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ABSTRACT

In this paper, we present an eigenspace-based approach toward
prior density selection for the MAPLR framework. The
proposed eigenspace-based MAPLR approach was developed
by introducing a priori knowledge analysis on the training
speakers via probabilistic principal component analysis (PPCA),
so as to construct an eigenspace for speaker-specific full
regression matrices as well as to derive a set of bases called
eigen-matrices. The priors of MAPLR transformations for each
outside speaker are then chosen in the space spanned by the
first K eigen-matrices. By incorporating the PPCA model into
the MAPLR scheme, the number of free parameters in
choosing the priors can be effectively reduced, while the
underlying structure of the acoustic space as well as the precise
modeling of the inter-dimensional correlation among the model
parameters can be well preserved. Both supervised and
unsupervised adaptation experiments showed that the proposed
approach significantly outperformed the conventiona MLLR
approach using either diagonal or full regression matrices.

1. INTRODUCTION

Various speaker adaptation techniques have been extensively
studied in recent years to tackle the problem of speaker
mismatch between the training set and the testing set of the
speech recognition systems. According to [1], the popular
model-based adaptation techniques can be classified into three
families: the maximum a posteriori (MAP) adaptation family,
the transformation-based adaptation family including maximum
likelihood linear regression (MLLR) [2], and afamily related to
speaker clustering methods such as the eigenvoice approach [3].
In this paper, we will focus on the adaptation of mean
parameters of the Gaussian mixture components in continuous
density HMMs.

Among these techniques, MLLR approach has been
widely used for rapid adaptation and unsupervised adaptation.
In MLLR, the speaker independent (SI) mean parameters are
adjusted according to one or more shared linear transformations.
The transformation parameter tying mechanism based on the
design of regression class tree can adequately adjust the level
of regression matrix parameter sharing according to the amount
and content of data and, thus, can effectively improve the
robustness of parameter estimation against the sparse data
problem.

There are several drawbacks of the conventional MLLR
approach. In MLLR for mean adaptation, it is known that using
full regression matrices can model the inter-dimensional
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correlation among the mean parameters more precisely and,
thus, can provide superior description of speaker characteristics
over the use of diagonal regression matrices [2]. However, the
large number of parameters makes robust estimation of full
regression matrices very difficult, especially when the amount
of adaptation data availableis strictly limited. This problem can
be alleviated by specifying a prior distribution for each of the
regression matrices, and estimating the transformations in
maximum a posteriori (MAP) sense. This leads to the
maximum a posteriori linear regresson (MAPLR) formulation
[4]. Provided that good priors are chosen, the estimation of the
regression matrices could be more robust.

On the other hand, it is believed that the a priori
knowledge about the inter-speaker variation can be explored by
analyzing the training corpus. The eigenvoice approach [4]
introduced for fast speaker adaptation is one of the examples
that realize such concept. The eigenvoice technique finds the
new speaker model as the linear combination of a set of
canonical speaker models caled eigenvoices. These
eigenvoices, which characterize the a priori information of the
training speakers, are constructed by performing principa
component analysis (PCA) [10] on a set of speaker dependent
(SD) model parameters. Recently, the eigenvoice approach was
further extended via the PPCA model [6] and incorporated into
the Bayesian adaptation framework [7].

In the transformation-based adaptation methods, each set
of transformations for a specific speaker represents a mapping
from the SI models to the SD models for that speaker and, thus,
can be considered as a quantitative description of the speaker
characteristics. It is clear that the a priori information can also
be obtained by analyzing the transformations for the training
speakers. In our previous work [8], the eigenspace of the
speaker-specific full regression matrices was utilized to
improve the conventional full-matrix MLLR when the amount
of adaptation data was strictly limited. To alleviate the problem
of performance saturation as the amount of adaptation data
increased, the eigenspace-based transformations were used as a
priori for a smoothing procedure on the conventional MLLR
transformations instead of used directly for adaptation.

In this paper, we will further extend such idea to the
formulation of eigenspace-based MAPLR estimation, and
propose a framework for priors choosing by employing the
PPCA model. The rest of this paper is organized as follows.
The eigenspace-based transformations and the PPCA model are
introduced in Sections 2 and 3 respectively. The MAPLR
framework is presented in Section 4. Finally some experimental
results for both supervised and unsupervised adaptation tested
on a continuous Mandarin Chinese telephone speech database
are discussed in Section 5, and concluding remarks are made in
Section 6.



