PREDICTION ERROR BASED FEEDBACK FOR DOWNLINK TRANSMIT
BEAMFORMING

Shirish Nagaraj and Yih-Fang Huang

Department of Electrical Engineering
University of Notre Dame
275 Fitzpatrick Hall, Notre Dame, IN 46556.
e-mail: snagaraj@lucent.com, huang@nd.edu

ABSTRACT 2. PREDICTION ERROR FEEDBACK

This paper examines a downlink transmit beamforming schefge proposed feedback is based on an adaptive filtering ap-
recently proposed in [1]. The idea is based on the use of @Myroach to downlink transmit beamforming. By employing
adaptive channel estimator at the base-station and requiregn adaptive Set-Membership filtering algorithm, it was shown
the mobile to selectively feed back the value of gvedic- i [1] that significant savings in feedback requirement is
tion error. This paper proposes a joint maximum-likelihood possible without sacrificing performance. This concept uti-
and set-membership filtering algorithm for adaptive channel |jzes an adaptive channel estimator and beamformer at the
estimation that provides robustness against incorrect feedygge-station.

back due to mobile decision errors. The amount of power  \we consider a single-path fading wireless channel with
and bandwidth-saving possible with this scheme is quanti- yytiple transmit antennas. Assuming that there are a to-

fied via an uplink capacity analysis. tal of K users in the system, denote the information bit
streams of the:!" user by{by (i) € {+1,—1}}. The sent
1. INTRODUCTION signal for that user is given by, (t) = >, br(2)pr (t—iT%),

wheregy () are a set of orthogonal square-integrable (pos-

A novel scheme for facilitating downlink beamforming over Sibly complex-valued) functions. TheIBeamformer is char-
fading channels is considered in this paper. There has beefCterized by a set dt vectors,}{{wk € €'} and the output
interest in incorporating feedback of side information from of the beamformerig(t) =3, _; wmsm(t); Vi, with the
the mobile to the base-station, especially for certain 3G sys-received signal at the'” user given by:
tems [2, 3, 4, 5]. However, such feedback usually causes T
a serious degradation to uplink information capacity. Re- ri(t) = ax(t) + n(t) 1)
cently, the authors have introduced a feedback scheme that . .
. ! . Where a;, is the channel vector and(t) is a zero-mean
is motivated by the idea that the amount of feedback should_ " . ; .

: " white Gaussian noise process.
BE independenbf the number of transmitting elements.

. . : The proposed feedback mechanism has been motivated
This scheme features a selective feedback, wherein the feed- . . .

. o : . ; y the requirement that the amount of feedback information
back information is sent intermittently and infrequently [1].

T te fori fecti in the feedback inf should not grow withM, the number of sensors [1]. The
10 compensate for impertections In the teedback INTor= j 4 is that the channel can be identified at the base-station
mation, a novel joint Maximum Likelihood (ML) and Set-

Membership Filtering (SMF) method for adaptive channel with the*inputjdesired output paifs (1), dx(7)) where . (i) <
estimation is proposed in Section 3 and is shown via sim- I x()9(t —iTs)dt = wi(1)bx (i), and,

ulations to achieve robustness with respect to such errors.
Section (4) quantifies the power and bandwidth saving that
is possible with the proposed feedback mechanism. Finally.wheren, (i) isi.i.d. Gaussian noise.

Section 5 concludes the paper. Now, assume that the base-station has, by adaptively es-

*Author presently with Lucent Technologies—Bell Laboratories, Whip- Flmatmg the Channel’ an eStlmﬁ@(Z - 1) at timei, which
pany, NJ. is used to design the beamformer as

di, (i) = aF xp (i) + ng(i) Vi
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Then, we have the special property that the prediction er-following, we develop a joint adaptive maximum likelihood
ror needed by the base-station for updating the channel esand set-membership algorithm that explicitly accounts for

timate, is given by the statistics of the noise plus errors, while preserving the
selective updating property.
05 (4) 2 di(i) — aF (i — 1)xp, (i) = dp(i) — br () The problem here is to estimasg from thecorrupted

observationgdy (i)}, which are given by the model:
Thus, if the mobile has a good hard estimateégfi), de-
noted byby (i), it can form an empirical estimate of the pre- di (i) = al xx (i) + vk (i) = o ()br(i) + vr(i)  (3)
diction error ashy, (i) 2 dy (i) — by (i) and feed this quan- R A aTa i
tity back to the base-station, which, in turn, can use this Wherevy (i) = n (i) + x (i) anday (i) = %
value to update its channel estimateag(i). Further, it Because of the nature of the inpu,(2), which depends
was shown in [1] that if an adaptive Set-Membership Filter- onay (i — 1), it can be seen that, (i) is not an independent

ing (SMF) algorithm [6] is used for channel estimation, the sequence. This is due to the fact thafi), which forms
prediction error need not be fed back all the time since the 3 part ofex (i), is dependent o#y (i — 1), which in turn,

algorithm updates its estimate if and onlyidf.(i)| > v, is dependent on the noisg (i — 1). Intuitively, this is to
wherey;, > 0 is a pre-specified error bound. Thus the mo- pe expected because if, say(i — 1) were incorrect, then
bile can decide not to feed anything bacKdf(i)| < vk~ a,(i — 1) would be updated with corrupted data. Further,
This further decreases the feedback requirement. an inaccurate estimagg, (i — 1) increases the chances that

