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ABSTRACT

Hidden Markov trees in the wavelet domain are capable of
accurately modeling the statistical behavior of real world
signals by exploiting relationships between coefficients in
different scales. The model is used to interpolate images
by predicting coefficients at finer scales. Various optimiza-
tions and post-processing steps are also investigated to de-
termine their effect on the performance of the interpolation.
The interpolation algorithm was found to produce notice- have access to the detail sigia) however, so we estimate
ably sharper images with PSNR values which outperform what it must be. The estimation is done based on a Hidden
many other interpolation techniques on a variety of images. Markov Model.
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Fig. 1. Problem Formulation

1. INTRODUCTION 3. MARKOV MODEL

Wavelet based interpolation methods offer the possibility The main distinction between a Markov and hidden Markov
of preserving sharp edges since edge representation decaghodel is that in the latter case we do not observe the state
across scale [7] can be used to preserve edge informatiora particular process is in. Recall that a Markov model con-
during interpolation. Other wavelet based methods for in- sists of states of a process and its state transition probabil-
terpolation across scale can be found in [1, 3, 6]. In this ities. We always know the particular state of a process and
paper we model the statistical relationship between coeffi-the probability that it will be in another state the next in-
cients at coarser scales using a hidden Markov tree to predicktant, which incidentally is only dependent on its current
the coefficients on the finest scale. Our approach is based oitate. With a hidden Markov model, on the other hand, we
recent work using hidden Markov models in denoising [4] do not explicitly know the state of the process. The state is

and classification [5]. associated with some other probability distribution which is
the one we observe. This results is a largely probabilistic
2. INTERPOLATION inference for what state the process is in. A Markov tree is

a structure where the state a node is in is only dependent on
The approach to image interpolation, which we call predic- its immediate parent and any children it may have.

tion of image detail, can be explained with the help of Fig- The wavelet coefficients were modeled as a hidden Markov
ure 1. InFigure 1 the highresolutionimage is represented asyqq \ith each coefficient was taken as a node in the tree
the signalX at the input to the filter bank. We assume that i 5 certain hidden state. The parent of a particular node
the low resolut|on,_ more coarse_ly sampled image IS th(_a "®-would be the coefficient at the next coarsest scale directly
sult of a low-pass filtering operation followed by decimation pefore it in what would amount to the same spatial location.
to give the signald. The low-pass filterL, represents the 1 hoge also has a hidden state with a probability distri-
effects of the image acquisition system. If we were able t0 , i1 associated with it. which is what we observe. We
filter the original high-resolution signal with the high pass 5 gee that the Markov framework effectively models the
filter H to obtain the detail s!gnal_) n F|gure_ 1, and if persistence property of wavelets since relationships between
we had a perfect reconstruction filter bank, it would then e icients across scale are captured. The other property
be possible to reconstruct the original image. We do notyq he modeled, that of the non-Gaussian distribution of co-
This work was supported by NSF MIP9705349, Tl, and Kodak efficients is done by the mixture probability of the hidden




states. Since each state has a different probability densitytion would be what to train the model on. It can even be
associated with it we can easily see that this will result in a expected that there might be a universal set of parameters
mixture density. The probability densities themselves were which work well on most real world images as described in
chosen to be Gaussian with different means and variance$4], [5]. However, in [4] and [5] the focus was on denois-
according to state. The result of such a mixture probability ing whose formulation uses a hidden Markov tree but is less
is, in our case, the eventual probability distribution of the sensitive to slight differences in parameters. The reason be-
wavelet coefficients looking like a Laplacian distribution. hind this lies in the fact that denoising is performed using
The model used here is the same as that given in [4] and [5],state transition probabilities to find the conditional mean es-
and for convenience the same notation will be used here. timates of the wavelet coefficients. On the other hand, for
the present interpolation method, the state transition prob-
abilities themselves are directly used in prediction. This
makes the method more sensitive.

