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ABSTRACT

This paper considers discrete multitone (DM T) modula-
tion for multiuser communicationswhere different usersare
supported by the same system. These users may have dif-
fering quality of service (QoS) requirements, as quantified
by their respective bit rate and symbol error rate specifica-
tions. Our goal isto minimize the transmitted power given
the QoS specifications for the different users, subject to
the knowledge of colored interference at the receiver input.
In particular we find an optimum bit loading scheme that
distributes the bit rate transmitted across the various sub-
channels belonging to the different users, and subject to this
bit allocation, determine an optimum transceiver.

1. INTRODUCTION

The discrete multitone (DM T) modulation channel cod-
ing scheme has established itself as an effective high rate
data communication technique in both wired and wireless
environmentsand is used for examplein ADSL and HDSL,
[1]. We consider DMT in a multiuser environment. Thus
the DMT system studied here supports multiple users, with
varying quality of service (QoS) requirements, quantified by
their respective bit rate and symbol error rate (SER) specifi-
cations.

Specifically, consider theDMT systemasinfig. 1 which
depicts an M -subchannel filter bank model of a DMT sys-
tem. We consider an overinterpolated (N > M) filter bank
as the transceiver. We assume that the channel C(z) isFIR
of lenth x (preequalization is assumed to have been done),
and v(n) is additive colored noise with known spectrum.
Thusfor example v(n) could represent co-channel interfer-
ence. Note, [8] provides models for cochannel interference
inavariety of settings. To mitigateintersymbol interference
(1Sl), a form of redundancy is incorporated by choosing
N = M + k. The transmitting filters, F)(z), and the re-
ceiving filters, Hy(z), are constrained to length N, and act
as modul ating and demodul ating transformsrespectively. In
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a DFT based DMT implementation [1], the IDFT and DFT
are used as the modulating and demodulating transforms
respectively.

In this paper, as in [5] we will consider more general
transformations leading to a generalized DMT system. To
capture amultiuser environment, we assumethat thereare L-
users each having been assigned M / L subchannels. Further
the k-th user requiresabit rate of ¢, and an SER of no more
thann,. Our goal isto select F; and H;, and distributethebit
rates among the various sub-channels to achieve the above
specificationswith the minimum possibletransmitted power .
The problem addressed here thus directly generalizes that
in [5], which also addresses the same power minimization
issue, but assuming a single user subject to only one bit
rate and SER constraint. The multiuser setting renders the
optimization problem highly nontrivial in comparison to the
single user case. Further we show as much as 8 dB and 12
dB savingsin transmit power in our simulationswith general
DMT systems over DFT based DMT systems with optimal
bit allocation and no bit allocation respectively.

Related literature includes [4] which developsfast |oad-
ing algorithms using table lookups and a fast Lagrange bi-
section method for a single user setting. [7] considers a
single user optimization of the transceiver mutual informa-
tion. [3], considers the optimum bit loading problem when
two users are present.

Section 2, definesthe generalized DM T system and for-
mulates a precise mathematical problem. Sections 3 and 4
respectively consider the bit rate allocation and filter selec-
tion problems. Section 5 gives simulations.

2. DMT BASED MULTIUSER SYSTEM M ODEL

In this Section we give some preliminaries. Specifically,
in Section 2.1, we recount the details of the generalized
DMT system provided in[5]. Section 2.2 providesaprecise
optimization problem.

2.1. Polyphaserepresentation of the DMT system

Consider the filter bank based DMT model in fig. 1. v(n)
is a zero mean wide sense stationary additive noise. As
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Fig. 1. Filter bank based DMT model.

the filters Fj(z) and Hy(z) have lengths < N, we may
write the following polyphase decompositionS' Fr(z) =
SN TG, and Hy(2) = YO8 5" 2°Sk 4, with constant
G, ; and S; ;. Definethe N x M matrix G with ¢j-th ele-
ment G; ; andthe M x N matrix S with elements S; ;. Call
the constant matrices G and S the transmitting and receiving
matrix repectively. Then with x and % the vector of the sig-
nals z; and &;, repectively, v, the blocked version of v(n),
one has the equivalent systemin fig. 2. Here the pseudocir-
culant matrix C(z) [9], is formed by the coefficients of the
FIR channel C(2) = co + 1271 + ... + c.2~". It obeys:

C)=[Co Ci(2) | (2.1)
where Cyq isconstant, N x M, and C1(z) isN x k. Note
the knowledge of the autocorrelation of v, yields the auto-
correlation matrix of v.
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Fig. 2. Polyphase representation of the DMT system.

