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CitéEL Ghazala,2083Ariana- Tunisia

e-mail: elasmi@supcom.rnu.tn

MamadouMBOUP
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ABSTRACT
Weattacktheproblemof perfectequalizabilityof multi-userchan-
nels, in which the usuallinear time-invariant assumptionis dis-
missed. In the linear, time-invariant case,condition for perfect
equalizabilityis plain andexpressedin termsof thecolumnrank
of the channel’s transfermatrix. Using the module-theoreticap-
proachdeveloppedby Fliess, in which the transfermatrix of a
time-varying channelaswell asthe rank of a non-linearchannel
areclearlydefined,weshow how theconditionobtainedin thelin-
ear time-invariantcasenaturallyextendsto the time-varying and
thenon-linearcases.

1. INTR ODUCTION

With the advent of multi-accesdigital communicationsystems,
increasingattentionis devoted to the multi-userchannelsequal-
ization problem,especiallyin blind case. When the channelis
left invertible, (blind) equalizationis, conceptually, a well posed
problem as it reducesto find the channelleft inverseor a sta-
ble and causalapproximationof it. A numberof candidateap-
proachesis now available,includingbothtrainingsequence,blind
andsemi-blindversions(see[1] andreferencestherein).Thebulk
of theseapproachesrelieson a linear time-invariantchannelset-
ting in which left invertibility is a genericpropertyassoonasthe
numberof outputobservationsis high enough. Clearly, a multi-
input multi-output linear time-invariantchanneladmitsa left in-
versewhenever the generic rank of its transfermatrix equalsthe
numberof inputs.

However, severalreal-timecommunicationchannelsaretime-
varyingand/ornonlinear[2], [3]. A well known exampleof anon-
linearchannelis givenby adigital communicationsatellitesystem
wherenonlineardistorsionsareintroducedby the down-link am-
plifiers. Nontheless,little attentionhasbeendevotedto theequal-
izationof suchchannels,espaciallyin themultichannelcase.The
main reasonfor this gap, probably, stemsfrom the fact that the
classicalconceptof “transfermatrix” ceasesto make sensein the
time-varyingcaseand,evenmore,in thenonlinearcasewherethe
notionof matrix itself is undefined.

Therefore,concerningtheequalizationof suchmultichannels,
onecannot dodgethe questionof what the term “inverse”refers
to.

Themodule-theoreticapproachdeveloppedby Fliess[4], [5],
[6] givessatisfyinganswersto thisquestion.

In alineartime-varyingsituation,thereexistsseveralapproaches
[7], [8], [5], that provide a clear-cut interpretationof the trans-

fer matrix, althoughthe � -transformdoesnot have a straightfor-
ward definition. Among theseapproaches,the module-theoretic
oneyieldsanalgebraicframework in which time-varyingtransfer
matricesactverynaturally.

For thenonlinearcontext, themodule-theoreticapproachpro-
videsa niceinterpretationof therankof a nonlinearsystem.This
interpretationmakesit possibleto extendthelinearcaseresultsto
the nonlinearcase,in a very naturalway. Thephilosophyof this
approachis to transformthenonlinearsysteminto an“equivalent”
(in asenseto beclarifiedlater)time-varyingbut linearsystemand
thento applytheknown resultsof thelinearcase.

In order to fix the notations,we begin with the linear time-
invariant casein section2. The linear time-varying caseis in-
vestigatedin section3. The mathematicaltools which permit to
handlethe time-invariant nonlinearsettingare presentedin sec-
tion 4, alongwith a necessaryandsufficient conditionfor a given
nonlinearmultichannelto be left invertible. Section5 is devoted
to anillustrative exampleof a single-inputtwo-outputdigital non-
linearcommunicationsystem.Finally, we give in section6 some
concludingremarks.

