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ABSTRACT

StandardOFDM systemsare associatedvith a rectangu-
lar grid in the time-frequenyg plane. However sucha setup
is in generalnot optimalfor pulseshapingOFDM systems
for doublydispersve channelsWe introduceattice-OFDM
systemgLOFDM), which are OFDM systemsconstructed
with respecto generalatticesin thetime-frequeng plane.
We showv how to designoptimal pulseshapedor LOFDM
system Furthermoreve demonstratéy theoreticakonsid-
erationsand numericalsimulationsthat LOFDM systems
using hexagonal-typdattices outperformordinary OFDM
systemswith regardto robustnessgainstSI/ICI.

1. INTRODUCTION

Orthogonalfrequeng division multiplexing (OFDM) is an
efficient technologyfor wirelessdatatransmissior{1]. It
is currently usedin the Europeandigital audio broadcast-
ing standard?2], in digital terrestrialTV broadcastingand
broadbandndoorwirelesssystems.

Thebasicideaof OFDM is to divide the availablespec-
trum into several subchannelgsubcarriers). A baseband
OFDM systemis schematicallyepresenteéh Figurel.
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Fig. 1. A generabaseban@®FDM systemconfiguration

Given N subcarriersa bandwidthof W Hz, symbol
lengthof T' secondsandcarrierseparatiorf’ := W/N, the
transmitterof a generalOFDM systemusesthe following
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waveforms
Ypi(t) = w(t—kT)e?™ | ke Z,1=0,...,N=1. (1)

Assumingan infinite sequenceof OFDM symbolsto be
transmittedthe OFDM signalis givenby

co N-1
s(t) = Z Z Cr 1Pkl s (2)
k=—o00 =0
wherecyg, ck1, - - -, cx,n—1 arethecomplex-valueddatasym-

bols.

The OFDM systemdefinedin (1) is associatedvith the
rectangulatime-frequeny latticeTZ x FZ. Thedatasym-
bols ¢y; aretransmittedat the lattice points (k7,lF). As
shawn in [3] the spectralefficiengy p of the OFDM system
in termsof symbolspersecondberHertzcanberepresented
by thedensityof thetime-frequeny lattice,thuswe canset
p=TF.
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Fig. 2. Rectanguladattice in the time-frequeng plane.
The datasymbolscy; aretransmittedat the lattice points
(kT,lF). Thespheresepresenthe effective supportof the
ambiguityfunction Ay ;.

The OFDM recever consistsof a matchedfilter bank
{¢w: } of similar structureasthetransmitterwaveforms,i.e.,
o (t) = ot — kT)e??>™ | kecZ,1=0,...,N —1.
3)
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whereh(t, 7) is the impulseresponseof the time-varying

channelH [4] and&(t) is noise,which we assumeto be

zero-mearstationarywhite noise.
Thetransmitteddataarecomputedrom r via

N-1
r = (r, dr1) = Z Z Qe 1k 1 Cr 1+ Mgty (5)

kEZ 1=0

whereqy, ik 0 = (Hibp 1, pr1) @andng; = (g, ¢r1). Here
the right-handside of (5) follows from (1) and (4). The
coeficientsgy,; x ; describetheSI andICl introducedby
thechannel.

In the standardOFDM setupthe functionsy,; arede-
signedto be mutually orthogonal.In this casep = . The
situationwherethesets{vy,; } and{¢; } arebiorthogonais
referredto asbiorthogonalfrequencydivision multiplexing
(BFDM) [5, 6].

In practicewirelesschanneldntroducetime dispersion
as well asfrequeng dispersion(in addition to the usual
channelnoise). The time dispersionis causedby multi-
path propagationand canleadto intersymbolinterference
(ISI). Frequenyg dispersionof the mobile radio channelis
dueto the Dopplereffect andcancauseinterchannelnter
ference(ICl). Thedistortionresultingfrom channeldisper
siondependsrucially onthetime-frequeng localizationof
thetransmitterpulseshapeq ¢ }.

An optimal OFDM systemin caseof doublydispersie
channelswvould consistof orthogonalbasisfunctionswith
p = TF = 1, suchthat the ¢;; arewell localizedin
time andfrequeng. The conditionT F = 1 ensuresnax-
imal spectralefficiengy of the transmissiorsystem.Unfor-
tunately sucha systemcannotexist dueto the Balian-Low
theorem[7].

Thereforentherapproachegeyclic prefix, pulse-shaping,

etc.) have beenproposedo combatlSI andICl, seee.g.[1,
3, 5, 6]. Theseapproachesanbe interpretedin the time-
frequeng planeasusinganundersampledrid, i.e., TF >
1, which resultsin a setof basisfunctionsthat is incom-
pletein Ly(R) (or £5(Z), respectiely) [5]. Although the
choiceT F' > 1 leadsto alossin the spectralefficiency of
thetransmissiorsystem|t is usuallyanacceptablriceto
payto mitigatelSI/ICI.