For DMT systems using zero padding, the transmitting
and receiving matrices are respectively given by

G:[WT], S=T'[W W] (22

0

where W isthe M x M unitary DFT matrix with [W]; ,,, =
LMe_jZle, Ilbm = 0,...,M — 1, Wy isthe M x &
submatrix of W having thefirst k columnsof W, andT" isthe
M x M diagonal matrix with elementsthat are the M -point
DFTs of the channel impulse response, [1]. We consider
more general DMT systems that can lead to reduction in
sidel obes and better noise rejection properties of the filters.

The transmitting matrix of such ageneral DMT is given by

o-[5)

2.3)

— TN = Fo(z) C(z) Ho(z) > L N —
‘”%»TN—> Fi(2) «I LHl(z)—»J,Ni.
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where G isan arbitrary M x M unitary matrix. The con-
dition for perfect reconstruction (PR) is given as

SC(z)G =1 2.4
Using (2.1) and (2.3), the PR condition reduces to
SCoGo =1 (2.5)

Using singular value decomposition, Cq can be written as

Co=[U U] [ A ] VT = UAVT (2.6)
N’ 0

U

whereU and V' arerespectively N x N and M x M unitary
matriceswhose columnsarethe eigenvectorsof CoCo” and
Co T Co. Aisthe M x M diagona matrix with diagonal
elementsthat are the singular values of C.

Using (2.6), one clear choice for S satisfying (2.5) is

S =GIvA-tUl (2.7

2.2. Problem definition

The optimum bit loading problem is to find the best bit rate
alocation scheme to minimize the transmit power, under
different bit rate and SER budgets of the users. The optimal
transceiver is then designed to minimize the power subject
to optimum bit loading.

Assumethere arer users, with each user being allocated
L subbands (infig. 1, M =rLand N = M + k). Let
the input power in the j-th subband of the k-th user be

;- Dueto PR, thisis also the output signal power o2 .
in the j-th subband of the k- th user. Let the output noise
power in this subband be o2 . and bj ;. be the number
of bits allocated in this subchannel Due to different QoS
reguirements, we may have different bit rate constraints for
the users. The average number of bits for the k-th user is
b = 1 j:—01 b, x. However we need to account for the
reductionin bit rate dueto the zero padding. The averagebit
budget for the k-th user isthent, = £b, = £ 327" b; 4.

With a high bit rate assumption made on the modulation
system, we have, [5], for the k-th user

Ugj.k = ck22bj‘kagj.k
where the constant c;, depends on the SER 7. We seek to
minimize the average transmission power given by

r L-—1
;Z; (2.8)
J
r L—1
Mzzckz%w 2 (2.9)
k=1 j=0



subject to the bit rate budgets
1 L-1
tk:Nij,k, k=1,...,r (2.10)
7=0
and the PR requirement (2.7).

3. OPTIMUM BIT ALLOCATION

The problem of minimizing (2.9) under the set of constraints
(2.10) is a constrained optimization problem. Using the
AM-GM! inequality and (2.10),

r L-—1

1
f= i Z Z ck22bf"°afj.k (3.12)
k=1 5=0
I r L-1
> D> e[ 2%0a? Yt (312)
k=1 j=0
1 T L—-1
= > en@N ] o2 )VE (3.13)
k=1 7=0
with equality holding iff for al j, k:
L—1
_ N 1 2 \1/L 1 2
bjk = ftk+§l092(jl:[0 Ue]-‘k) —51092(061_‘,0). (3.149)

This is the optimum bit allocation strategy. The optimal
transceiver design isto find matrices S, G so asto minimize

T L—-1
T = (ak [] as0)*/" (3.15)
k=1 =0
where
o = C£Z2Ntk Qjk = Jgj.k' (316)

Observe, if one chooses L = 2, and a, = o for all k, then
(3.15) reduces to the optimization function considered in
[2], for the subband coding of cyclostationary signals.