2. LINEAR TIME-INV ARIANT EQUALIZABILITY

Let
�

bea givenfield (e.g.
�����

or � ) andconsiderthe linear
discrete-time,time-invariant � -input � -outputtransmissionchan-
nel system	 depictedin figure 1 with input 
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Fig. 1. Input-outputMultichannelsystem
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wherewe interpret � astheunit delayoperator:� 
7��
�� � 
7��
98;:<�*=
Thechanneltransfermatrix is assumedstable,causalandfinite in
duration,say > , sothatwe maywrite2 � � � �@?ABDCFE 2 B � B G 2 B � � �IH � G with J 2 B J7K;L6MON�= (2)

In all the sequel,we assumethat the numberof observationsex-
ceedsthenumberof inputs: �QP;� . Wealsoassume,for technical
reasons,that �R�S>UTV:<��PW� . Clearly, themulti-userchannel

2 � � �
is perfectlyequalizablewhenit admitsa stableandcausalleft in-
verse.Left invertibility now occurswhen XZY5� 2 � � �[� � � . When
the systemis time-varying or nonlinear, the situationis however
moreinvolved.
We now proceedto translatethe left invertibility condition in a
module-theoreticframework [4], [6] whichwill allow usto handle
boththetime-varyingandthenon-linearcasesin a naturalway .
To begin, let

�]\ �_^ be the ring of polynomialsin the variable � ,
with coefficientsin

�
anddenoteby

\ �`��
�� ^ the
�]\ �_^ -left module

generatedby ����
�� � � �O� ��
�� G =a=D= G � � ��
��[� . Eachelementof this
moduleis of the form b3cId c � � � � c ��
�� whereeach d c � � � is some
polynomial in

�]\ �_^ . Recall that a family e<f � G =a=D= G f ��g of ele-
mentsof

\ �`��
�� ^ is saidto be
�]\ �_^ -linearly independentif for any

set e_d c � � � g �c C � of � polynomialsin
�]\ �_^ , we haveA c d c � � �hf c �3ij��k d c � � � �3imlon =

Therankof
\ �`��
�� ^ , subsequentlydenotedby XZY \ ����
�� ^ , is defined

asthecardinalof any maximum(w.r.t inclusion)
�]\ �_^ -linearly in-

dependentfamily of
\ ����
�� ^ . Thenwe have

Proposition1 ([4], [6]). XZY \ ����
�� ^ � XZY5� 2 � � �[�*=
In the module-theoreticframework, the left invertibility con-

dition for thechannel
2 � � � thusreadsas XZY \ �`��
�� ^ � � . Classi-

cally, thecomputationof XZY5� 2 � � �[� involvesthegeneralized
Sylvestermatrix p#q1� 2 � asin !" ����
��
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For r largeenough,say r}| � - ?�~ � 0�� �� � � , wehaveXZY��Sp q � 2 �[���;��rmT��R�S>�T�:<�*=
It is well known that perfectblind equalizationis possiblewhenp#q1� 2 � is full colunmrank andmoreover, this is achievable us-
ing only thesecond-orderstatisticsof theoutput[9]. On theother
hand,note that one may then always find two integer constants� and � such that XZY��SpOq1� 2 �[� � � r]T�� , with � ��� . The
module-theoreticapproachprovides very meaningfulinterpreta-
tionsto theseconstants,in termsof invertibility. To seethis let us
introducethefollowing notations.For r�| i , define� q�����[�o� Mo�`e � � ��
�� G =a=a= G ��� ��
�� G =a=x= G � � ��
�89r1� G =D=a= G ��� ��
�89r1� g

wherethe subscript
�

in “
�[�o� M � ” meansthat the coefficientsof

the linearcombinationsaretakenin
�

, andset
� q��� e i g for r]Ki

. Thus � � q<� qx�_� is a nondecreasingsequenceof
�

-vectorspaces
in
\ � ^ . Thesequenceis clearly (i) exhaustive: � qa�_� � q ��\ � ^ and

(ii) discrete:
� q � e i g for r smallenough.

Definition 1. � � qa� qx�_� is calleda filtrationof theinput-outputsys-
temwith transfermatrix

2 � � � .
For suchafiltration, thereexistsadegreeone � \ r ^ -polynomial

(calledHilbert polynomial)of theform �]��rs� � � r�T�� suchthat
for r��U� largeenough,we have �#L6� � q � �]��rs� . Moreover, we
have the

Proposition2 ([10]). � � XZY \ ����
�� ^ � XZY5� 2 � � �[� � �#L6� � q ~ � 8�OL6� � q .
The � -input– � -outputsystemwith transfermatrix

2 � � � is there-
fore left invertibleif andonly if � � � .

