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ABSTRACT

This paper considers discrete multitone (DMT) modula-
tion for multiuser communications where different users are
supported by the same system. These users may have dif-
fering quality of service (QoS) requirements, as quantified
by their respective bit rate and symbol error rate specifica-
tions. Our goal is to minimize the transmitted power given
the QoS specifications for the different users, subject to
the knowledge of colored interference at the receiver input.
In particular we find an optimum bit loading scheme that
distributes the bit rate transmitted across the various sub-
channels belonging to the different users, and subject to this
bit allocation, determine an optimum transceiver.

1. INTRODUCTION

The discrete multitone (DMT) modulation channel cod-
ing scheme has established itself as an effective high rate
data communication technique in both wired and wireless
environments and is used for example in ADSL and HDSL,
[1]. We consider DMT in a multiuser environment. Thus
the DMT system studied here supports multiple users, with
varying quality of service (QoS) requirements, quantified by
their respective bit rate and symbol error rate (SER) specifi-
cations.

Specifically, consider the DMT system as in fig. 1 which
depicts an

�
-subchannel filter bank model of a DMT sys-

tem. We consider an overinterpolated ( ��� � ) filter bank
as the transceiver. We assume that the channel �����
	 is FIR
of lenth � (preequalization is assumed to have been done),
and �
����	 is additive colored noise with known spectrum.
Thus for example �
����	 could represent co-channel interfer-
ence. Note, [8] provides models for cochannel interference
in a variety of settings. To mitigate intersymbol interference
(ISI), a form of redundancy is incorporated by choosing��� ��� � . The transmitting filters, ��������	 , and the re-
ceiving filters, ��������	 , are constrained to length � , and act
as modulating and demodulating transforms respectively. In
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a DFT based DMT implementation [1], the IDFT and DFT
are used as the modulating and demodulating transforms
respectively.

In this paper, as in [5] we will consider more general
transformations leading to a generalized DMT system. To
capture a multiuser environment,we assume that there are � -
users each having been assigned

��� � subchannels. Further
the � -th user requires a bit rate of  !� , and an SER of no more
than " � . Our goal is to select ��# and ��# , and distribute the bit
rates among the various sub-channels to achieve the above
specifications with the minimum possible transmitted power.
The problem addressed here thus directly generalizes that
in [5], which also addresses the same power minimization
issue, but assuming a single user subject to only one bit
rate and SER constraint. The multiuser setting renders the
optimization problem highly nontrivial in comparison to the
single user case. Further we show as much as 8 dB and 12
dB savings in transmit power in our simulations with general
DMT systems over DFT based DMT systems with optimal
bit allocation and no bit allocation respectively.

Related literature includes [4] which develops fast load-
ing algorithms using table lookups and a fast Lagrange bi-
section method for a single user setting. [7] considers a
single user optimization of the transceiver mutual informa-
tion. [3], considers the optimum bit loading problem when
two users are present.

Section 2, defines the generalized DMT system and for-
mulates a precise mathematical problem. Sections 3 and 4
respectively consider the bit rate allocation and filter selec-
tion problems. Section 5 gives simulations.

2. DMT BASED MULTIUSER SYSTEM MODEL

In this Section we give some preliminaries. Specifically,
in Section 2.1, we recount the details of the generalized
DMT system provided in [5]. Section 2.2 provides a precise
optimization problem.
2.1. Polyphase representation of the DMT system

Consider the filter bank based DMT model in fig. 1. �
����	
is a zero mean wide sense stationary additive noise. As
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Fig. 1. Filter bank based DMT model.

the filters � � ���
	 and � � ���
	 have lengths GH� , we may
write the following polyphase decompositions: � � ����	I�JLKAMON#EPRQ � M #�S #�T � , and �������
	U� JVKWMON#XPRQ � #�Y � T # , with constantS #�T Z and Y #�T Z . Define the �\[ � matrix S with ]_^ -th ele-
ment S #�T Z and the

� [`� matrix Y with elements Y #�T Z . Call
the constant matrices S and Y the transmitting and receiving
matrix repectively. Then with a and ba the vector of the sig-
nals c1# and dce# , repectively, fg , the blocked version of �1����	 ,
one has the equivalent system in fig. 2. Here the pseudocir-
culant matrix hI����	 [9], is formed by the coefficients of the
FIR channel ������	U��i Q � i N � MON �kj+j/jl� i/mn� M m . It obeys:hI����	U�po h`q h�r
���
	ts (2.1)

where huq is constant, ��[ � , and h�r����
	 is ��[v� . Note
the knowledge of the autocorrelation of � , yields the auto-
correlation matrix of fg .

w x x w y{zX|2} w ~ w � � w; � ��� ����
Fig. 2. Polyphase representation of the DMT system.

