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ABSTRACT

We attackthe problemof perfectequalizabilityof multi-userchan-
nels, in which the usuallinear time-invariant assumptions dis-
missed. In the linear, time-invariant case,condition for perfect
equalizabilityis plain andexpressedn termsof the columnrank
of the channeb transfermatrix. Using the module-theoreti@ap-
proachdeveloppedby Fliess, in which the transfermatrix of a
time-varying channelaswell asthe rank of a non-linearchannel
areclearlydefinedwe shav how the conditionobtainedn thelin-

eartime-invariant casenaturally extendsto the time-varying and
thenon-linearcases.

1. INTRODUCTION

With the adwent of multi-accesdigital communicationsystems,
increasingattentionis devoted to the multi-userchannelsequal-
ization problem, especiallyin blind case. When the channelis
left invertible, (blind) equalizationis, conceptuallya well posed
problemasit reducesto find the channelleft inverseor a sta-
ble and causalapproximationof it. A numberof candidateap-
proachess now available,includingbothtrainingsequencehlind
andsemi-blindversiongsee[1] andreferencesherein). The bulk
of theseapproacheselieson a linear time-invariantchannelset-
ting in which left invertibility is a genericpropertyassoonasthe
numberof outputobserationsis high enough. Clearly, a multi-
input multi-outputlinear time-irvariant channeladmitsa left in-
versewheneer the genericrank of its transfermatrix equalsthe
numberof inputs.

However, severalreal-timecommunicatiorchannelsaretime-
varyingand/omonlinear2], [3]. A well knovn exampleof anon-
linearchannels givenby adigital communicatiorsatellitesystem
wherenonlineardistorsionsareintroducedby the down-link am-
plifiers. Nonthelesslittle attentionhasbeendevotedto the equal-
izationof suchchannelsespaciallyin the multichannekcase.The
main reasonfor this gap, probably stemsfrom the fact that the
classicalconceptof “transfermatrix” ceaseto make sensen the
time-varying caseand,evenmore,in the nonlinearcasewherethe
notionof matrixitself is undefined.

Therefore concerninghe equalizatiorof suchmultichannels,
one cannot dodgethe questionof whatthe term “inverse”refers
to.

Themodule-theoreti@pproactdeveloppedby Fliess[4], [5],
[6] givessatisfyinganswergo this question.

In alineartime-varyingsituation thereexistsseveralapproaches
[7], [8], [5], that provide a clearcut interpretationof the trans-
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fer matrix, althoughthe z-transformdoesnot have a straightfor
ward definition. Among theseapproachesthe module-theoretic
oneyields analgebraidframework in which time-varying transfer
matricesactvery naturally

For thenonlinearcontet, the module-theoreti@approachpro-
videsa niceinterpretationof the rank of a nonlinearsystem.This
interpretatiormalesit possibleto extendthelinearcaseresultsto
the nonlinearcase,in a very naturalway. The philosophyof this
approachs to transformthe nonlinearsystemnto an“equivalent”
(in asensdo beclarifiedlater)time-varyingbut linearsystemand
thento applytheknown resultsof thelinearcase.

In orderto fix the notations,we begin with the linear time-
invariant casein section2. The linear time-varying caseis in-
vestigatedn section3. The mathematicatools which permitto
handlethe time-invariant nonlinearsettingare presentedn sec-
tion 4, alongwith a necessarandsuficient conditionfor a given
nonlinearmultichannetlto be left invertible. Section5 is devoted
to anillustrative exampleof a single-inputtwo-outputdigital non-
linear communicatiorsystem.Finally, we give in section6 some
concludingremarks.

2. LINEAR TIME-INV ARIANT EQUALIZABILITY

Let K beagivenfield (e.g. £ = R or C) andconsiderthe linear
discrete-timetime-invariantm-input p-outputtransmissiorchan-
nel systemS depictedin figure 1 with input u(n) € K™. The
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Fig. 1. Input-outputMultichannelsystem

recevedsignaly(n) € K? is modeledas

y1(n) u1(n)
Yp(n) Um (1)
y(n) u(n)



wherewe interpretz asthe unit delayoperator:
zu(n) = u(n —1).

Thechannekransfermatrix is assumedtable,causalandfinite in
duration,say N, sothatwe maywrite

N
H(z) =Y Hiz*, Hye K™, with |[Hy| <inf. (2)
k=0

In all the sequelwe assumeahatthe numberof obserationsex-
ceedghenumberof inputs:p > m. We alsoassumefor technical
reasonsthatm(N+1) > p. Clearly, themulti-userchannelH (z)
is perfectlyequalizablevhenit admitsa stableandcausaleft in-
verse.Left invertibility nov occurswhenrk(H (z)) = m. When
the systemis time-varying or nonlinear the situationis however
moreinvolved.