2. EIGENSPACE-BASED TRANSFORMATION
21.MLLR

MLLR finds the optimal affine transformations with respect to
the mixture components in the SI model by maximizing the
likelihood of adaptation data. SI Gaussian mean parameters are
clustered into C regression classes, and each regression class ¢
is associated with an n ~ (n+1) regression matrix W, where n
is the dimensionality of the feature vector. Let the mean vector
Ma= [M(1),..., My(N)]" of mixture component m be one of the
M. mean vectors in the regression class ¢, then the adapted
mean vector 1y, can be derived as

M, =W.m, =A.m, +b,, m=1..,M;c=1..C, (1

where rﬁn=[],m“(l),u-,mn(n)]T is the (n+1)-dimensional

augmented mean vector. A, and b, are an n © n matrix and an
n-dimensional vector, respectively, while W, =[b, Ag].

2.2. Eigenspace-based MLLR

Let {m.}, -, g be a set of supervectors, each of which

consists of the c-th full regression matrix parameters for one of

the R training speakers. To be more specific, m, =

[(Wr,c(l))Tv---v(Wr,c(l))Tv---v(Wr,c(n+1))T]T| Where Wr,c(l) represents
the I-th column of the c-th regression matrix for the r-th speaker.
The eigenspace of the regression matrices is found as the linear

subspace spanned by the K-dominant eigenvectors {e;¢,...,ex
of the correlation matrix P, where

— = = =T
Pc _[ml,c - mc*"'lmR,c - mc][ml,c - mc*'"ﬁmR,c - mc] (2)

and ™, represents the sample mean. The bases {e;,...,6¢q}
are called eigen-matrices, since they represent the principal
components of the transformation space. Let M. = [ey¢,...,&,
then the supervector of the c-th full regression matrix for a new
speaker, denoted asm .., can be obtained by

m, =M x+m,, (©)

where X = [Xg,...,Xk] represents the coordinate vector for the
new speaker and can be estimated by maximizing the
likelihood of the adaptation data O as follows:

x =argmax[log p(O [M x + )] . 4

The concept of employing the eigenspace of the full
regression matrices for adaptation significantly reduced the
number of free parameters and, thus, could improve the
robustness of transformation estimation when only very limited
adaptation data was available. However, we aso found that
adaptation performance of directly using the eigenspace-based
regression matrices tended to saturate as the amount of
adaptation data increased. Nevertheless, the eigenspace-based
transformations provide a convenient way to determine the
priorsin the MAPLR framework, as will be discussed later on.

3. PROBABILISTIC PRINCIPAL COMPONENT
ANALYSIS (PPCA)

In this section we briefly introduce the formulation of the
PPCA model [6]. Lety = [yi, ...,yp]" be an observation vector
of dimension D. In the PPCA model, y is assumed to be related

to the latent variable x = [xy,... ,x«]" of dimension K by
y=Mx+y+e, ©)

where Yy isthe mean vector of y, M isaD x K matrix (K<<D)
representing the principal subspace of the observation data, and
eis a normaly distributed noise independent of x.
Conventionally, x is defined to be modeled by aK-dimensional
multivariate Gaussian distribution N(O,l ), and the noise e is
also modeled by a multivariate Gaussian N(0,5%1p), where I«
and Ip arethe K x K and D x D identity matrices respectively.
Based on the above assumptions, the conditional density of y
given a specific value of x can be derived as

fy b =(2ps7) > exp] - ooy - Mix- 7||2§. ©

Given an observation sequence Y ={yu,...,y1}, the PPCA
model estimates the hidden variable sequence X = {Xy,...,X7}
and finds the optimal parameter set | ={M,y,s 2} according
to the maximum likelihood (ML) criterion. However, because
the variable sequence X is considered to be hidden, the ML
estimate of the parameter set cannot be derived as a closed
form solution. Therefore, the expectation maximization (EM)
algorithm [9] is applied to iteratively update the model
parameters. Let | ™ be the parameter values obtained in the n-th
iteration, then the new estimates | ™Y are obtained according to

| (D :argmaxE[Iogp(Y,XH )|Y,I(")]. )
|

The re-estimation formulae for the parameter values can be
derived asfollows:

oy _ 14 ( () (n)])
Yy ==aly - MVEX Y.l (®
T
+ i I —(n+ U
M =13 [y, - 70T Iy (")Lé
I t=1
-1
id U
¥a E[XtXtT [y (n)]'
i o
s 2(n*D) _i 4 {" _ o(n+) 2 - 2EWT | ] (M ]M T.(n+1)
DT a ye- Yy t 1Yt
t=1

>{yt _ 7(n+1))+tr(E[XtX;l' |y“| (n) ]M T,(n+1)M (n+1)} (10)
where
Elx, Iyl @1=5, MO, - yO) gy

EDxx( 1yl @1=s 208+ Elx 1y VIEX] 1y 1]
(12

with S, =s21«+M ™M, and tr denoting the trace of a matrix. It is

shown in [9] that for the global maximum of the likelihood the

ML estimate My, contains the principa eigenvectors of the
correlation matrix of the observation data.

