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ABSTRACT

Multiple-antenna systems that operate at high rates require
simple yet effective space-time transmission schemes to han-
dle the large traffic volume in real time. V-BLAST, where

every antenna transmits its own independent substream o
data, has been shown to have good performance and sim
ple encoding and decoding. Yet its drawbacks include its
inability to work with fewer receive antennas than transmit
antennas, and its absence of built-in spatial coding. On the
other hand, there are many previously-proposed space-tim
codes that have good fading resistance and simple decod-

ing, but generally poor performance at high data rates or 1.

with many antennas.
We propose a high-rate coding scheme that can handle

any configuration of transmit and receive antennas and that 2

subsumes both V-BLAST and many proposed space-time
codes as special cases. The scheme transmits substreams
of data in linear combinations over space and time and the

codes are designed to optimize the mutual information be- 4.

tween the transmitted and received signals. Because of their
linear structure, the codes retain the decoding simplicity of
V-BLAST, and because of their information-theoretic opti-
mality, they possess many coding advantages.

1. INTRODUCTION AND MODEL 6.

It is widely acknowledged that reliable fixed and mobile
wireless transmission of video, data, and speech at high
rates will be an important part of future telecommunica-
tions systems. One way to get high rates on a scattering-rich
wireless channel is to use multiple transmit and/or receive
antennas. To achieve the high data rates promised in the
ory [1], however, new approaches for space-time transmis-
sion are needed. One such approach is V-BLAST (Vertical
Bell Labs Layered Space-Time) [2] which breaks the orig-
inal data stream into substreams that are transmitted on th
individual antennas. The receiver decodes the substream
using a sequence of nulling and cancelling steps.

Since then there has been considerable work on a variet
of space-time transmission schemes and performance me
sures [3, 4, 5]. At very high rates and with a large number of
antennas, many of these space-time codes suffer from com-
plexity or performance difficulties. Although V-BLAST can

~

handle high data rates with reasonable complexity, the de-
coding scheme presented in [2] does not work with fewer
receive than transmit antennas.

We present a space-time transmission scheme that has
fnany of the coding and diversity advantages of previously
designed codes, but also has the decoding simplicity of V-
BLAST at high data rates. The codes work with arbitrary
numbers of transmit and receive antennas. The codes break
the data stream into substreams that are dispersed in linear
gombinations over space and time. We refer to them simply
as LD codes (linear dispersion codes). They:

Subsume, as special cases, both V-BLAST [2] and the
block codes of [4]

Generally outperform both

3. Can be used for any number of transmit and receive

antennas

Are very simple to encode

5. Can be decoded using a variety of simple linear-algebraic

techniques such as successive nulling and cancelling
(V-BLAST [2], square-root V-BLAST [6]), or sphere
decoding [7]

Are designed with the numbers of both the transmit
andreceive antennas in mind

. Satisfy an information-theoretic optimality criterion

We briefly summarize the general structure of the LD
codes. Suppose that there ddetransmit antennasy re-
ceive antennas, and an interval Bfsymbols available to

us during which the propagation channel is constant and
known to the receiver. The transmitted signal can then be
written as d' x M matrix S that governs the transmission
over theM antennas during the interval. We assume that
§he data sequence has been broken {ptsubstreams and
?natsl, ..., sqg are the complex symbols chosen from an ar-
bitrary, sayr-PSK orr-QAM, constellation. We call a rate
Y = (Q/T)log, r linear dispersion code one for which
a(Sbeys

Q
Z (agAq +jBeBy)

q=1

S = 1)



where the real scalarfxy,, 3,} are given bys, = o, + 2. INFORMATION-THEORETIC ANALYSIS OF

JjBy, q = 1,...Q. The code is completely specified by SOME SPACE-TIME CODES

the fixedI'x M complex matricesl;, ..., Ag andB;, ..., Bg.