2. OFDM, LATTICES, AND SPHERE COVERINGS

In whatfollows withoutlossof generalitywe normalizethe
timeaxisandthefrequeng axis,suchthatT = F'. If wede-
signthepulseshapey suchthatsy andits Fouriertransform

zﬁ arewell-localizedaroundthe origin, thenthe ambiguity
functionof vy, givenby

+oo
(AYw)(t, f) = / B (W (r — e 7dr (6)

is essentiallyocalizedaroundthepoint (kT', LF') in thetime-
frequeng plane,cf. Figure2.

As mentionedabore, the stability of an OFDM system
is essentiallydeterminedy two factors:

(i) Thenumericalsupportof A(yy,;): thesmallerthenumer
ical supportof A(vy;), the lessinterferencebetweenadja-
centOFDM symbols.

(i) Thedistancebetweeradjacentatticepoints:Largerdis-
tancebetweemeighborattice pointsyieldsto betterstabil-
ity of the OFDM systemagainsiS| andIClI.

The key problemis: how canwe improve the ICI/ISI-
stability of OFDM systemswithout giving up the orthog-
onality condition on the functions; — which would in-
creasdhe sensibilityto AWGN channels- andwithout de-
creasinghespectrakfficiengy of thesystem?Alternatively,
we canask: how canwe increasehe spectralefficiency of
an OFDM systemwithout decreasingts robustnessagainst
ISI/ICI?

In thefollowing we shav thatfor bothproblemsthe so-
lution consistsof so-calledattice-OFDMsystems.

OFDM systemaseednot be associateavith arectangu-
lar time-frequeny lattice.

Definition 2.1 We definea generml Lattice OFDM system
(LOFDM for short)via

Yri(t) = p(t—Ap)e?*™™,

with (A, ;) € A, whee A C R? is a generalattice in R?,
andnot necessarilyftheformTZ x FZ.

keZ,l=0,...,N-1, (7)

Everylattice A € R? canbedescribedy meansof its gen-
eratormatrix L [8] of theform

a 0
L_L J.
For the rectangulafatticewe havea = T,b = 0,¢ = F.
Of coursethis corresponds$o the OFDM systemdescribed
in (1). It is not difficult to seethatthe spectralefficiency p
of ageneraLOFDM systemis givenby p = det L.

But whatis a good lattice for which pulseshape?Let
us considerthis questionfor the functionthatis optimally
concentratedn time andfrequeng: the Gaussiary(t) :=
21/4¢=mt* Notethat|Ag| is rotationinvariant[9], thusthe
effective supportof Ag correspondso a sphere.lt is clear

that the functions g;; obtainedvia (1) or (7) cannotform
anorthogonalsystem.But they canbe transformednto an



orthogonakystemby thefollowing method[10, 6, 11]. For
givenlattice A we compute

gkl(t) = g(t - Ak?)ej%rt”l: ()‘kn Vl) € A7 (8)

anddefinethe Grammatrix

R(A) == {(gk’l’:gkl)}k,l,k’,l’ez-

We set _ .
P(A) = D [RA)2ks0,09m- ©)

k,JEZ

One canreadily shav thatthe LOFDM functions),; ob-
tainedfrom 1) via (7) aremutually orthogonal For the stan-
dardrectangulatattice this approachcoincideswith exist-
ing pulseshapeechniqueg10, 6, 11].

The following theoremshaows thatthe pulseshapey is
in a certainsensehe optimal pulseshapefor (L)OFDM.

Theorem 2.2 For fixedlattice A thepulseshapey obtained
via (9) is optimalin the sensethatit minimizeg|g — || and
llg — z£|| amongall pulseshapes) for which the functions
1y are mutuallyorthogonalfor givenA

Theproofis basedonthelink betweerOFDM systemsand
Gaborfunctionsandby extendingthe maintheoremin [12]
to generalattices.

We still have to answerthe questionof how to choose
thebestA sothatthedistancébetweeradjacentatticepoints
is maximized,in orderto minimize the interferenceof the
correspondingambiguity functions A(Hz>). Note thatthe
lattice A hasto bechoserin advance peforecomputing.

