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ABSTRACT

This paper examines a downlink transmit beamforming scheme
recently proposed in [1]. The idea is based on the use of an
adaptive channel estimator at the base-station and requires
the mobile to selectively feed back the value of thepredic-
tion error. This paper proposes a joint maximum-likelihood
and set-membership filtering algorithm for adaptive channel
estimation that provides robustness against incorrect feed-
back due to mobile decision errors. The amount of power
and bandwidth-saving possible with this scheme is quanti-
fied via an uplink capacity analysis.

1. INTRODUCTION

A novel scheme for facilitating downlink beamforming over
fading channels is considered in this paper. There has been
interest in incorporating feedback of side information from
the mobile to the base-station, especially for certain 3G sys-
tems [2, 3, 4, 5]. However, such feedback usually causes
a serious degradation to uplink information capacity. Re-
cently, the authors have introduced a feedback scheme that
is motivated by the idea that the amount of feedback should
BE independentof the number of transmitting elements.
This scheme features a selective feedback, wherein the feed-
back information is sent intermittently and infrequently [1].

To compensate for imperfections in the feedback infor-
mation, a novel joint Maximum Likelihood (ML) and Set-
Membership Filtering (SMF) method for adaptive channel
estimation is proposed in Section 3 and is shown via sim-
ulations to achieve robustness with respect to such errors.
Section (4) quantifies the power and bandwidth saving that
is possible with the proposed feedback mechanism. Finally,
Section 5 concludes the paper.
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2. PREDICTION ERROR FEEDBACK

The proposed feedback is based on an adaptive filtering ap-
proach to downlink transmit beamforming. By employing
an adaptive Set-Membership filtering algorithm, it was shown
in [1] that significant savings in feedback requirement is
possible without sacrificing performance. This concept uti-
lizes an adaptive channel estimator and beamformer at the
base-station.

We consider a single-path fading wireless channel with
multiple transmit antennas. Assuming that there are a to-
tal of K users in the system, denote the information bit
streams of thekth user by{bk(i) ∈ {+1,−1}}. The sent
signal for that user is given bysk(t) =

∑
i bk(i)φk(t−iTs),

whereφk(·) are a set of orthogonal square-integrable (pos-
sibly complex-valued) functions. The beamformer is char-
acterized by a set ofK vectors,{wk ∈ CM} and the output
of the beamformer isx(t) =

∑K
m=1wmsm(t); ∀t, with the

received signal at thekth user given by:

rk(t) = a
T
k x(t) + n(t) (1)

whereak is the channel vector andn(t) is a zero-mean
white Gaussian noise process.

The proposed feedback mechanism has been motivated
by the requirement that the amount of feedback information
should not grow withM , the number of sensors [1]. The
idea is that the channel can be identified at the base-station
with the input-desired output pairs(xk(i), dk(i))where,xk(i)

4
=∫

x(t)φ∗k(t− iTs)dt = wk(i)bk(i), and,

dk(i) = a
T
k xk(i) + nk(i) ∀ i

wherenk(i) is i.i.d. Gaussian noise.
Now, assume that the base-station has, by adaptively es-

timating the channel, an estimateâk(i− 1) at timei, which
is used to design the beamformer as

wk =
â∗k(i− 1)
‖âk(i− 1)‖2



Then, we have the special property that the prediction er-
ror needed by the base-station for updating the channel es-
timate, is given by

δk(i)
4
= dk(i)− âTk (i− 1)xk(i) = dk(i)− bk(i)

Thus, if the mobile has a good hard estimate ofbk(i), de-
noted bŷbk(i), it can form an empirical estimate of the pre-

diction error aŝδk(i)
4
= dk(i) − b̂k(i) and feed this quan-

tity back to the base-station, which, in turn, can use this
value to update its channel estimate toâk(i). Further, it
was shown in [1] that if an adaptive Set-Membership Filter-
ing (SMF) algorithm [6] is used for channel estimation, the
prediction error need not be fed back all the time since the
algorithm updates its estimate if and only if|δk(i)| > γk,
whereγk > 0 is a pre-specified error bound. Thus the mo-
bile can decide not to feed anything back if|δ̂k(i)| ≤ γk.
This further decreases the feedback requirement.