Each individual codeword is determined by the complex To motivate the LD codes let us begin by reviewing some

scalars{si,...,sq}- existing space-time codes.
Many known codes can be identified as special cases.
The2 x 2 code of [3] 2.1. Mutual information attainable with orthogonal de-
—s3 8] An orthogonal designs introduced by Alamouti in [3] for

for example, can be obtained as a special case of (1) byl' = M = 2 and has the structure given in (2). The com-
taking? = M =@ =2 and plex scalarg; ands, are drawn from a particular{PSK or
1 0 0 1 1 0 o 11 r-QAM) constellation, but we may simply assume that they
A= [0 1] Az = {_1 0] B = {0 _1] B2 = [1 0] are random variables such tHat|s;|* + |s2|?) = 2. One
can see from (2) tha&f has orthogonal columns and, more-
As another example, V-BLAST in [2] transmits individ-  OVer, that any linear combination 6fs also has orthogonal
ual substreams on each antenna. There is no spatial charfolumns.

ne| Code structure and hence we can tﬁke: 1 andS — We may aSk hOW mUCh mutual information the Orthog'
[$1, S2,...,s]. Thisis obtained in (1) by taking@ = M onal design structure (2) can attain? To answer this ques-
and tion we need to comput€,,; (p, V), the mutual informa-
tion between the transmitted and received signals, and com-
Ag =B, = [.0’ 0,10, "0,]’ ¢=1L...,Q. pare it withC(p, M, N), the capacity of thé/ x N multi-

g—1 M—q antenna system. This is done in [8], with the result

The design of LD codes depends crucially on the choices
of the parameterE, ) and the dispersion matricéd,, B, }.
To choose thg 4, B,} we propose to optimize a nonlin-  The above equations imply that the orthogonal design (2)
ear information-theoretic criterion: namely, the mutual in- can achieve full channel capacity of thé = 2, N = 1
formation between the transmitted signgds,, 3,} and the  system, but not of tha/ = 2, N > 2 system. Thus, when
received signal. N > 2 we incur a loss with the structure (2), which can be
substantial at high SNR.

Corth(p,N) :C(NP,MZQN,N:]_)

1.1. The Multiple-Antenna Model

Consider a narrow-band, flat-fading, multi-antenna commu- 2.2. Mutual information attainable with V-BLAST

nication system with\/ transmit andV receive antennas, |n V-BLAST, the maximum mutual information that can be
where the channel is constant for at le&sthannel uses.  achieved is indeed the full multi-antenna channel capacity.
Then the transmitted and received signals can be related bywhen N > M there exist efficient schemes for decoding
P the V-BLAST matrices, the best implementations of which
X = \/%SH +V, (3)  requireO(N?) computations. Nevertheless, V-BLAST suf-
fers from two deficiencies: the simple decoding algorithms

where X € CT*N is the received matrix§ € C'TXM is failwhenN < M, and there is no built-in spatial coding.
the transmitted matrix, anid € CT*V is the additive noise

matrix with independenfA/(0,1) entries. InX, S, and
V, time runs vertically and space runs horizontally. €
CMxN is the channel matrix of independeht/(0,1) en-

3. LINEAR-DISPERSION SPACE-TIME CODES

i ) ) We call alinear-dispersion (LD) codene for whichS satis-
tries. The entries of the transmitted matfixare assumed g (1) where thel, andB, arefixedT x M complex matri-
to have, on the average, unit variance entries, which implies < "\vithout loss of geneqrality we assume tat. .., ao
the power constrairi tr SS* = TM and, along with the - 545 5. have variancé and are uncorrelated. This
normalization,/7, thatp is the SNR at the receiver, inde- ;. ces the normalization

pendently ofM.

H is assumed to be known to the receiver but not to Q
the transmitter, in which case the channel capacity (often Z (tr AgAg +tr B;Bq) =2TM. Q)
referred to as thperfect-knowledgeapacity) is [1] =1

P * Note that in V-BLAST each signdla,, 5,} is transmitted
C(p,M,N) =Elogdet (I —HH"). 4 . @ ~q .
(p, M, N) 0g e ( Nt M ) “) from only one antenna during only one channel use. With



the LD codes, however, the dispersion matrices potentially
transmit some combination @achsymbol fromeachan-
tenna aeverychannel use. This can lead to desirable coding
properties.

3.1. Decoding

An important property of the LD codes (1) is their linearity
in the variabled oy, 3,}. This leads to the following linear
relation between théa,, 8,} and the received signals:

TR,1 aq VUR,1
Ty, 51 Ur,1
P . .
=JLH| : |+ : 6
AR . ®
TR,N agQ VUR,N
TN Bq VLN
N——
A A A
=x =8 =v
wherezg ,, 1.5, VRn, andvr ,,n =1,..., N, denote the

real and imaginary parts of the columns®¢fandV, respec-
tively, and wheré{ is an2 N T x 2() realequivalenthannel
matrix whose entries depend on the entriefaind the dis-
persion matrice§A,, B, }; for an explicit description o¥
see [8].