Note that this scheme is better than transmitting the acp, (i)
tual value ofdj(¢) on two counts:e if the updating condi-
tion is not met, then no signal is fed back, resulting in a gain

in the uplink capacity, ana, the mean-square value &f(i) forward. The approach here is to characterize the marginal
is much less than that afj, (i), which results in significant ¢ ¢ the errors, and design an adaptive ML estimator such

savings In power requir ements, leading to an increase in the[hat the exact marginal statistics of the data are at least ac-
battery life of the mobile handset. In essence, at most one

: o counted for, while making ani.d. assumption on the data.
complex-valued quantity (the prediction error) needs to be

) : The marginapdfof dy, givenay, is given byf, |, (d (i) —
fed back as opposed tf channel coefficients, as in con- _ /. h Yis th diti I noise+ f
ventional schemes for feedback, seg.,[3, 4]. Thus the x,. (1) ay), where ), () is the conditional noise+errquf,

. . o2 given knowledge of the transmitted bi,(¢). Theweighted
basic feedback power requirement is independenf of ML estimate can be formulated as one of maximizing:

is incorrect, thus influencing the value gf(i), and
hence, ofv (7).
Unfortunately, characterizing this dependence is not straight-

3. ROBUSTNESS TO DECISION FEEDBACK Ja, (1) = w(i)Ja, (i — 1)+ v(i) log fv‘b(czk(i) —x¥(i)ay)
ERRORS
which needs to be solved adaptively by making certain ap-

A critical assumption made in the feedback approach [1] proximations [6].
was on the perfect bit estimates available at the mobile. The  With the following definitionsz)(e) = —91log f,1(e)/0e*
effects of these feedback errors on the performance of theandz/}(e) = —0%log fuip(€)/ede*, a general update equa-
proposed feedback scheme is examined in this section.  tjon for adaptively estimating a parameter by the maximum

The empirical estimate of the prediction error being ac- likelihood cost function is given by [6]:
curate is a reasonable assumption for high SNR situations.
However, it is desirable in practice for the adaptive filter- an(i) = a,(i — 1) + v(i) P (i) x5() ¥(0x(3))  (4)
ing based feedback scheme to work even in moderate to
low SNR regions, wherein the assumption of perfect bit es- where
timates cannot be made. o

Based on the model (1), the base-station reconstructs, P (i) =w(@) Pyt (i — 1) + v(i) P(0x(3)) x5 (3) x5, (3)

upon receiving the value @% (i), an estimate of; (i), de- ©)
noted bydy (i), as: The sequence of weights(i) andv (i) can be chosen ac-
cording to the type of weighting desired.
,{zk (i) = 3k (i) + br (i) = di (i) + ex (i) (2) By characterizing the marginptfof the noise, we have

that the ML estimation baseg(-) function is of the form:
wheree (i) = bg(i) — b (7). If the mobile’s estimate of
bi(i) was correct, themy,(i) = 0. It can be seen from sim- e — 2by(4) ; if br(i)R{e} € (—oo, —A())
ulations that these errors, when not compensated for in they)(e) = { e — 2om) it b (YR{e} € [~ Ap(i), 2 — Ag(4))

1+exp(mp)
adaptive filtering step, can lead to severe degradation. In the e ;p " if b (i) R{e} € [2 — Ak (i), 00)




® ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 4. UPLINK POWER AND BANDWIDTH SAVING

L . . In this section, we quantify, via an uplink capacity analysis,

VM i ww “ WW f \( the amount of achievable power saving via selective feed-
back. Consider an uplink channel without fading. In the first

sf 1 analysis, we do not consider any particular channel-sharing

(or multiple-access scheme) between the information and

feedback symbols as well as between all the users.

