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ABSTRACT

Multiple-antenna systems that operate at high rates require
simple yet effective space-time transmission schemes to han-
dle the large traffic volume in real time. V-BLAST, where
every antenna transmits its own independent substream of
data, has been shown to have good performance and sim-
ple encoding and decoding. Yet its drawbacks include its
inability to work with fewer receive antennas than transmit
antennas, and its absence of built-in spatial coding. On the
other hand, there are many previously-proposed space-time
codes that have good fading resistance and simple decod-
ing, but generally poor performance at high data rates or
with many antennas.

We propose a high-rate coding scheme that can handle
any configuration of transmit and receive antennas and that
subsumes both V-BLAST and many proposed space-time
codes as special cases. The scheme transmits substreams
of data in linear combinations over space and time and the
codes are designed to optimize the mutual information be-
tween the transmitted and received signals. Because of their
linear structure, the codes retain the decoding simplicity of
V-BLAST, and because of their information-theoretic opti-
mality, they possess many coding advantages.

1. INTRODUCTION AND MODEL

It is widely acknowledged that reliable fixed and mobile
wireless transmission of video, data, and speech at high
rates will be an important part of future telecommunica-
tions systems. One way to get high rates on a scattering-rich
wireless channel is to use multiple transmit and/or receive
antennas. To achieve the high data rates promised in the-
ory [1], however, new approaches for space-time transmis-
sion are needed. One such approach is V-BLAST (Vertical
Bell Labs Layered Space-Time) [2] which breaks the orig-
inal data stream into substreams that are transmitted on the
individual antennas. The receiver decodes the substreams
using a sequence of nulling and cancelling steps.

Since then there has been considerable work on a variety
of space-time transmission schemes and performance mea-
sures [3, 4, 5]. At very high rates and with a large number of
antennas, many of these space-time codes suffer from com-
plexity or performance difficulties. Although V-BLAST can

handle high data rates with reasonable complexity, the de-
coding scheme presented in [2] does not work with fewer
receive than transmit antennas.

We present a space-time transmission scheme that has
many of the coding and diversity advantages of previously
designed codes, but also has the decoding simplicity of V-
BLAST at high data rates. The codes work with arbitrary
numbers of transmit and receive antennas. The codes break
the data stream into substreams that are dispersed in linear
combinations over space and time. We refer to them simply
as LD codes (linear dispersion codes). They:

1. Subsume, as special cases, both V-BLAST [2] and the
block codes of [4]

2. Generally outperform both

3. Can be used for any number of transmit and receive
antennas

4. Are very simple to encode

5. Can be decoded using a variety of simple linear-algebraic
techniques such as successive nulling and cancelling
(V-BLAST [2], square-root V-BLAST [6]), or sphere
decoding [7]

6. Are designed with the numbers of both the transmit
andreceive antennas in mind

7. Satisfy an information-theoretic optimality criterion

We briefly summarize the general structure of the LD
codes. Suppose that there areM transmit antennas,N re-
ceive antennas, and an interval ofT symbols available to
us during which the propagation channel is constant and
known to the receiver. The transmitted signal can then be
written as aT �M matrixS that governs the transmission
over theM antennas during the interval. We assume that
the data sequence has been broken intoQ substreams and
thats1; : : : ; sQ are the complex symbols chosen from an ar-
bitrary, sayr-PSK orr-QAM, constellation. We call a rate
R = (Q=T ) log2 r linear dispersion code one for whichS
obeys

S =

QX
q=1

(�qAq + j�qBq) ; (1)



where the real scalarsf�q; �qg are given bysq = �q +
j�q ; q = 1; : : : Q. The code is completely specified by
the fixedT�M complex matricesA1; : : : ; AQ andB1; : : : ; BQ.
Each individual codeword is determined by the complex
scalarsfs1; : : : ; sQg.

Many known codes can be identified as special cases.
The2� 2 code of [3]

S =

�
s1 s2
�s�2 s�1

�
: (2)

for example, can be obtained as a special case of (1) by
takingT =M = Q = 2 and

A1 =

�
1 0
0 1

�
; A2 =

�
0 1
�1 0

�
; B1 =

�
1 0
0 �1

�
; B2 =

�
0 1
1 0

�

As another example, V-BLAST in [2] transmits individ-
ual substreams on each antenna. There is no spatial chan-
nel code structure and hence we can takeT = 1 andS =
[s1; s2; : : : ; sM ]. This is obtained in (1) by takingQ = M
and

Aq = Bq = [0; : : : ; 0| {z }
q�1

; 1; 0; : : : ; 0| {z }
M�q

]; q = 1; : : : ; Q:

The design of LD codes depends crucially on the choices
of the parametersT ,Q and the dispersion matricesfAq ; Bqg.
To choose thefAq ; Bqg we propose to optimize a nonlin-
ear information-theoretic criterion: namely, the mutual in-
formation between the transmitted signalsf�q ; �qg and the
received signal.