Note that this scheme is better than transmitting the ac-
tual value ofdk(i) on two counts:• if the updating condi-
tion is not met, then no signal is fed back, resulting in a gain
in the uplink capacity, and,• the mean-square value ofδ̂k(i)
is much less than that ofdk(i), which results in significant
savings in power requirements, leading to an increase in the
battery life of the mobile handset. In essence, at most one
complex-valued quantity (the prediction error) needs to be
fed back as opposed toM channel coefficients, as in con-
ventional schemes for feedback, seee.g., [3, 4]. Thus the
basic feedback power requirement is independent ofM .

3. ROBUSTNESS TO DECISION FEEDBACK
ERRORS

A critical assumption made in the feedback approach [1]
was on the perfect bit estimates available at the mobile. The
effects of these feedback errors on the performance of the
proposed feedback scheme is examined in this section.

The empirical estimate of the prediction error being ac-
curate is a reasonable assumption for high SNR situations.
However, it is desirable in practice for the adaptive filter-
ing based feedback scheme to work even in moderate to
low SNR regions, wherein the assumption of perfect bit es-
timates cannot be made.

Based on the model (1), the base-station reconstructs,
upon receiving the value of̂δk(i), an estimate ofdk(i), de-
noted byd̂k(i), as:

d̂k(i) = δ̂k(i) + bk(i) = dk(i) + εk(i) (2)

whereεk(i) = bk(i) − b̂k(i). If the mobile’s estimate of
bk(i) was correct, thenεk(i) = 0. It can be seen from sim-
ulations that these errors, when not compensated for in the
adaptive filtering step, can lead to severe degradation. In the

following, we develop a joint adaptive maximum likelihood
and set-membership algorithm that explicitly accounts for
the statistics of the noise plus errors, while preserving the
selective updating property.

The problem here is to estimateak from thecorrupted
observations{d̂k(i)}, which are given by the model:

d̂k(i) = a
T
k xk(i) + vk(i) = αk(i)bk(i) + vk(i) (3)

wherevk(i)
4
= nk(i) + εk(i) andαk(i)

4
=
aTk âk(i−1)
‖âk(i−1)‖2 .

Because of the nature of the input,xk(i), which depends
on âk(i− 1), it can be seen thatεk(i) is not an independent
sequence. This is due to the fact thatb̂k(i), which forms
a part ofεk(i), is dependent on̂ak(i − 1), which in turn,
is dependent on the noisenk(i − 1). Intuitively, this is to
be expected because if, say,b̂k(i − 1) were incorrect, then
âk(i − 1) would be updated with corrupted data. Further,
an inaccurate estimatêak(i − 1) increases the chances that
b̂k(i) is incorrect, thus influencing the value ofεk(i), and
hence, ofvk(i).

Unfortunately, characterizing this dependence is not straight-
forward. The approach here is to characterize the marginal
pdfof the errors, and design an adaptive ML estimator such
that the exact marginal statistics of the data are at least ac-
counted for, while making ani.i.d. assumption on the data.

The marginalpdfof d̂k givenak is given byfv|b(d̂k(i)−
xTk (i) ak), wherefv|b(·) is the conditional noise+errorpdf,
given knowledge of the transmitted bit,bk(i). Theweighted
ML estimate can be formulated as one of maximizing:

Jak(i) = ω(i)Jak(i− 1) + ν(i) log fv|b(d̂k(i)− xTk (i)ak)

which needs to be solved adaptively by making certain ap-
proximations [6].

With the following definitions:ψ(e) = −∂ log fv|b(e)/∂e∗
andψ̇(e) = −∂2 log fv|b(e)/∂e∂e∗, a general update equa-
tion for adaptively estimating a parameter by the maximum
likelihood cost function is given by [6]:

âk(i) = âk(i− 1) + ν(i) Pk(i) x∗k(i) ψ(δ̂k(i)) (4)

where

P−1k (i) = ω(i) P
−1
k (i− 1) + ν(i) ψ̇(δ̂k(i)) x∗k(i) xTk (i)

(5)
The sequence of weightsω(i) andν(i) can be chosen ac-
cording to the type of weighting desired.

