to a
non-efficient simulation density. Regarding the statements in the

referred theorem, and the symmetry exhibited byEDtjs;Iijj , we syn-
thesize a biased simulation density consisting of a finite combina-
tion of Gaussian terms for the sampling of each one of the disjoint
subsetsEQi

= ED
tjs;Iijj

\Qi. Then we perform a stochastic search
(based on the technique presented in [6]) of the shift terms for the
biased simulation density. We estimate

�i = E f�N j�N 2 EQi
g

for each quadrant of interest considering that only a small number
of them contribute significantly for the total mass of the error prob-
ability in ED

tjs;Iijj
. Only the most important shift terms, namely

f�1; : : : ; �Nmg from a total of2N are considered. We start the
quadrant-wise estimation of theNm biasing solutions�i in the
minimum rate point (see Definition 2 in [5]) of eachEQi

� E,
which are found by a constrained quadrant-wise minimization of
the large deviationsrate functionstarting in the solutions contained
in @�2� .

3.3. Biasing for full range analysis

In the preceding section we dealt with biasing inD. This refers to
IS simulation for the error floor assessment. As we are interested in
the full range analysis of the receiver

�
�2� 6= 0; �2v 6= 0

�
, we define

the3N + 1 dimensional product spaceD � V � I containing the
error setEDV I . This error set contains all the vectors of phase
increment�N , noiseVN and initialization errorIijj samples (we
are now modelingIijj as a continuous rv) that jointly produce an
error event. Estimation of density biasing terms as explained in
the previous subsection apply to this more general casemutatis
mutandis. We start the optimization process in the product space
D � V � I in the pointsf(�i;0; 0) ; : : : ; (�Nm ;0; 0)g.

4. SIMULATION ASPECTS AND RESULTS

4.1. Practical considerations

ForM > 2, (the m-ary case), the error set conditioned on trans-
mission of�s and initialization errorIijj is the unionED

s;Ii;j
=

[Mt=1
t6=s

ED
tjs;Iijj

of generally non-disjoint error sets similar to the

one derived above. This implies the introduction of another level
of multiple biasing withM�1 terms - one bias term for each error
target symbol when�s generation occurs.

For the error floor analysis (ideal case)Iijj is a discrete rv
taking values on a finite set with unknownP

�
Iijj
�
, while for the

full range analysis, it becomes a continuous rv lacking character-
ization. Our tests showed that all theIijj values have the same
impact onP̂e asIiji. Although our simulators are prepared to re-
cursively estimateP

�
Iijj
�
, we simulated onlyIiji = 0 (as condi-

tioning event) withP
�
Iiji
�
= 1. For the full range analysis we

usedI � N
�
0; s2I

�
instead ofIiji = 0, with s2I estimated in a

short preamble due to its dependence from�2� and�2v .
Our stopping criterion consists of using the traditional test on

the empirical precision (see [4] for instance) with the threshold set
to 10%. This corresponds to stopping the MC simulation after the
occurrence of 100 independent errors.



4.2. Results

Results were obtained for orthogonal 4-FSK signaling with�f =
1=Ts rads�1 between adjacent symbols. The number of samples
per symbol was set toN = 10. The simulation gain -
s - is
defined as the ratio between theMC simulation time,TMC , and
the correspondingIS time, TIS, (
s = TMC=TIS). Simulations
were stopped at an empirical precision value lower than10%.
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Figure 4: BER estimates comparison (IS with MC) in the error
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Table 1: Simulation time gains in the error floor

In Fig. 4, simulation results are presented for the error floors,
with �2� comprised between0:1 rad2

�
1=�2� = 10

�
and0:03 rad2�

1=�2� = 33:3
�
. Notice the coincidence between MC (mark x)

and IS (mark o)P̂b estimates. In Table 1, the simulation gains are
presented for the error floor MC/IS estimates. The value ofTMC

for P̂b
�
��2� = 25

�
is 13:7 hours for a PIII@450MHz computer.

The IS results in Fig. 5, show the receiver performance for a
wide range of operating conditions (including the error floor). MC
values forP̂b are also presented for�2� = 0:04rad2. In this curve,
the observed simulation time gains(Eb=N0; 
s) were (15dB;14),
(18dB;52), (21dB;142), (24dB;226), (27dB;309) and (30dB;544).
For 12dB, the multimodal stochastic optimization did not achieve
convergence. For this estimateTMC ' 16min.

Points on the lower curve
�
�2� = 0:035rad2

�
took12 minutes

while the correspondingMC points would take about11:7 days.

5. CONCLUDING REMARKS

In this study we have assumed that the random carrier phase is a
Brownian motion. It would be important to extend the simulation
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Figure 5:P̂b versusEb=N0 for two values of�2�

techniques herein developed to higher order carrier phase dynam-
ics with simultaneous channel fading. We are currently working
toward that objective.
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