Note that the equivalent chanrilis known to the re-
ceiver because the original chanr€] and the dispersion
matrices{4,, B,} are all known to the receiver. When
) < NT there are more equations than unknowns and we
may therefore use any decoding technique already in place
for V-BLAST to decode the signalsy,, 5, }.

3.2. Design of the Dispersion Codes

Although we have introduced the LD structure we have not
yet specified;) or the dispersion matrices, ..., Ag and
By, ...,Bg. We have the inequalit)) < NT'. Intuitively,
the largerQ is, the higher the maximum mutual information
is, and the smalleg) is, the more of a coding effect we
obtain.

We are left with the question of how to design the disper-
sion matrices. We choogel,, B, } to maximize the mutual
information betweer andz in (6). This guarantees that we

for an SNRp of interest, subject to one of the follow-
ing constraints

() X9, (trAzA, +tr B;B,) = 2T M
(i) trAsA, =tr BB, = %, g=1,...Q
(i) ArA, =B;B, = gIM, g=1,...Q

We now make some remarks:
1. The constraints are listed in increasing order of re-

strictiveness. Constraint (iii) generally gives the best
coding effects.

. The solution to (7) subject to any of the constraints

(D—(iii) is highly nonunique. For example, the trans-
formation
A:I = Zgzl (Apd2p-—1,2¢-1 + Bpdap2g-1)
B; = Zp:l (Ap¢2p—1,2q + Bp‘b?p,?q)
(8)
where® = {¢i7j}i§?:1 is a real orthogonal matrix,
preserves the mutual information.

. The costfunctiog-E log det (Lyr + & HH!) can

have local maxima. Nevertheless, we have been able
to solve (7) with relative ease using gradient-based
methods.

. WhenN > M and@ = MT one solution to (7),

subject to either constraints (i) or (ii), is given by the
V-BLAST matrices. However, these do not satisfy
constraint (iii). A solution that satisfies (iii) fdF =
M is
1 i

Ayrk-1y41 = Brr-1)+1 = —,—MDk -1, (9)
wherek =1,...,M, 1 =1,...,M, D is adiagonal
matrix with e 7 on its diagonals andl is a permu-
tation matrix.

. The design criterion (Yepends explicitly on the num-

ber of receive antennas.

4. EXAMPLES OF LD CODES AND
PERFORMANCE

are taking the smallest possible mutual information penalty LD vs- OD: M = N =2, R =8

within the LD structure (1).

We test the performance of tBe 2 orthogonal design when

M = N = 2 atR = 8 versus the LD code given by (9) for

The Design Method
1. Choose&) < NT (typically, @ = min(M,N) - T).

2. Choosdq A,, B, } that solve the optimization problem

T = 2 and@ = 4. The result can be seen in Figure 1 which
clearly shows the superior performance of the LD code. To
achieveR = 8, the orthogonal design needs to choese
ands» from a 256-QAM constellation, while the LD code

can choose from a 16-QAM constellation. We note that the

1

ya t)
g o logdet (IzNT + Lt

orthogonal design achieves 7.47 bits/channel use mutual in-
formation atp = 20 dB, while the LD code achieves the full

@) channel capacity of 11.28 bits/channel use.



M=2, N=2, R=8, LD Code vs. Orthogonal Design
10 T T T

LD Code

-5 L L L L L
0 5 10 15 20 25
SNR (dB)

Figure 1: Bit error performance of the x 2 orthogonal design
versus the LD code given by (9)fdf = N =T =2 and@ =4
at rateR = 8. The decoding is maximum likelihood.

LD vs. V-BLAST: M =4,8, N =4, R=16

Figure 2 compares an LD code f&f = 8, N = 4 with
M =4, N = 4 V-BLAST atrateR = 16. The M =

N =4andM = 8 N = 4 channel capacities at 20 dB

M=4 & 8, N=4, R=16, V-BLAST vs. LD Code
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Figure 2: Bit error performance of V-BLAST folM = 4 and
N = 4 and an LD code fol = 8 and N = 4 with Q = 32 at
rate isR = 16 with nulling/cancelling decoding.
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