4. EIGENSPACE-BASED MAPLR FRAMEWORK

In this section we discuss the formulation of the proposed
eigenspace-based MAPLR framework. Let O = {oy,...,01} bea



sequence of n-dimensional feature vectors generated by a
CDHMM system with the parameter set L. The observation pdf

p(o, | j) for statej is assumed to be a mixture of Gaussians.
M
p(otlj):awj,kN(ot Imj,kxsj,k)r (13)
k=1

where M is the mixture number in state j, w; is the weight of
the k-th mixture, and N(-) represents the conventional
n-dimensional Gaussian distribution.

In this paper, only the adaptation of Gaussian mean
vectors is considered. The Gaussian means are divided into C
digoint clusters, {I ¢} .= 1,...c. Each cluster ¢ is associated with a
full regression matrix W, and the parameter values in | ; are
updated according to (1). If W, whose elements are considered
to be random, is to be estimated from the likelihood
function f (O |W,I ) and its prior density g(W, |Q,) , then the

MAP estimateis defined as

W, =argmax f(O|W,l )g(W|Q,) .  (14)
w

Here we assume that each supervector mthat augments
the columns of W, is generated by a PPCA model given by (5),
which has a hidden variable x. with a prior parameter set
g, ={M ., m_s % . Such assumption on the choice of prior
density for W, in fact, makes a special case of the elliptically
symmetric matrix variate priors [5]. Therefore, as expected, a
closed form solution for W, can be derived. We apply the EM
algorithm to iteratively obtain the optimal estimate of f ={m_} .
Assume that ™ ={m{™} be the current fit, then the object
auxiliary function to be maximized is given as follows:

R(f,f™)= E[log p(O,S,L|L,f)|O,f <">]

15
+E[|ogp(f,x|q)|f<“>] ()

where S and L represent the state sequence and mixture
sequence respectively. From (15) it can be derived that

R(f,F™M)=84 & p(S,L|O,L,f)logp(O,S,L|L,f)
(16)

S L
+Eflogfp(t 1%, pe}1f ]

Based on (6), it can be found that the relevant object function is
given as

R(f,f(M)=

I g’\g° é 1 ~ \Ta-1 — U
aaas®g S0 - Wem) S;(o - W)y (17)
t=1c=1k=1 8 2 H

g é 1 — 12 ()U
+?:_1Eg- ?"mC - Mx, - m[ Im{" i

where g, (t) represents the mixture occupation probability of

the k-th Gaussian in the regression class c at time t given the
observation sequence O, and M, is the number of mixture
components in class c. Since the supervector m, is not in matrix
form, we differentiate the object function with respect to each
column of W, and setting the result equal to zero vector for

each c. Thisleadsto

c

_ ~ 1 ;
g (O (1) S W M, +S—2wc“’

Qo
T Qo=

i
-

c
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where W represents the j-th column of W,, M; denotes the
sub-matrix associated to the W eements, and

Ef. Im®]=(s 2 +MIM ) MIm® - F,).  (19)

By observing (18), the equation in matrix form can be derived
as

I '\g‘ -1 ~ ~T 1
a a g ®S,wW,mm, +S_2Wc
t=1k=1 (20)
;l' '\4" -1 ~T 1
=a a &®Syom +—W; prca
t=1k=1 S
Itisfound that (20) can be rewritten as
e 1 1
a VWD, +S_2Wc =Z +S_2Wc, PPCA (21
k=1

where V) =8 | (S, ,and D, =M} . Assume that the
diagonal covariance prevailing conditions is used and let
G = éﬁ”;lvk (i,i)D, , we have the re-estimation formula for
We ) » Which isthei-th row of W, , as

-1

1 [oJ: <) 1 o]
We =86, +—=1,,2 &, +—w T (22)
c.(i) g TSz n+1g g(u) S? c,PPCA,(l)g

where z and Weppca gy are the i-th row of Z and W¢ppca
respectively. Compared to the standard MLLR re-estimation
formula [2], (22) shows that, though not explicitly, the
proposed MAPLR approach provides a unified framework that
incorporates the eigenspace-based transformations W ppca into
the conventiona MLLR estimation procedure. When the
amount of adaptation data is limited, the eigenspace-based
transformations dominate the computation of W, and alow
robust estimation to be made. On the other hand, as the amount
of adaptation increases, the MAPLR solution simply converge
to the standard MLLR regression matrices and, thus, can utilize
the large amount of data more efficiently.