Remark 1. Notethat for r sufficiently large, therankof thegen-
eralizedSylvestermatrix p q � 2 � canbeexpressedasXZY��SpOq1� 2 �[� � � r�T�� � � r�T���T �A c C ��� c
where the � c ’s are theKronecker indicesof therational subspace
spannedby thecolumnsof

2 � � � . Therefore, if � � � TWb �c C � � c
is lessthan �¡T��Q> , thenthis would meanthat at leastoneof
the conditions: the transfermatrix

2 � � � (i) is irreducible; (ii)
is column-reduced,(iii) hasall its columndegreesequalto > , is
violated(see[9] andreferencestherein).

3. LINEAR TIME-V ARYING EQUALIZA TION

The system	 is now consideredto be time-varying. As in the
time-invariantcase,theconditionfor theleft invertibility of 	 will
still be given in termsof its rank. This rank turnsout to be de-
fined as the rank of the systemtransfermatrix. Indeed,though
the � -transformdoesnot have a straightforward extention to the
non-constantcase,thereareseveral approaches[7], [8], [5], that
provide a clear-cut interpretationof thetransfermatrix for a time-
varying system. Among theseapproaches,the module-theoretic
oneyieldsanalgebraicframework in which time-varyingtransfer
matricesactverynaturally.

Following this approach,thediscrete-time,time-varyingsys-
tem 	 is definedover a groundfield

�
, equippedwith the unit-

delayoperator� . � is thuscalleda differencefield. Notethatit is
no longera field of constants:theelementsof

�
do not commute

with theoperator� . Henceforth,we will usethenotation
� ��
�� to

make this dependenceexplicit.
Thesystemtransfermatrix is still representedasin (2), by2 ��
 G � � � ?ABDCFE 2 B ��
�� � B G (3)

wherethe coefficient matrices
2 B ��
��¢� � ��
�� �£H � arenow de-

pendentof the time index 
 . As for the time-invariant case,we
define

\ ����
�� ^ to be the
� ��
�� \ �_^ -left modulegeneratedby ����
�� .

Proposition1 thennaturallyextendsto

Proposition3 ([5]). XZY \ ����
�� ^ � XZY�� 2 ��
 G � �[�*=



Notethatthedefinitionof � � q �hqa�_� asthefiltration of
� ��
�� \ �_^ -

left module
\ ����
�� ^ associatedto thetime-varyinginput-outputsys-

tem 	 is still valid andthis filtration is suchthat, for r��U� large
enough,we have

Proposition4.

1. �OL6� � q � � rmTU� with;

2. � � XZY \ ����
�� ^ � �#L6� � q ~ � 8U�OL6� � q .
Hence

Proposition5. Thediscrete-time, time-varying� -input � -output
system	 with output ����
�� is left invertibleif andonly if� � XZY \ ����
�� ^ � �R=

4. NONLINEAR EQUALIZA TION

We now investigatethesituationwherethesystem	 is nonlinear.
This situationis much more involved than its linear counterpart
mainly becauseof the lack of a simplesystemdescriptor, as for
exampletheconceptof “transfermatrix”. Fortunately, themodule-
theoreticapproachprovidesa nice intrepretationof the rank of a
nonlinearsystem.This interpretationmakesit possibleto extend
to thenonlinearcase,theresultsof thelinearcase,in averynatural
way. Thephilosophyof thisapproachis to transformthenonlinear
systeminto an“equivalent” (in asenseto beclarifiedbelow) time-
varyingbut linearsystemandthentoapplytheknown resultsof the
linearcase.Thisextentionrequiressomeelaboratedmathematical
toolsthatwe introducehereafter.

Let
�

still denotesa groundfield i.e.
���¤�

or � . When
�

is equippedwith thedelayoperator, it becomesa differencefield.
Let ¥ � e�f � G =a=x= G fa¦ g be a collectionof elementson which acts
theoperator� . Definefrom

�
and ¥ thesetof all polynomials�]�Sf � G =a=a= G fa¦ G � f � G =a=a= G � fD¦ G �s§ f � G =a=x= G �s§ fD¦��

in ¨©��ªQT3:<� variableswith coefficientsin
�

anddenotethis setas�]\ ¥ ^ . One may checkthat
�]\ ¥ ^ is a differencering with unity,

finitely generatedby ¥ . Thecorrespondingquotientfield is a field
of difference,subsequentlydenotedas

� ��¥«� . Let then
� ������
��[� be

the field of differenceobtainedasabove, from thesystemoutput�`��
�� .
Example1. If

�
is thefield of real numbers, then�1¬*�#­� ��
���T;® �s� � ��
�� �1¯ ��
���T�°�s� ¬ ��
���T;± � ¬ � ¬¬ ��
�� t �s� ¯­ ��
��FT³² �O� ��
��

is anelementof thefieldof difference
� ������
��[� .