Two similar methods with important differences were

The Expectation Maximization (EM) algorithm was used
to train the Markov tree model. The algorithm essentially
works by finding the set of parameters which would most

likely result in the set of observed wavelet coefficients. In investigated for predicting the coefficients at the finest scale.

this particular |mp_le_mentat|on the algorithm takes as mp_ut The first formulation for predicting coefficients in finest bands
the wavelet coefficients and produces the state transition.

probabilities, and the means and variances for each dif'fer—In ourcase s.

ent state for each coefficient. The parameters are enough 1 (i —nf )’

to fully model the hidden Markov tree but additional infor- P(wf) = ————= > Eim (1)
mation is also produced, which are the state probabilities of . V2m

for the wavelet coefficients. This information, though not

necessary for the model itself, is highly useful as will be which we are trying to predict Variablegfm, /lf,m are

discussed later. The EM algorithm works by successively it- ) . ¢
: . o : . obtained from the training set once we find the expected
erating model parameters until a specified error is achieved.

The algorithm is implemented by splitting the problem into value of the state:

the E and M steps. In the E step, the joint pdf for the hid- E(Sk) = Zmp(slk =m) )
den state variables is calculated. In the M step, we set the Y;

model parameters to the ones which maximize the expecta-

tion of the parameters calculated in the E step. The procesé!‘”th

is repeated until a convergence error criterion is reached. k k E—1 k1

An in-depth description of the EM algorithm is given in [4]. P(Si=m)= Z P(Si =mlS;" =n)P(§;" =n)
An important question to ask at this point is whether the pa- M (3)

rameters are all different within a scale. At first glance we In the second method, we find the expected value of the

can see that since we are training the transition probabili-state of the parent state, and then use the state transition
ties, means, and variances, that to get the lowest error rategropapilities to arrive at the child state:

it would be best to have different parameters for each node

in the tree. However, as the wavelet transform of a signal E(SF 1) = Z:mP(SZ.’“*1 =m) (4)
is local in both space and frequency, we can see that this M

would result in a model of very little use since even training

on a slightly shifted signal would result in a different set of P(Sf =m|S™ =n) (5)

parameters. The logical thing is to therefore ‘tie’ the param- A random number generator is used together with the state
eters within scales such that there are the same parametelgansition probabilities, to arrive at the predicted state. Look-
for each scale. As we shall see later, tying is not always jhg at these two methods, we can see that the main differ-
used as there are cases in which we would like to know theegnce Jies in the way the states of the coefficients we want to

Wherew?” are the wavelet coefficients at the finest scale k

state of individual coefficients. predict are found. One uses a deterministic approach which
will yield the same value for the states each time while the
4. IMPLEMENTATION other uses a stochastic approach. The values for the co-

efficients themselves will inherently be different each time
The problem of image interpolation lends itself very nicely whether we use the deterministic or stochastic approach as
to the hidden Markov tree structure. More specifically, the we are generating them according to a Gaussian probability
problem was formulated as one of predicting the HL, LH, distribution. Essentially we can see that we are modeling
and HH bands of an image and then taking the inverse wavel#te exponential decay of the wavelet coefficients using the
transform, resulting in a picture of twice the resolution. Sincevariance of our Gaussian distribution. In other words, look-
our hidden Markov tree requires training, a simple ques- ing at the variances obtained from training with tying from



our model, we see that the magnitude of the variances decay 7. Using the probabilities of sign change, check the signs
exponentially as we go down to finer scales. of the coefficients and make any appropriate changes.
The extent to which a certain set of parameters trained
on an image are generalizable was investigated as there are
definitely some interesting implications. On first thought, it
can be expected that a set of parameters will work well on
images with similar statistics in the wavelet domain. How- An important observation is that the algorithm will give
ever, for a very large number of states, it can be expectedys different results every time we interpolate an image. The
that the set of parameters will start to be more image spe-hope however, is that the results we are given will be accept-

cific. Before continuing it is more instructive to outline the able every or most of the time such that the interpo|ation is
precise steps taken in the interpolation scheme. To interpoyseful.

late an image:

8. Introduce a post-processing step which consists of a
Gaussian low-pass filter followed by a simple sharp-
ening mask to remove any stray noise.