We now proceedto translatethe left invertibility conditionin a
module-theoretiéramenork [4], [6] whichwill allow usto handle
boththetime-varyingandthe non-linearcasesn a naturalway .
To begin, let K[z] be the ring of polynomialsin the variable z,
with coeficientsin X anddenoteby [y(n)] the K[z]-left module
generatedy y(n) = (y1(n),... ,yp(n)). Eachelementof this
moduleis of the form 3. f;(2)y:(n) whereeachf;(z) is some
polynomialin K[z]. Recallthata family {¢1,... ,¢{m} Of ele-
mentsof [y(n)] is saidto be K[z]-linearly independenif for ary
set{fi(z)}i=1 of m polynomialsin K[z], we have

Zfz-(z)cz- =0= fi(2) =0 Vi.

Therankof [y(n)], subsequentlglenotedby rk[y(n)], is defined
asthecardinalof ary maximum(w.r.t inclusion)X[z]-linearly in-
dependentamily of [y(n)]. Thenwe have

Proposition1 ([4], [6]). rk[y(n)] = rk(H(z)).

In the module-theoretidramenork, the left invertibility con-
dition for the channelH (z) thusreadsasrk[y(n)] = m. Classi-
cally, thecomputatiorof rk(H (z)) involvesthegeneralized
Sylvestemmatrix 7, (H) asin

y(n) Ho --- Hw u(n)
. — . . u(n —1)
y(n—r) Ho, --- Hy :
7. (o)

Forr largeenoughsayr > ™*U=2 e hae
tk(7,(H)) < mr + m(N + 1).

It is well known that perfectblind equalizationis possiblewhen

T-(H) is full colunmrank and morewer, this is achieable us-

ing only the second-ordestatisticsof the output[9]. Ontheother

hand, note that one may then always find two integer constants
p and 8 suchthatrk(7.(H)) = pr + B, with p < m. The

module-theoreti@approachprovides very meaningfulinterpreta-
tionsto theseconstantsin termsof invertibility. To seethislet us

introducethefollowing notations.For » > 0, define

Vi £ spanc {y1(n),...,yp(n),... ,ga(n—1),... ,yp(n—1)}

wherethe subscriptC in “span,.” meansthat the coeficients of

thelinearcombinationsaretakenin K, andsetV; 2 {0} for r <

0. Thus(V;)rez is anondecreasingequencef K-vectorspaces
in [y]. Thesequences clearly (i) exhaustve: U,czV, = [y] and
(i) discrete:V, = {0} for r smallenough.

Definition 1. (V,),ez is calleda filtration of theinput-outputsys-
temwith transfermatrix H (z).

For suchafiltration, thereexistsa degreeoneN[r]-polynomial
(calledHilbert polynomial)of theform P(r) = pr + 8 suchthat
for r € Z largeenoughwe have dim V,, = P(r). Moreover, we
have the

Proposition2 ([10]). p =rk[y(n)] =rk(H (z)) = dim V, 41—
dim V.

Them-input—p-outputsystenwith transfermatrix H (z) is there-
fore left invertibleif andonlyif p = m.

Remark 1. Notethat for r suficientlylarge, therankof the gen-
eralizedSylvestematrix 7. (H ) canbeexpresseds

(T, (H)) = pr+B=pr+m+y v

i=1

wheee thev;’s are the Kroneder indicesof the rational subspace
spannedy thecolumnsof H(z). Theefor, if 8 =m+ >, v;
is lessthanm + mN, thenthis would meanthat at leastone of
the conditions: the transfermatrix H(z) (i) is irreducible; (ii)
is column-educediii) hasall its columndegreesequalto NV, is
violated(se€[9] andrefeencegherin).

3. LINEAR TIME-V ARYING EQUALIZA TION

The systemS is now consideredo be time-varying. As in the
time-invariantcase theconditionfor theleft invertibility of S will
still be givenin termsof its rank. This rank turnsout to be de-
fined asthe rank of the systemtransfermatrix. Indeed,though
the z-transformdoesnot have a straightforvard extentionto the
non-constantase thereare several approache$7], [8], [5], that
provide a clearcutinterpretatiorof the transfermatrix for atime-
varying system. Among theseapproachesthe module-theoretic
oneyields analgebraidframeavork in which time-varying transfer
matricesactvery naturally

Following this approachthe discrete-timetime-varying sys-
tem S is definedover a groundfield K, equippedwith the unit-
delayoperatorz. K is thuscalleda differencefield. Notethatit is
no longerafield of constantsthe elementf X do notcommute
with the operatorz. Henceforthwe will usethe notation/C(n) to
male this dependencexplicit.