5. EXPERIMENTAL RESULTS

The proposed approach was evaluated on a continuous
Mandarin Chinese telephone speech database provided by
Telecommunication Laboratories, Taiwan, Republic of China
The database consists of 59 female and 60 male speakers, each
produced 120 sentences such that a total of 14,280 sentences
(5.84 hrs) are included. The speech was sampled at 8 kHz, then
parameterized into 12 MFCCs along with log-energy, and the
first and second order time derivatives of these parameters,
yielding a 39-dimensional feature vector. Cepstra mean
subtraction (CMS) was performed on a per-speaker basis to
remove the channel effect of the features.



Baseline gender independent (Gl) SI model was trained
with the training set which contains 54 female and 55 male
speakers. The total number of Gaussian mixture components in
the SI model is approximately 2370. For each testing speaker,
the first 60 sentences were taken as the adaptation data while
the rest were for recognition. It should be noted that each
adaptation utterance is of an average length of 1.37 seconds and
consists of 4.6 syllables on average and, therefore, may be
regarded as a word. The recognizer performed only free
syllable decoding without any grammar constraints. The Sl
syllable recognition accuracy is 55.81%, averaged over 5
female and 5 male testing speakers.

Both types of conventional MLLR approaches using full
and diagonal regression matrices were conducted as baseline
experiments. The full matrix MLLR was based on a global
regression class, while the diagonal matrix MLLR utilized a
regression class tree for dynamic regression class generating.
As for the proposed MAPLR approach, instead of estimating
the PPCA model parameters, the maximum likelihood
eigen-decomposition (MLED) based transformations obtained
by (3) and (4) were directly employed as the approximations of
the prior parameters to simplify the off-line processing. This
approximation alows us to conveniently adopt the framework
proposed in our previous work [8], except that the smoothing
procedure in [8] is now merged into the re-estimation process
of the MAPLR transformations. In the training phase, for each
training speaker all the 120 utterances were used to estimate a
speaker-specific global full regression matrix and, then, PCA
was performed to extract 109 bases. During adaptation, 50
eigen-transformations were selected to construct the principal
subspace, and the PPCA model parameter s was determined
empiricaly.

We performed a series of batch adaptation experiments,
conducted in both supervised and unsupervised modes, with
various numbers of sentences extracted from the adaptation
data. The results for supervised and unsupervised adaptation
are summarized in Table 1 and 2 respectively, where “Eigen”
denotes the proposed eigenspace-based MAPLR approach. It
can be observed that when the amount of adaptation data was
strictly limited (3 to 10 sentences), full matrix MLLR gave very
poor results, which implied the underlying structure of the
acoustic space was severely corrupted by the poorly estimated
full regression matrix. On the other hand, the proposed
eigenspace-based MAPLR approach not only significantly
improved the recognition accuracy, but also outperformed the
diagonal matrix MLLR. This showed the advantage of the
proposed approach: utilizing the eigenspace of full regression
matrices to choose the priors for the MAPLR transformation
not only significantly reduced the number of free parameters so
that robust estimation could be easly made, but aso
maintained the precise modeling of the inter-dimensional
correlation among the mean parameters as well as the acoustic
space structure. It can also be seen that as the amount of
adaptation data increased, the performance of the proposed
approach converged to that of the conventional full-matrix
MLLR. Furthermore, it can be observed from Table 2 that the
constraints posed by the eigenspace made the proposed
approach more robust to the recognition error, and led to the
superior unsupervised adaptation performance over the
conventional MLLR approaches.

Sent. 3 5 7 10 15 30 60
Diag | 56.18 | 56.41 | 56.62 | 57.12 | 57.26 | 59.17 | 59.98
Full | 585 | 21.81 | 38.15 | 48.02 | 55.00 | 58.67 | 61.41

Eigen | 58.16 | 57.95 | 58.41 | 59.41 | 59.29 | 60.24 | 61.25

Table 1: Supervised batch adaptation performance in syllable
accuracy (%). The syllable accuracy is55.81% for the Sl case.

Sent. 3 5 7 10 15 30 60
Diag | 55.69 | 56.06 | 55.74 | 56.18 | 56.55 | 57.84 | 58.30
Full | 5.16 | 25.80 | 39.00 | 48.43 | 53.48 | 57.12 | 58.92

Eigen | 57.19 | 57.08 | 57.68 | 58.34 | 58.16 | 58.18 | 59.22
Table 2: Unsupervised batch adaptation performance.

6. CONCLUSION

In this paper, an eigenspace-based MAPLR approach was
proposed. We introduced a priori knowledge anaysis on
training speakers via PPCA so as to construct an eigenspace in
which the prior parameters of the MAPLR transformations can
be chosen. The PPCA model was further incorporated into the
MAPLR formulation and led to a unified framework for
transformation estimation. Significant improvements in batch
adaptation showed the effectiveness of the proposed approach
for rapid model adaptation.
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