By characterizing the marginalpdfof the noise, we have
that the ML estimation basedψ(·) function is of the form:

ψ(e) =




e− 2bk(i) ; if bk(i)<{e} ∈ (−∞,−Ak(i))
e− 2 exp(ηb)

1+exp(ηb)
; if bk(i)<{e} ∈ [−Ak(i), 2−Ak(i))

e ; if bk(i)<{e} ∈ [2−Ak(i),∞)
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Fig. 1. Typical performance a joint ML-SMF algorithm un-
der feedback errors for a target SNR of10 dB with an initial
training sequence of 50 bits.

whereηb
4
= 2(<{e} − b)/σ2v, σ

2
v = E[|nk(i)|2]/2, and

Ak(i)
4
= <{αk(i)}. From this,ψ̇(e) is evaluated easily.

The following interpretation can be made of the assignment
toψ(·): if the prediction error is more negative (forbk(i) =
+1 and vice-versa forbk(i) = −1) than a certain threshold
, then the the mobile’s bit decision is assumed to be in er-
ror and the value of̂δk(i) is adjusted by subtracting2bk(i)
from it, in order to correct for the likely mistake. One of the
problems with using this ML-based function for adaptive es-
timation is the non-monotonicity ofψ(e), which leads to ill-
convergence behavior. Typically, whenψ̇(e) is negative, the
matrix update equations (5) can become unstable because
the positive-definiteness ofP−1k (i) is not guaranteed for all
i. This problem can be remedied by replacing theoptimum
ψ(·) function by an approximation. This forcesψ(e) = e
even whenbk(i)<{e} ∈ [−Ak(i), 2−Ak(i)), thus ignor-
ing the second term (which leads to the non-monotonicity).
Further, for some error boundγk > 0, selective updating
(and thus, an SMF-like bounded error constraint), can eas-
ily be incorporated in this framework by imposing a dead
zone region [6] such thatψ(e) = 0 whenever|e| < γk.

It can also be shown that the sequenceAk(i), which is
required in the adaptation, can be accurately estimated by a
simple averager-based least-squares estimator [6].

The typical performance of an exponentially weighted,
selectively updating algorithm is plotted in Figure (1) for a
slow-fading wireless channel, assuming uncorrelated scat-
tering paths from each element, withM = 4 elements. The
weight λ(i) = 0.9 ∀ i. It is seen that the algorithm up-
dates less than30% of the time while having the capability
to come out of large error events, which demonstrates the
robustness of the algorithm.

4. UPLINK POWER AND BANDWIDTH SAVING

In this section, we quantify, via an uplink capacity analysis,
the amount of achievable power saving via selective feed-
back. Consider an uplink channel without fading. In the first
analysis, we do not consider any particular channel-sharing
(or multiple-access scheme) between the information and
feedback symbols as well as between all the users.

Then the received signal at the base-station for aK user
system can be written as:

z =
K∑
k=1

yk + ξ =
K∑
k=1

(yk,I + yk,F ) + ξ (6)

whereyk is the total signal transmitted by userk andξ is
AWGN with a power spectral density height ofN0/2. The
subscripts,I andF , onyk, refer to theinformationand the
feedbacksymbol sequences that are transmitted. Further,
assume that

E[y]2k = P̄k = PIk+PFk ; PIk
4
= E[y2Ik ] ; PFk

4
= E[y2Fk ]

for some set of̄Pk > 0, k = 1, 2, . . . ,K. We make the rea-
sonable assumption that the random variables correspond-
ing to theI andF symbols are independent of each other.
LetRIk andRFk denote the rates of transmission of the re-
spective symbols for thekth user. Then, we can view the
uplink model (6) as a 2K-user multiple access channel. The
capacity region is defined via the well-known set of inequal-
ities

∑
m∈S1

RIm+
∑
j∈S2

RFj ≤ B log
(
1 +

∑
m∈S1 PIm +

∑
j∈S2 PFj

NoB

)
(7)

for all S1 andS2, which are index sets that belong to the
power set of{1, 2, . . . ,K}, denoted bySK . The total band-
width available is2B, the height of the noise power spectral
density isN0/2 and denoteσ2 = N0B.

Assuming that the powers of the users are ordered as
PI1 > PI2 > . . . > PIK > PF1 > PF2 > . . . > PFK ,
then it is straightforward to show that the rates achieved by
a successive decoding strategy lies on the boundary of the
capacity region. The successive decoding rates are as fol-
lows:

RFj = B log

(
1 +

PFj∑
m>j PFm + σ

2

)

RIk = B log

(
1 +

PIk∑
m>k PIm + PF + σ

2

)
(8)

The above equations hold for allj, k = 1, 2, . . . ,K. Fur-

ther,PF
4
=
∑K
m=1 PFm .