Definition 2. A differencefieldextensioń̀ µ_¶ is givenbytwodif-
ferencefields ´ and ¶ , equippedwith thesamedifferenceopera-
tor, such that ¶¸·¹´ .

Definition 3. An elementfQ�U´ is saidto betransformally
algebraic over ¶ if andonly if, it satisfiesan algebraic dif-
ferenceequationwith coefficientsin ¶ . It meansthat there exists
a polynomial �]��º E G =a=a= G º�¦�� over ¶ such that�]�Sf G � f G =a=a= G � ¦ f1� �3i =
Otherwize, this element f is said to be transformally ¶ -
transcendental.

Definition 4. Let » be an index set. A subsete<f c G n �¸» g of ´
is called transformally ¶ -algebraically independentif, and only
if, the set e �x¼ f c G n �½» GS¾ �3� g is ¶ -algebraically independent.
Such an independentset, which is maximal with respectto in-
clusion is called a transformal transcendence basis
of the extensioń`µ_¶ . Two such baseshavethe samecardinal-
ity which is calledthetransformal transcendence de-
gree of ´`µ_¶ andis denotedby ¿Àr_Á£
�Â<dj¿hrÃ�#ÄaÅ`´�µ�¶ .

In this framework, the rank of a nonlinearsystemadmitsa
clear-cut definitiongivenby

Definition 5 ([6]). Therankof the input-outputsystem	 with in-
put 
���
�� andoutput ����
�� , denotedas XZY«ex	 g , is definedasXZYOex	 g �� ¿Àr_Á£
�Â<dj¿ÀrÆ�OÄaÅ � ������
��[�[µ � =

Now that we have a cleardefinition for the rank, the left in-
vertibility of thenonlinearsystem	 mimiks thelinearcasei.e.

Proposition6. The input-outputsystem	 with input 
���
�� and
output ����
�� is saidto beleft invertibleif, andonly ifXZY«ex	 g � �W=

Our next concernwill be how to computethis rank in terms
of the rank of a given transfermatrix. Indeedthis transferma-
trix appearsto bethatof thetangentsystem,obtainedthanksto the
Kähler differentials [11]. Kähler differentials
canbeseenasthealgebraicversionof theusualinfinitesimaldif-
ferential calculus. To proceed,considerthe linear application Ç
definedon thedifferencefield

� ���`��
��[� suchthat:� ��Ç£fI� � Ç�� � fI� l f�� � ������
��[�Ç���ª��Æ� � Ç���ªÃ�©��T�ªÈÇ��É�È� l ª G ��� � ������
��[�Ç���Êx� �3iËl Ê�� �
Example2. ConsiderÌ}��
�� , an elementof

� ������
��[� , where
�¸��

, givenbyÌ���
�� � ± � ��
98;:<� ¬ T � ��
¢8³:x� � ��
98�±s�*=
ThenwehaveÇIÌ}��
�� �¤\ Í � ��
�8Î:<�IT � ��
�89±s� ^ Ç � ��
j8Î:x�IT � ��
j8Î:x�ÀÇ � ��
j89±_�*=

Onecanreadilycheckthat the imageof
� ������
��[� by Ç is the� ������
��[� \ �_^ -left modulegeneratedby ÇI����
�� that we denoteby\ ÇI����
�� ^ . This modulecorrespondsto a linear time-varying sys-

temwith input ÇI
���
�� andoutput ÇI�`��
�� , representingthetangent
systemof 	 . By theequivalenceof thesetwo systems,we mean
thefundamentalresult[11]:¿hr�Á£
�Â�dj¿hrÆ�#ÄaÅ � ������
��[�[µ � � XZY \ ÇI�`��
�� ^ G (4)

andwe have the

Proposition7. The nonlinear input-outputsystem	 with input
{��
�� andoutput �`��
�� is left invertibleif, andonly ifXZY \ ÇI�`��
�� ^ � �R=