Although the ambiguity function of v is no longer ex-
actly rotationinvariant,its effective supportis still approxi-
matelysphere-shaped husthe problemof finding the lat-
tice A suchthat we get minimal interferencebetweenad-
jacentdatasymbolsis reminiscentof the spherecaovering
problem[8]. Recallthatthe spherecovering problemcan
be statedas“how canwe arrangea fixednumberof spheres
of fixeddiameteiin R? suchthatadjacenspheresiaze min-
imal overlap?” The well-known answerto this questionis:
Choosethe midpointsof the spheresuchthat they form a
hexagonallattice asin Figure3.

Thegeneratomatrix of thehexagonallattice A g is

1 V3
2 2
wherethescalare dependenthedesiredspectrakfficiency
(latticedensity)p. Thetwo vectorsey, e; in Figure3 corre-
spondto therowsof Lg.
The larger distancebetweenadjacentattice pointsand
thesmallerinterferencébetweerthecorrespondingdjacent

1R? existssinceR is hermitianpositive definite.

Frequency

T

TN
AW)

|

¢

Time

Fig. 3. Hexagonallattice in the time-frequeng plane. The
datasymbolscy; aretransmittedat hexagonallattice points.

ambiguityfunctionsbecome®hviouswhencomparing-ig-
ures2 and 3, which shawv differentlattices, but with the
samedensity

The considerationgbove suggesthatan LOFDM sys-
temwith hexagonalatticeandassociategulseshape) (A )
seemdo be optimalwith respecto maximizingthe ISI/ICI
robustnessand numericalexperimentsconfirm this. How-
ever an LOFDM systemassociatedavith the hexagonallat-
tice is unfortunatelynot very attractive from the viewpoint
of fastimplementationThereasoris theincomensurability
betweerthematrix entriesl and+/3 of thegeneratomatrix
in (10).

Let (Dgg)(t) denotethe dilation operator It is a ba-
sic factthatthetripe (g, a,b) establishes Gaborframeif
andonly if (Dgg,a/8,bp) is a Gaborframeandthe frame
boundsfor both systemsare the same. Moreover the cor-
respondingcanonicakight windows arerelatedby dilation.
A similar result holds for generallattices? Thuswe can
equialentlyusetheanLOFDM systemwith thelattice A¢
with generatomatrix

Le=a [1 (12)
2

= o
—

and correspondingoulse shapey(A-) computedvia (9)
from a properlydilated Gaussiarwith dilation factora =
Vv2/v/3. The lattice A avoids the incomensurabilityof
Am, thusallows a simple FFT-basedmplementatiorof the
transmitterandtherecever.

2This canbe shavn by exploiting the factthat D is a unitary operator
A ratherabstractvay to prove this - andin factamuchmoregeneratesult
- would male useof the Stone-wn Neumanrtheoremon the equivalence
of theirreducibleunitaryrepresentationsf the Schiddingerrepresentation
of theHeisenbeg group.



3. NUMERICAL SIMULATIONS

We comparethe proposed OFDM systemusingthe lattice
generatedy Lo of (11)to astandardDFDM systemof (1)
associatedavith therectangulatattice. For bothsystemsve
usethepulseobtainedrom the Gaussiarby theorthogonal-
izationprocedureoutlinedin (9). For therectangulatattice
the OFDM systemobtainedin thatway coincideswith the
setupsuggestedh [10].

For thenumericalsimulationswve assumehechanneto
beWSSUS[4]. We considera Jakes-typeDopplerbehaior
andexponentialdecayin temporaldirectionfor the scatter
ing function[13]. In addition,definingy, asthe maximum
excessdelayandvy asthe maximumbDopplershift, we as-
sumethatryyy < 1, i.e.,thechanneis underspreaf]. For
underspreadhannelaindpulseshapeshatarewell concen-
tratedin time andfrequeng, onecanshaw thatthe coefi-
cientsgy ;.1 v in (5) areapproximatelO for k # k', 1 £ 1',
cf. [5].

Sinceboth, OFDM and LOFDM are basedon orthog-
onal systemsthey areall equallywell adaptedo AWGN.
Hencefor our simulationswe can assumethe absenceof
thermicnoise,sothatary errorin thereceveddatais caused
only by ISI andICI. Thusin absencef thermicnoisethe
receveddatacanbe equalizedby computing

dyy = —2 )
qk,l,k,l

for grik0 # 0, (12)

Whereqk,l,k,l ~ SH()\kayl)y()\kaVl) € A, with thetime-
varyingtransferfunction[4, 14]

Sut, f) = / h(t, r)e 327 dr.

We comparethe meansquareerror betweenthe trans-
mitteddatac;,; andthereceveddatady, ; (which have been
equalizedaccordingto (12)). Figure4 showsthatLOFDM
yieldsindeeda betterSNRin caseof ISI/ICI. Onthe aver-
agetheimprovementof LOFDM comparedo OFDM is in
therangeof 1dB— 2dB.
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