1.1. The Multiple-Antenna Model

Consider a narrow-band, flat-fading, multi-antenna commu-
nication system withM transmit andN receive antennas,
where the channel is constant for at leastT channel uses.
Then the transmitted and received signals can be related by

X =

r
�

M
SH + V; (3)

whereX 2 CT�N is the received matrix,S 2 CT�M is
the transmitted matrix, andV 2 CT�N is the additive noise
matrix with independentCN (0; 1) entries. InX , S, and
V , time runs vertically and space runs horizontally.H 2
CM�N is the channel matrix of independentCN (0; 1) en-
tries. The entries of the transmitted matrixS are assumed
to have, on the average, unit variance entries, which implies
the power constraintE trSS� = TM and, along with the
normalization

p
�
M

, that� is the SNR at the receiver, inde-
pendently ofM .

H is assumed to be known to the receiver but not to
the transmitter, in which case the channel capacity (often
referred to as theperfect-knowledgecapacity) is [1]

C(�;M;N) = E log det
�
IN +

�

M
HH�

�
: (4)

2. INFORMATION-THEORETIC ANALYSIS OF
SOME SPACE-TIME CODES

To motivate the LD codes let us begin by reviewing some
existing space-time codes.

2.1. Mutual information attainable with orthogonal de-
signs

An orthogonal designis introduced by Alamouti in [3] for
T = M = 2 and has the structure given in (2). The com-
plex scalarss1 ands2 are drawn from a particular (r-PSK or
r-QAM) constellation, but we may simply assume that they
are random variables such thatE (js1j2 + js2j2) = 2. One
can see from (2) thatS has orthogonal columns and, more-
over, that any linear combination ofS’s also has orthogonal
columns.

We may ask how much mutual information the orthog-
onal design structure (2) can attain? To answer this ques-
tion we need to computeCorth(�;N), the mutual informa-
tion between the transmitted and received signals, and com-
pare it withC(�;M;N), the capacity of theM �N multi-
antenna system. This is done in [8], with the result

Corth(�;N) = C(N � �;M = 2 �N;N = 1)

The above equations imply that the orthogonal design (2)
can achieve full channel capacity of theM = 2, N = 1
system, but not of theM = 2, N � 2 system. Thus, when
N � 2 we incur a loss with the structure (2), which can be
substantial at high SNR.

2.2. Mutual information attainable with V-BLAST

In V-BLAST, the maximum mutual information that can be
achieved is indeed the full multi-antenna channel capacity.
WhenN � M there exist efficient schemes for decoding
the V-BLAST matrices, the best implementations of which
requireO(N3) computations. Nevertheless, V-BLAST suf-
fers from two deficiencies: the simple decoding algorithms
fail whenN < M , and there is no built-in spatial coding.

3. LINEAR-DISPERSION SPACE-TIME CODES

We call alinear-dispersion (LD) codeone for whichS satis-
fies (1) where theAq andBq arefixedT�M complex matri-
ces. Without loss of generality, we assume that�1; : : : ; �Q
and�1; : : : ; �Q have variance12 and are uncorrelated. This
induces the normalization

QX
q=1

�
trA�

qAq + trB�

qBq

�
= 2TM: (5)

Note that in V-BLAST each signalf�q; �qg is transmitted
from only one antenna during only one channel use. With



the LD codes, however, the dispersion matrices potentially
transmit some combination ofeachsymbol fromeachan-
tenna ateverychannel use. This can lead to desirable coding
properties.

3.1. Decoding

An important property of the LD codes (1) is their linearity
in the variablesf�q ; �qg. This leads to the following linear
relation between thef�q; �qg and the received signals:

2
666664

xR;1
xI;1

...
xR;N
xI;N

3
777775

| {z }
�
=x

=

r
�

M
H

2
666664

�1
�1
...
�Q
�Q

3
777775

| {z }
�
=s

+

2
666664

vR;1
vI;1

...
vR;N
vI;N

3
777775

| {z }
�
=v

; (6)

wherexR;n, xI;n, vR;n, andvI;n, n = 1; : : : ; N , denote the
real and imaginary parts of the columns ofX andV , respec-
tively, and whereH is an2NT�2Q realequivalentchannel
matrix whose entries depend on the entries ofH and the dis-
persion matricesfAq; Bqg; for an explicit description ofH
see [8].

Note that the equivalent channelH is known to the re-
ceiver because the original channelH , and the dispersion
matricesfAq; Bqg are all known to the receiver. When
Q � NT there are more equations than unknowns and we
may therefore use any decoding technique already in place
for V-BLAST to decode the signalsf�q ; �qg.