Assume that theK different users have an updating frac-
tion given byτ1, τ2, . . . , τK , whereτj ∈ (0, 1]. Denote the



powers and the rates being used by the super-scriptc for the
case of continuous feedback and by the super-scripts for
selective feedback. The basic equations governing the two
situations are that the information symbol rate remains the
same while the feedback rate is decreased by a factor ofτj
for the userj. That is,RsIj = RcIj & RsFj = τj R

c
Fj
∀ j,

which can be solved for any general K. To exactly quantify
the saving possible, let us consider a single-user system,i.e.,
K = 1. These conditions then reduce to

P sF = σ
2

[(
1 +

P cF
σ2

)τ
− 1
]
; P sI = P

c
I

(
1 +

P cF
σ2

)−(1−τ)
(9)

and the total power required in the selective feedback scheme
would be given byP̄ s = P sI +P

s
F . It can be shown [6] that

for an updating fraction of10 − 30%, which is typical for
SMF algorithms, the savings in total transmitted power is in
the range of45− 55%.

Now we analyze the case when the two streams use
frequency-division for sending the signals. The saving in
feedback bandwidthcan be quantified in this scenario. The
capacity equation with FDMA forK = 1, i.e., a two-user
channel, is given by

RI = BI log

(
1 +

PI

BIN0

)
; RF = BF log

(
1 +

PF

BFN0

)
(10)

whereBI andBF denote the bandwidths allocated to the
I andF streams with the constraint thatBI + BF ≤ B.

P sI = P cI
4
= PI ; & P

s
F = P cF

4
= PF . With this, and from

(10) and the rate relations, we obtain the relation between
feedback bandwidth requirement as

BsF log

(
1 +

PF

BsFN0

)
= τBcF log

(
1 +

PF

BcFN0

)
(11)

The above equation does not have a closed-form solution to
it, although an approximate solution can be obtained as [6]

BsF
BcF
≈

S
2 τ
2(

τ(S2 − 1) + 1
) (12)

whereS
4
= PF /N0B

c
F is the SNR on the continuous feed-

back channel. This indicates that the bandwidth fraction
scales linearly withτ , which is intuitively expected. Figure
(2) shows the amount of bandwidth saving possible by ex-
plicitly solving (11) as well as the value obtained from the
approximation given in (12). It is seen that the approxima-
tion is reasonably accurate for bothS = 0 dB andS = 7
dB.

5. CONCLUSIONS

This paper analyzed a novel methodology for feedback-based
transmit beamforming. The power and bandwidth savings
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Fig. 2. Bandwidth saving with selective feedback as a func-
tion of τ for different values of feedback SNR.

due to selective feedback was quantified via an uplink ca-
pacity analysis. Further, a selectively updating adaptive max-
imum likelihood algorithm was developed to provide robust
performance in the face of errors due to incorrect detection
at the mobile.

6. REFERENCES

[1] S. Nagaraj and Y. F. Huang, “Donwlink transmit beam-
forming with selective feedback,” inAsilomar Con-
ference on Signals, Systems and Computers, (Pacific
Grove, CA), 2000.

[2] D. Gerlach and A. Paulraj, “Adaptive trasmitting an-
tenna arrays with feedback,”IEEE Signal Processing
Letters, vol. 1, pp. 150–152, October 1994.

[3] C. D. Frank, “Optimal transmit array weighting for DS-
CDMA with channel feedback,” inProc. Conference
on Information Sciences and Systems, (Princeton, NJ),
2000.

[4] A. Hottinen and R. Wichman, “Enhanced filtering for
feedback mode transmit diversity,” inProc. Conference
on Information Sciences and Systems, (Princeton, NJ),
2000.

[5] A. Narula et al., “Efficient use of side information in
multiple access data transmission over fading chan-
nels,” IEEE Journal on Selected Areas in Communica-
tions, vol. 16, pp. 1423–1436, October 1998.

[6] S. Nagaraj,Adaptive Multiuser Signal Estimation and
Downlink Beamforming for Wireless Communications.
University of Notre Dame: Ph. D. Dissertation, 2000.