Thesystemtransfermatrix s still representedsin (2), by

N
H(n,z) = Z H(n)z", (3)
k=0

wherethe coeficient matricesH(n) € K(n)?*™ arenow de-
pendentof the time index n. As for the time-invariantcase,we
define[y(n)] to be the K(n)[z]-left modulegeneratedy y(n).
Propositionl thennaturallyextendsto

Proposition 3 ([5]).
rk[y(n)] = rk(H(n, 2)).



Notethatthedefinitionof (V; ),z asthefiltration of K(n)[z]-
left module[y(n)] associatetb thetime-varyinginput-outputsys-
tem S is still valid andthis filtration is suchthat, for » € Z large
enoughwe have

Proposition 4.
1. dimV, = pr + S with;
2. p=rkly(n)] = dimV, 41 — dimV;.

Hence

Proposition5. Thediscrete-time time-varyingm-input p-output
systemS with outputy(n) is leftinvertibleif andonly if

p =r1k[y(n)] = m.
4. NONLINEAR EQUALIZA TION

We now investigatethe situationwherethe systems is nonlinear
This situationis much more involved thanits linear counterpart
mainly becauseof the lack of a simple systemdescriptoy asfor
exampletheconcepbf “transfermatrix”. Fortunatelythemodule-
theoreticapproachprovidesa nice intrepretationof the rank of a
nonlinearsystem. This interpretatiormakesit possibleto extend
tothenonlinearcasetheresultsof thelinearcasejn averynatural
way. Thephilosophyof thisapproachs to transformthenonlinear
systeminto an“equivalent” (in asenseo beclarifiedbelow) time-
varyingbutlinearsystemandthento applytheknown resultsof the
linearcase.This extentionrequiressomeelaboratednathematical
toolsthatwe introducehereafter

Let K still denotesagroundfieldi.e. K = R or C. WhenC
is equippedwith the delayoperatorit becomes differencefield.
Let¢ = {¢i,--., ¢} beacollectionof elementson which acts
the operatorz. Definefrom K and¢ thesetof all polynomials

P(Ch'-- 7C17ZC17--- 7ZC17ZQC17--- 7zaCl)

in I(a + 1) variableswith coeficientsin K anddenotethis setas
K[¢]. Onemay checkthat IC[{] is a differencering with unity,
finitely generatedby ¢. Thecorrespondingjuotientfield is a field
of difference subsequentigenotedas/C(¢). LetthenK(y(n)) be
thefield of differenceobtainedasabove, from the systemoutput
y(n).

Example 1. If K is thefield of real numbes, then

22y2(n) + T2y (n)ya(n) + 3
zy2(n) + 22%y3(n) - zy3(n) + 5y1(n)

is an elemenbf thefield of difference/C(y(n)).

Definition 2. Adifferencefield extensionL/E is givenby two dif-
ferencefields L and E, equippedwith the samedifferenceopeia-
tor, sudhthat £ C L.

Definition 3. Anelemeni € L is saidto bet ransformal |y
al gebrai ¢ over E if andonlyif, it satisfiesan algebraic dif-
ferenceequationwith coeficientsin E. It meanghat there exists
a polynomialP(zo, ... , ;) over E sud that

P((2¢,...,2'¢) =0.

Otherwize this element(¢ is said to betransformal |y E-
transcendent al .

Definition 4. Let I be an index set. A subset{¢;,¢ € I} of L
is called transformally E-algebraically independentf, and only
if, the set{z7¢;,i € I,j € N} is E-algebrically independent.
Sud an independenset, which is maximal with respectto in-
clusionis calledat ransf ornmal transcendence basis
of the extensionL/E. Two suc baseshavethe samecardinal-
ity which is calledthet r ansf or mal transcendence de-
gr ee of L/E andis denotedvytransf tr deg L/E.

In this framework, the rank of a nonlinearsystemadmitsa
clearcut definitiongiven by

Definition 5 ([6]). Therankof theinput-outputsystemS with in-
putu(n) andoutputy(n), denotecasrk{S}, is definedas

rk{S} 2 transf trdeg K(y(n))/K.

Now that we have a cleardefinition for the rank, the left in-
vertibility of thenonlinearsystemS mimiksthelinearcasei.e.

Proposition 6. The input-outputsystemS with input w(n) and
outputy(n) is saidto beleftinvertibleif, andonly if

rk{S} =m.