Optimal arrangement: Observe, [2, 6], that given aset of
positive numbers {6 }2* |, 8% > &x41 the minimum among
all possible 3 6y, 0y, i 341 dkdai—k41. Thusamong the
various permutations of a; i, any that minimizes(3.15) must
have the following property:

L—1 L-—1
Uy 2 ey = ary [ @k <ans [[ @i (317)
j#m j#n
and
L—-1 L-1
Ay > Oy = H Qjm < H Qjn. (3.18)
§=0 =0

1The arithmetic mean (AM) of a set of positive numbersis greater than
or equal to their geometric mean (GM), with eguality iff al the numbers
are equal.

4. OPTIMUM TRANSCEIVER DESIGN

In this Section we address the problem of filter selection to
minimize (3.15). This reduces to selecting a unitary matrix
Gp. Given that the matricesin (2.6) are known, (2.7) fixes
S. Observethat the situation in fig. 3 prevails, and R, the
autocorrelation of €, is known. Further the autocorrelation
matrix of e is given by

R. = GYR:G,, (4.19)

and that a, , in (3.15), are simply the diagonal elements of
R..

We need a few results from the theory of majorization

that will be usedin solving the optimization problem at hand.
We will first introduce the notion of majorization and Schur
concavity [6].
Definition 4.1 Consider two sequences z = {z;}?; and
y = {yi}q withz; > 2,47 andy; > y,41. Then we say
that y majorizes x, denoted asz < v, if the following holds
with equalityat k = n

k k
Yor<y i 1<k<n
=1 1=1

Definition 4.2 Areal valuedfunction$(z) = ¢(21,-- -, 2x)
definedonaset A C R™ issaidto be Schur concaveon A if

r<y omA = ¢(z)2y).

¢ is strictly Schur concave on A if strict inequality ¢(x) >
¢(y) holds when z is not a permutation of y.

Wewill now state atheoremthat resultsin atest for strict
Schur concavity. We denote

9¢(z)

2
b (2) = o 0°¢(2)

- Bzié)zj )

and  ¢(; j)(2)

Theorem 4.1 Let ¢(z) be a scalar real valued function de-
fined and continuous on D, and twice differentiable on the
interior of D. Then ¢(z) isstrictly Schur concave on D iff

(i) ¢ issymmetricin itsarguments,
(i) ¢(x)(z) isincreasingin k, and

(i) ¢ (2) = bty (2) = brpy(2) — breppn) (2) —
Dh+1,k) (2) + ¢(k+1,k+1)(2) < 0.

Theorem 4.2 If H isann x n hermitian matrix with diag-
onal elementshy, ..., h, and eigenvalues Ay, ..., A, then
h <XonR".

To connect the results from majorization theory devel-
oped to our optimization problem, we state the following
theorem.
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Fig. 3. Receiver block diagram.

Theorem 4.3 Thereal valued scalar function J as defined
in(3.15) under theoptimality conditions(3.17-3.18) isstrictly
Schur concave.

In particular as the search of G, is restricted to unitary
matrices, if one chooses G to be 2 amatrix of orthonormal
eigenvectorsof R;, then R, isadiagonal matrix containing
the eigenvalues of R;. Note that diagona elements of R,
are afj.k. Thus from theorem 4.2, this choice of G, yields
a sequence of afj . that majorizes all other achievable se-
guences. Consequently if arranged optimally, Theorem 4.3
holds, that such asequence will minimize (3.15). It remains
simply to arrange the eigenvalues of R; among the afj_k,
through exhaustive search if need be, so that an arrange-
ment that minimizes (3.15) is obtained. Thusfor a suitable
permutation matrix, P, the optimizing Gy is

Go = PQ. (4.20)

5. SSIMULATION RESULTS

In this section, we compare the trasmitting power of the
DFT based DMT under no bit allocation and optimum bit
allocation with our optimum transceiver. We assume the
channel tobe C'(z) = 1 + 0.5z~1, and anoise source v(n)
whose power spectral density is shown in fig. 4. The plot
shows that there is an 8 dB saving in transmit power with
our design over the DFT based DMT under optimum bit
allocation, and a 12 dB improvement over the conventional
DMT with no optimum bit allocation. We however note that
there may exist noise environments where the DFT based
DMT performs as well as our optimal design.

6. CONCLUSIONS

In this paper, we have presented an optimum bit allocation
strategy and transceiver design for minimizing the transmit
power when different users have varied QoS requirements.
Simulations confirm the efficacy of our results.
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