3.2. Design of the Dispersion Codes

Although we have introduced the LD structure we have not
yet specifiedQ or the dispersion matricesA1; : : : ; AQ and
B1; : : : ; BQ. We have the inequalityQ � NT . Intuitively,
the largerQ is, the higher the maximum mutual information
is, and the smallerQ is, the more of a coding effect we
obtain.

We are left with the question of how to design the disper-
sion matrices. We choosefAq ; Bqg to maximize the mutual
information betweens andx in (6). This guarantees that we
are taking the smallest possible mutual information penalty
within the LD structure (1).

The Design Method

1. ChooseQ � NT (typically,Q = min(M;N) � T ).

2. ChoosefAq ; Bqg that solve the optimization problem

max
Aq ;Bq ;q=1;:::Q

1

2T
E log det

�
I2NT +

�

M
HHt

�
(7)

for an SNR� of interest, subject to one of the follow-
ing constraints

(i)
PQ

q=1

�
trA�

qAq + trB�

qBq

�
= 2TM

(ii) trA�

qAq = trB�

qBq =
TM
Q

, q = 1; : : : Q

(iii) A�

qAq = B�

qBq =
T
Q
IM , q = 1; : : :Q

We now make some remarks:

1. The constraints are listed in increasing order of re-
strictiveness. Constraint (iii) generally gives the best
coding effects.

2. The solution to (7) subject to any of the constraints
(i)–(iii) is highly nonunique. For example, the trans-
formation

A0

q =
PQ

p=1 (Ap�2p�1;2q�1 +Bp�2p;2q�1)

B0

q =
PQ

p=1 (Ap�2p�1;2q +Bp�2p;2q)
(8)

where� = f�i;jg2Qi;j=1 is a real orthogonal matrix,
preserves the mutual information.

3. The cost function12T E log det
�
I2NT + �

M
HHt

�
can

have local maxima. Nevertheless, we have been able
to solve (7) with relative ease using gradient-based
methods.

4. WhenN � M andQ = MT one solution to (7),
subject to either constraints (i) or (ii), is given by the
V-BLAST matrices. However, these do not satisfy
constraint (iii). A solution that satisfies (iii) forT =
M is

A0

M(k�1)+l = B0

M(k�1)+l =
1p
M
Dk�1�l�1; (9)

wherek = 1; : : : ;M; l = 1; : : : ;M , D is a diagonal
matrix with ej

2�k
M on its diagonals and� is a permu-

tation matrix.

5. The design criterion (7)depends explicitly on the num-
ber of receive antennasN .

4. EXAMPLES OF LD CODES AND
PERFORMANCE

LD vs. OD: M = N = 2, R = 8

We test the performance of the2�2 orthogonal design when
M = N = 2 atR = 8 versus the LD code given by (9) for
T = 2 andQ = 4. The result can be seen in Figure 1 which
clearly shows the superior performance of the LD code. To
achieveR = 8, the orthogonal design needs to chooses1
ands2 from a 256-QAM constellation, while the LD code
can choose from a 16-QAM constellation. We note that the
orthogonal design achieves 7.47 bits/channel use mutual in-
formation at� = 20 dB, while the LD code achieves the full
channel capacity of 11.28 bits/channel use.
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Figure 1: Bit error performance of the2 � 2 orthogonal design
versus the LD code given by (9) forM = N = T = 2 andQ = 4

at rateR = 8. The decoding is maximum likelihood.

LD vs. V-BLAST: M = 4; 8,N = 4, R = 16

Figure 2 compares an LD code forM = 8, N = 4 with
M = 4, N = 4 V-BLAST at rateR = 16. TheM =
N = 4 andM = 8, N = 4 channel capacities at 20 dB
are 22.14 and 24.94 bits/channel use, respectively, whereas
the optimized LD code achieves 23.10 bits/channel use with
T = 8 andQ = 32.

Table 1 summarizes the mutual informations of some
LD codes that we generated and the actual channel capaci-
ties at� = 20 dB. As can be observed,CLD(�; T;M;N) is
very close toC(�;M;N); there is little penalty in the linear
structure of the dispersion codes.

(T,M,N) CLD(�; T;M;N) C(�;M;N)

(2,2,1) 6.28 6.28
(4,3,1) 6.25 6.41
(6,3,1) 6.28 6.41
(4,3,2) 11.63 12.14
(4,4,1) 6.34 6.47
(4,4,2) 11.99 12.49
(8,8,4) 23.10 24.94

(T =M;M;N �M) C(�;M;N) *

Table 1: Mutual informationCLD(�; T;M;N) obtained via
gradient-ascent optimization of the cost function (7), compared to
the actual channel capacityC(�;M;N).
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Figure 2: Bit error performance of V-BLAST forM = 4 and
N = 4 and an LD code forM = 8 andN = 4 with Q = 32 at
rate isR = 16 with nulling/cancelling decoding.
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