Our next concernwill be how to computethis rankin terms
of the rank of a given transfermatrix. Indeedthis transferma-
trix appearso bethatof thetangensystempbtainedhanksto the
Kahler differentials [11]. Kahler differentials
canbe seenasthe algebraicversionof the usualinfinitesimaldif-
ferential calculus. To proceed,considerthe linear applicationd
definedon thedifferencefield X(y(n)) suchthat:

z(d¢) = d(2¢) V¢ € K(y(n))
d(aB) = d(@)B +ad(B) Va,B € K(y(n))
d(c)=0 Vcek

Example 2. Considerw(n), anelemenbf K(y(n)), whee K =
R, givenby

w(n) = 2y(n — 1)* + y(n — y(n — 2).
Thenwehave
dw(n) = [4y(n—1)+y(n—2)]dy(n—1) +y(n—1)dy(n—2).
Onecanreadily checkthatthe imageof K(y(n)) by d is the
K(y(n))[z]-left module generatedby dy(n) that we denoteby
[dy(n)]. This modulecorrespondso a linear time-varying sys-
temwith inputdu(n) andoutputdy(n), representinghe tangent

systemof S§. By the equivalenceof thesetwo systemswe mean
thefundamentatesult[11]:

transf tr deg K(y(n))/K = rk[dy(n)], (4)
andwe have the

Proposition 7. The nonlinear input-outputsystemS with input
w(n) andoutputy(n) is left invertibleif, and only if

rk[dy(n)] = m.



5. EXAMPLE

In this examplewe chooseC = R. Considetthenonlinearl-input
2-outputsystemsS representing.g. asatellitetransmissiorsystem
[12]. Eachpathis modelizedusinga Volterrakernelwhichresults
in theinput-outputrelations
y1(n) = hou(n) + hiw(n — 1) + hau(n)® + hau(n —1)°
®)
y2(n) = cu(n)u(n — 1) ®)
wherethecoeficientsh; andc areconstantealnumbersThetan-
gentsystem,obtainedusingthe Kahlerdifferentialsis thengiven

by
dyi1(n) = apdu(n) + Brdu(n — 1) @)
dy2(n) = ypdu(n) + dndu(n — 1) (8)
where

an = ho + 2hau(n)
Br, = h1 + 2h3u(n — 1)
Yn = cu(n — 1)
dn = cu(n)
Note thatthis systemis linearwith time-varying coeficients,and

thesecoeficients belongto the differencefield C(y(n)[z] since
they dependonthedelayedversionsof theinput, asfor the output

y(n).
Recallingthefiltration (V) associatetb theabove time-varying
systemwe have for r = 0,

Vo = span (y(n)) {dy1(n), dy2(n)}.
Now
. _ Qn ,Bn _
dim Vp = rk [’Yn 6n:| =2,
solongasandn, — vynBn # 0. Next, for r = 1, we have
Vi = spany (,(»))1dy1(n), dy2(n), dy(n — 1),dyz(n — 1)}

anddim V; is equalto therankof the Sylvestemmatrix

Qg Bn 0
Yo On 0
O Qp—1 6n—1
0 Yn—-1 On—1

Whenandn — YnfBn # 0 0r an—16n—1 — Yn-1B8n-1 # 0, this
rankis equalto 3. We may checkthatif a,,d, — -8, # 0 for all
n € N, then
dimV, =r+2, Vr,

andtherefore dim V;.+1 — dim V,, = 1. We thusdeducethatthe
rank of the systemis p = 1, which meansthatthe nonlinearsys-
temS is left invertible, unlesstheinput u lies onthe hypersuréce
definedby

hou(n) —hiu(n—1)+2(h1u(n)® —hou(n—1)*) = 0,Vn € N.

This thenshaws, asquotedin [3], [13], thatnotall nonlinearsys-
temsadmitan inverseandthe rangeof invertibility excludescer
tain subset®of theinput.

The creditof this approachs, amongothers,thatit provides
anexplicit analyticaldescriptionof thesesubsets.

6. CONCLUDING REMARKS

Necessaryand sufiicient conditionsfor left invertibility are de-
rivedfor bothlineartime-varyingandnonlineamulti-input multi-
outputdiscrete-timesystems Within the module-theoretiédrame-
work, we have shavn thatboththesecasesnaybe seenasnatural
extensionof thelineartime-invariantcase.

Left invertibility is a preliminaryfor the problemof equaliza-
tion to have a clear mathematicameaning. For a given digital
communicatiorsystem|eft invertibility is however notequivalent
to perfectequalizability The factthata systemis left invertible
doesnot guaranteehe existenceof a perfectequalizerunlessthe
inverseis stableand causal. The questiongertainingto stability
andcausalityhave not beenconsideredn this papemeitherthose
concerninghe computatiorof theinverse.

Finally, notethatall the resultspresentechereimplicitly as-
sumethattheinput«(n) is independentRecallthatthe inputis
termedindependenif themodule[u(n)] is free.
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