There are two post-processing steps used in this algo-
1. Create a hidden Markov tree of the image statistics of rithm, both of which contribute to higher visual quality and
a relatively similar image. The model will consist of PSNRs. The first step is that of sign changes. In our model,
the state transition probabilities, the state means andthe coefficients are modeled as a Gaussian mixture den-
variances, and the state probabilities. Training should sity. From empirical evidence, and as also mentioned in
be done using tying within scale. Tying within scale [3], the means of those Gaussian densities tend to be very
refers to the option where the same set of parametersclose to zero and the main distinction between states tend
is used for every node of the Markov tree within a to be in variance. After all, this was also the initial as-
scale. For example, with tying all the nodes in the sumption where a Laplacian distribution was being model
HL band of a image will have the same state transi- by a Gaussian mixture density with zero means and differ-
tions probabilities, etc. The reason for using tying is ent variances. We can now see that an inherent drawback
twofold. Firstly, the wavelet transform is sensitive to in this model is that the Gaussian distribution of zero mean
shifts and hence without tying the parameters would is symmetric around the origin and hence there is no way to
be different for a slightly shifted image. Secondly, we keep track of sign changes. This is only really a problem for
would like to capture only the characteristics of the when this model is used in interpolation. For applications
wavelet transform previously mentioned, and not any such as denoising in [4], we already have the coefficients in
image specific statistical dependencies. In this stepthe finest scale so sign information is more or less implicit.
we obtaing?, . and P(SF = m|SF™" = n) The easiest way to correct this to obtain empirical proba-
used in (2). bilities of sign change and apply them as a post-processing
o i ) . step. It is expected that if the parent of a particular node
2. Obtain information about all sign changes 0cCurting js in 4 high state with a large magnitude coefficient, then
in the training set wavelet coefficients from parentto o q4e will also probably have a large coefficient of the
child in the hidden Markov tree. For example, l0ok 50 ign  This is in line with the persistence property of
at the sign of the wavelet coefficient associated with ;o elets. As a last step, the interpolated image is convolved
a node in th(’t’ HL band a}nd |oo|'< a't the sign of the with a 3 x 3 Gaussian low-pass filter mask to remove stray
wavelet coefficient associated with its parent. Count noise. Since the filter has the effect of slightly blurring the

the t_o_tal ngmber of such sign_c_:hanges and obtain animage, it is then convolved with a 3 x 3 high boost filter.
empirical sign change probability for use later.

3. Take the wavelet transform of the image to be inter- 5. RESULTS
polated.
] ) ) . Overall, the algorithm was found to outperform most other
4. lterate the EM algorithm for a single iteration for the jnierpolation schemes. This was especially true for images
Markov tree found during training. Tying mustnotbe \yhich tend to lend themselves to wavelet methods. Such
used here because the state probabilities will be usedmgages have clear edges delineated by smooth regions. Im-
later for prediction. Here we obtaif(S;~! = n) ages with large texture regions do not perform as well as
used in (3) was also observed in [3] for another wavelet based method.
5. Use the appropriate equations according to which metHdi§ Output of our interpolation process for Lena is Fig. 3,
is being chosen and find the states of the coefficients WNere the predicted details are the HL, LH and HH. For the
in the finest scale. rays image we can see S|m|Ia_r perfo_rmance to the method
in [3], except for the center region which, as expected, does
6. Use the Gaussian probability distribution to randomly not display a completely uniform pattern as can be seen in
generate a value for the wavelet coefficient. Fig. 2.



Fig. 2. Interpolation Performance. Left is the original im-
age, center is the difference between the original image and
the cubic interpolated image and right is the difference be-
tween the original image and the wavelet based interpola-
tion

6. CONCLUSION

One of the main problems with the model used was the
Gaussian mixture model for the wavelet coefficients. For
denoising applications the model is fine but for interpola-
tion the main shortcoming is the inherent inability to keep
track of the sign of coefficients. This stems from the fact
that the variance is being modeled which when combined
with a mean of 0, cannot model whether a coefficient is pos-
itive or negative. This shortcoming was partially reduced by
the post-processing step which flipped the signs according
to empirical probabilities obtained from training. This is

definitely not the best method as it does not take into ac-Fig. 3. Interpolation of Lena. Originally, the image had
count the whole Markov tree structure. A possible remedy zero detail coefficients. Top image, shows the detail coef-
to be investigated would be to use a distribution which doesficients added after interpolation. Bottom image shows the
take into account sign information. Other possible improve- interpolated image.

ments include tying on smaller parts of the sub-band during
training and then deciding to use different state transition
probability matrices. Indeed, there are truly many possible [4]
improvements and enhancements which can be done on the
model itself as well as the post-processing step used later
on. More than anything our results up to now show that this
method of interpolation has definite potential and performs
reasonably well even at this level of refinement. [5]
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