For DMT systems using zero padding, the transmitting
and receiving matrices are respectively given byS ���u�������� Y ��� MRN o � � Q s (2.2)

where � is the
� [ � unitary DFT matrix with � �L�_� T �L�N� ��� M Z���� � �� , � ��� � � � j/j+j � ���¡ 

, � Q is the
� [¢�

submatrix of � having the first � columns of � , and � is the� [ � diagonal matrix with elements that are the
�

-point
DFTs of the channel impulse response, [1]. We consider
more general DMT systems that can lead to reduction in
sidelobes and better noise rejection properties of the filters.
The transmitting matrix of such a general DMT is given byS ��� S Q� � (2.3)

where S Q is an arbitrary
� [ � unitary matrix. The con-

dition for perfect reconstruction (PR) is given asY hI���
	 S �¤£ (2.4)

Using (2.1) and (2.3), the PR condition reduces toY h q S Q��¤£ (2.5)

Using singular value decomposition, h q can be written as

huq@� o¦¥ Q ¥ N s§ ¨ª© «¬ �`­ � �W®`¯ � ¥ Q ­ ®6¯ (2.6)

where ¥ and ® are respectively �°[u� and
� [ � unitary

matrices whose columns are the eigenvectors of h q h q ¯ andh q ¯ h q . ­ is the
� [ � diagonal matrix with diagonal

elements that are the singular values of h q .
Using (2.6), one clear choice for Y satisfying (2.5) isY � S ¯Q ® ­ MRN ¥ ¯Q (2.7)

2.2. Problem definition

The optimum bit loading problem is to find the best bit rate
allocation scheme to minimize the transmit power, under
different bit rate and SER budgets of the users. The optimal
transceiver is then designed to minimize the power subject
to optimum bit loading.

Assume there are ± users, with each user being allocated� subbands (in fig. 1,
� �²±³� and �´� �µ� � ). Let

the input power in the ^ -th subband of the � -th user be¶ �·+¸º¹ » . Due to PR, this is also the output signal power ¶ � �·+¸º¹ »
in the ^ -th subband of the � -th user. Let the output noise
power in this subband be ¶ �¼½¸º¹ » , and ¾ Z�T � be the number
of bits allocated in this subchannel. Due to different QoS
requirements, we may have different bit rate constraints for
the users. The average number of bits for the � -th user is¾ª�¿� NÀ J À MRNZ�PRQ ¾ ZÁT � . However we need to account for the
reduction in bit rate due to the zero padding. The average bit
budget for the � -th user is then  !�¦� ÀK ¾ª�6� NK J À MONZ�PRQ ¾ Z�T � .

With a high bit rate assumption made on the modulation
system, we have, [5], for the � -th user¶ �·+¸º¹ » �¤i/�FÂ �2Ã ¸º¹ » ¶ �¼½¸º¹ »
where the constant i/� depends on the SER "n� . We seek to
minimize the average transmission power given byÄ �  � ÅÆ� P N

À MRNÆZ�POQ ¶ �·+¸º¹ » (2.8)

�  � ÅÆ� P N
À MRNÆZ�POQ i/�FÂ �2Ã ¸º¹ » ¶ �¼ ¸º¹ » (2.9)



subject to the bit rate budgets

 � �  � À MRNÆZ�PRQ ¾�ZÁT � � ���   � j/j+j � ± � (2.10)

and the PR requirement (2.7).

3. OPTIMUM BIT ALLOCATION

The problem of minimizing (2.9) under the set of constraints
(2.10) is a constrained optimization problem. Using the
AM-GM

N
inequality and (2.10),Ä �  � ÅÆ� P N

À MRNÆZ�POQ i/�FÂ �2Ã ¸º¹ » ¶ �¼ ¸º¹ » (3.11)

Ç �� ÅÆ� P N i+���
À MONÈZ�PRQ Â �2Ã ¸º¹ » ¶ �¼½¸º¹ » 	 N�É À (3.12)

�  ± ÅÆ� P N i/���ºÂ � K{Ê »
À MRNÈZ�PRQ ¶ �¼½¸º¹ » 	 N�É À (3.13)

with equality holding iff for all ^ � � :

¾�ZÁT � � � �  � �  Â ��ËÍÌÎ�F� À MRNÈZ�PRQ ¶ �¼½¸º¹ » 	 N�É À �  Â ��ËÍÌÎ�F� ¶ �¼½¸º¹ » 	 j (3.14)

This is the optimum bit allocation strategy. The optimal
transceiver design is to find matrices Y � S so as to minimizeÏ � ÅÆ� P N ��Ð �

À MONÈZ�PRQ{Ñ Z�T � 	 NÒÉ À (3.15)

where Ð � �ki À� Â � K{Ê » Ñ ZÁT � � ¶ �¼ ¸º¹ » j (3.16)

Observe, if one chooses �¢��Â , and ÐÓ���ÔÐ for all � , then
(3.15) reduces to the optimization function considered in
[2], for the subband coding of cyclostationary signals.