5. EXAMPLE

In thisexamplewechoose
���³�

. Considerthenonlinear: -input± -outputsystem	 representinge.g. asatellitetransmissionsystem
[12]. Eachpathis modelizedusinga Volterrakernelwhich results
in theinput-outputrelations� � ��
�� �3Ï E � ��
��FT Ï � � ��
98;:<�FT Ï ¬ � ��
�� ¬ T Ï ­ � ��
98³:x� ¬

(5)� ¬ ��
�� � Ê � ��
�� � ��
�8³:x� (6)

wherethecoefficients
Ï c and Ê areconstantrealnumbers.Thetan-

gentsystem,obtainedusingtheKählerdifferentialsis thengiven
by Ç � � ��
�� � ª . Ç � ��
���TU� . Ç � ��
�8³:x� (7)Ç � ¬ ��
�� �¹Ð . Ç � ��
���T�Ñ . Ç � ��
�8Ò:<� (8)

where ª . �3Ï E T³± Ï ¬ � ��
��� . �3Ï � T³± Ï ­ � ��
98;:<�Ð . � Ê � ��
98³:x�Ñ . � Ê � ��
��
Note that this systemis linearwith time-varyingcoefficients,and
thesecoefficients belongto the differencefield

� ������
�� \ �_^ since
they dependon thedelayedversionsof theinput,asfor theoutput�`��
�� .

Recallingthefiltration � � q<� associatedto theabovetime-varying
system,we have for r �3i ,� E �3�[�«� M � -6,£-6.10Ó0 e<Ç �#� ��
�� G Ç � ¬ ��
�� g =
Now �OL6� � E � XZYQÔ ª . � .Ð . Ñ .�Õ � ± G
solong as ª . Ñ . 8 Ð . � .RÖ�3i . Next, for r � : , we have� � ���[�o� M � -6,#-/.10É0 exÇ �O� ��
�� G Ç � ¬ ��
�� G Ç � ��
�8;:<� G Ç � ¬ ��
98;:<� g
and �OL6� � � is equalto therankof theSylvestermatrix !" ª . � . iÐ . Ñ . ii ª .£� � � .#� �i Ð .£� � Ñ .#� �

$ %&
When ª . Ñ . 8 Ð . � .�Ö�×i

or ª .£� � Ñ .£� � 8 Ð .#� � � .£� � Ö�×i
, this

rankis equalto 3. Wemaycheckthatif ª . Ñ . 8 Ð . � . Ö�3i for all
W�9� , then �OL6� � q � rmT;± G l r G
andtherefore,�#L6� � q ~ � 8��OL6� � q � : . We thusdeducethat the
rankof thesystemis � � : , which meansthat thenonlinearsys-
tem 	 is left invertible,unlesstheinput � lies on thehypersurface
definedbyÏ E � ��
��s8 Ï �Ø� ��
m8¢:<�<T¢±#� Ï �Ø� ��
�� ¬ 8 Ï ¬ � ��
�8¢:x� ¬ � �3i G l 
R����=
This thenshows, asquotedin [3], [13], thatnot all nonlinearsys-
temsadmitan inverseandthe rangeof invertibility excludescer-
tain subsetsof theinput.

Thecredit of this approachis, amongothers,that it provides
anexplicit analyticaldescriptionof thesesubsets.

6. CONCLUDING REMARKS

Necessaryand sufficient conditionsfor left invertibility are de-
rivedfor bothlineartime-varyingandnonlinearmulti-inputmulti-
outputdiscrete-timesystems.Within themodule-theoreticframe-
work, wehave shown thatboththesecasesmaybeseenasnatural
extensionsof thelineartime-invariantcase.

Left invertibility is a preliminaryfor theproblemof equaliza-
tion to have a clear mathematicalmeaning. For a given digital
communicationsystem,left invertibility is however notequivalent
to perfectequalizability. The fact that a systemis left invertible
doesnot guaranteetheexistenceof a perfectequalizer, unlessthe
inverseis stableandcausal.The questionspertainingto stability
andcausalityhave not beenconsideredin this paperneitherthose
concerningthecomputationof theinverse.

Finally, note that all the resultspresentedhereimplicitly as-
sumethat the input 
�ÙÀÚ7Û is independent.Recallthat the input is
termedindependentif themodule

\ 
{ÙÀÚ7Û ^ is free.
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