Then the received signal at the base-station f&r aser
system can be written as:

SINR in dB

K K
Average Update = 30 %
2= p+E=Y (Wrrtur)+E  (6)
k=1 k=1
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whereyy, is the total signal transmitted by userand¢ is
Fig. 1. Typical performance a joint ML-SMF algorithm un- AWGN with a power spectral density height 8% /2. The

der feedback errors for a target SNRIOfAB with an initial ~ SUPSCripts/ and F, onyy, refer to theinformationand the
training sequence of 50 bits. feedbacksymbol sequences that are transmitted. Further,

assume that

R E[y} = P, = Pi,+Pp, ; P, £ Ely3] ; Pr, = Ely3,)
wheren, = 2(R{e} — b)/02, 02 = E[lnk(i)%]/2, and
A (7) 2 R{ax(i)}. From this,(e) is evaluated easily.
The following interpretation can be made of the assignment
to ¢ (-): if the prediction error is more negative (foy (i) =
+1 and vice-versa foby (i) = —1) than a certain threshold
, then the the mobile’s bit decision is assumed to be in er-
ror and the value ofy, (i) is adjusted by subtractiripy (i)
from it, in order to correct for the likely mistake. One of the
problems with using this ML-based function for adaptive es-

for some setof, > 0,k =1,2,..., K. We make the rea-
sonable assumption that the random variables correspond-
ing to thel and F' symbols are independent of each other.
Let R;, andRp, denote the rates of transmission of the re-
spective symbols for thét”® user. Then, we can view the
uplink model (6) as a 2K-user multiple access channel. The
capacity region is defined via the well-known set of inequal-

timation is the non-monotonicity af(e), which leads toill- Z R, + Z Re < Blog [ 1+ Y omes, Prn + 2 jes, PRy
convergence behavior. Typically, wheie) is negative, the < Tm ™, < B = & N,B
matrix update equations (5) can become unstable becaus& <"’ 7e52 @)

the positive-definiteness ﬂlzl(_i) is notguaranteedforall o o1 5, and S, which are index sets that belong to the

i- This problem can be remedied by replacingOpéimum o ver setoff 1,2, .. ., K'}, denoted bySx . The total band-

#(-) function by an approximation. This forcede) = ¢ \yigth available i2B, the height of the noise power spectral
even wherb, (1)R{e} € [.—Ak(z), 2 — Ak (4)), thus ignor- density isN, /2 and denote? = N, B.

ing the second term (which leads to the non-monotonicity). Assuming that the powers of the users are ordered as
Further, for some error boung, > 0, selective updating S P.>..>P, >Ps >Pp>..>Pp

(and thus, an SMF-like bounded error constraint), can eas+q, jt js straightforward to show that the rates achieved by
ily be incorporated in this framework by imposing a dead , g,ccessive decoding strategy lies on the boundary of the
zone region [6] such that(e) = 0 whenevete| < . capacity region. The successive decoding rates are as fol-

It can also be shown that the sequenggi), which is lows:
required in the adaptation, can be accurately estimated by a
simple averager-based least-squares estimator [6]. Rp, = Blog (1 " P, 2)
The typical performance of an exponentially weighted, Zm>i Pr, +o
selectively updating algorithm is plotted in Figure (1) for a R — Blos(1+ Pr, ®)
slow-fading wireless channel, assuming uncorrelated scat- T g > msk Pr,. + Pr + 02

tering paths from each element, witlh = 4 elements. The ) _
weight A(/) = 0.9 ¥ 4. It is seen that the algorithm up- '€ aboxe equations hold for glik = 1,2,..., K. Fur-
dates less thaB0% of the time while having the capability ther,Pr = Zﬁzl ju

to come out of large error events, which demonstrates the  Assume that th& different users have an updating frac-
robustness of the algorithm. tion given byr;, 7, ..., 7k, wherer; € (0, 1]. Denote the
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powers and the rates being used by the super-scfiptthe
case of continuous feedback and by the super-seript - [ Actual value of ractional bandwidth 77
selective feedback. The basic equations governing the two | — e A
situations are that the information symbol rate remains the ’
same while the feedback rate is decreased by a factgr of
for the userj. Thatis,R} = R} & Ry =7 Rp Vj,
which can be solved for any general K. To exactly quantify
the saving possible, let us consider a single-user system,

K = 1. These conditions then reduce to

s Pc T P< —(1-7)
PF:aQ[(1+U—§> —1};P;:P;<1+U—§>

and the total power required in the selective feedback scheme == ‘ ‘ ‘ ‘
would be given b)PS — PIS + P}Sr It can be shown [6] that 0.1 02 03 04 U(:).dsa‘mgﬁag‘.ign 07 08 0.9 1
for an updating fraction of0 — 30%, which is typical for

SMF algorithms, the savings in total transmitted power is in Fig. 2. Bandwidth saving with selective feedback as a func-
the range ofts — 55%. tion of 7 for different values of feedback SNR.

Now we analyze the case when the two streams use
frequency-division for sending the signals. The saving in qye to selective feedback was quantified via an uplink ca-
feedback bandwidtban be quantified in this scenario. The a ity analysis. Further, a selectively updating adaptive max-
capacity equation with FDMA fo’ = 1, i.e.,a two-USer  jmm likelihood algorithm was developed to provide robust
channel, is given by performance in the face of errors due to incorrect detection

P P at the mobile.
R1—3110g<1+ L ) ;RF—BF10g<1+ £ >
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