Optimal arrangement: Observe, [2, 6], that given a set of
positive numbers ÕÍÖÍ�Ø× � �� P N , ÖÍ� Ç Ö+� � N the minimum among
all possible

J Ö �2Ù Ö � ¸ is
J � � P N Ö � Ö+� � M � � N . Thus among the

various permutations of Ñ Z�T � , any that minimizes (3.15) must
have the following property:

Ñ ��T �ªÚ Ç ÑØÛ T �2ÜÞÝ�ÐÓ�ªÚ À MRNÈZlßPO� Ñ ZÁT �ªÚ�GàÐ��2Ü
À MONÈZlßP Û Ñ Z�T �2Ü (3.17)

and ÐÓ� Ç Ð Û Ý
À MONÈZ�PRQ{Ñ Z�T �ÔG

À MONÈZ�PRQáÑ Z�T Û j (3.18)0
The arithmetic mean (AM) of a set of positive numbers is greater than

or equal to their geometric mean (GM), with equality iff all the numbers
are equal.

4. OPTIMUM TRANSCEIVER DESIGN

In this Section we address the problem of filter selection to
minimize (3.15). This reduces to selecting a unitary matrixS Q . Given that the matrices in (2.6) are known, (2.7) fixesY . Observe that the situation in fig. 3 prevails, and â �¼ , the
autocorrelation of fã , is known. Further the autocorrelation
matrix of ã is given byâ ¼ � S ¯Q â �¼ S Q � (4.19)

and that Ñ Z�T � in (3.15), are simply the diagonal elements ofâ ¼ .
We need a few results from the theory of majorization

that will be used in solving the optimization problem at hand.
We will first introduce the notion of majorization and Schur
concavity [6].
Definition 4.1 Consider two sequences ck�HÕ+c # × Û#XP N andä �åÕ ä # × Û#EP N with c # Ç c # � N and ä # Ç ä # � N . Then we say
that ä majorizes c , denoted as cvæ ä , if the following holds
with equality at ���k��Æ #EP N c # G �Æ #EP N ä # �   Gk�IGç� j
Definition 4.2 A real valued function è����
	U�LèÓ��� N � j/j+j � � Û 	defined on a set éëêàâ Û is said to be Schur concave on é ifcvæ ä Ël�ìé Ý è���c
	 Ç èÓ� ä 	 jè is strictly Schur concave on é if strict inequality èÓ��c
	A�èÓ� ä 	 holds when c is not a permutation of ä .

We will now state a theorem that results in a test for strict
Schur concavity. We denote

è z � } ����	U�îí èÓ����	í � � Ñ �Oï è z #�T Z } ����	U�îí � èÓ���
	í �Í# í �ªZ j
Theorem 4.1 Let èÓ����	 be a scalar real valued function de-
fined and continuous on ð , and twice differentiable on the
interior of ð . Then èÓ����	 is strictly Schur concave on ð iff

(i) è is symmetric in its arguments,

(ii) è z � } ����	 is increasing in � , and

(iii) è z � } ����	`�pè z � � N } ����	`Ýñè z � T � } ���
	 � è z � T � � N } ����	 �è z � � N T � } ���
	 � è z � � N T � � N } ���
	'ò � .
Theorem 4.2 If � is an ��[I� hermitian matrix with diag-
onal elements ó N � j/j+j � ó Û and eigenvalues ô N � j+j/j � ô Û , thenóõækô on â Û .

To connect the results from majorization theory devel-
oped to our optimization problem, we state the following
theorem.
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Fig. 3. Receiver block diagram.

Theorem 4.3 The real valued scalar function
Ï

as defined
in (3.15) under the optimality conditions (3.17-3.18) is strictly
Schur concave.

In particular as the search of S Q is restricted to unitary
matrices, if one chooses S Q to be ü a matrix of orthonormal
eigenvectors of â �¼ , then â ¼ is a diagonal matrix containing
the eigenvalues of â �¼ . Note that diagonal elements of â ¼
are ¶ �¼½¸º¹ » . Thus from theorem 4.2, this choice of S Q yields
a sequence of ¶ �¼½¸º¹ » that majorizes all other achievable se-
quences. Consequently if arranged optimally, Theorem 4.3
holds, that such a sequence will minimize (3.15). It remains
simply to arrange the eigenvalues of â �¼ among the ¶ �¼½¸º¹ » ,
through exhaustive search if need be, so that an arrange-
ment that minimizes (3.15) is obtained. Thus for a suitable
permutation matrix, ý , the optimizing S Q isS Q��¤ý@ü j (4.20)

5. SIMULATION RESULTS

In this section, we compare the trasmitting power of the
DFT based DMT under no bit allocation and optimum bit
allocation with our optimum transceiver. We assume the
channel to be �����
	'�  þ� � j ÿ � MON , and a noise source �1����	
whose power spectral density is shown in fig. 4. The plot
shows that there is an 8 dB saving in transmit power with
our design over the DFT based DMT under optimum bit
allocation, and a 12 dB improvement over the conventional
DMT with no optimum bit allocation. We however note that
there may exist noise environments where the DFT based
DMT performs as well as our optimal design.

6. CONCLUSIONS

In this paper, we have presented an optimum bit allocation
strategy and transceiver design for minimizing the transmit
power when different users have varied QoS requirements.
Simulations confirm the efficacy of our results.
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