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ABSTRACT

Hidden Markov trees in the wavelet domain are capable of
accurately modeling the statistical behavior of real world
signals by exploiting relationships between coefficients in
different scales. The model is used to interpolate images
by predicting coefficients at finer scales. Various optimiza-
tions and post-processing steps are also investigated to de-
termine their effect on the performance of the interpolation.
The interpolation algorithm was found to produce notice-
ably sharper images with PSNR values which outperform
many other interpolation techniques on a variety of images.

1. INTRODUCTION

Wavelet based interpolation methods offer the possibility
of preserving sharp edges since edge representation decay
across scale [7] can be used to preserve edge information
during interpolation. Other wavelet based methods for in-
terpolation across scale can be found in [1, 3, 6]. In this
paper we model the statistical relationship between coeffi-
cients at coarser scales using a hidden Markov tree to predict
the coefficients on the finest scale. Our approach is based on
recent work using hidden Markov models in denoising [4]
and classification [5].

2. INTERPOLATION

The approach to image interpolation, which we call predic-
tion of image detail, can be explained with the help of Fig-
ure 1. In Figure 1 the high resolution image is represented as
the signalX at the input to the filter bank. We assume that
the low resolution, more coarsely sampled image is the re-
sult of a low-pass filtering operation followed by decimation
to give the signalA. The low-pass filter,L, represents the
effects of the image acquisition system. If we were able to
filter the original high-resolution signal with the high pass
filter H to obtain the detail signalD in Figure 1, and if
we had a perfect reconstruction filter bank, it would then
be possible to reconstruct the original image. We do not
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Fig. 1. Problem Formulation

have access to the detail signalD, however, so we estimate
what it must be. The estimation is done based on a Hidden
Markov Model.

3. MARKOV MODEL

The main distinction between a Markov and hidden Markov
model is that in the latter case we do not observe the state
a particular process is in. Recall that a Markov model con-
sists of states of a process and its state transition probabil-
ities. We always know the particular state of a process and
the probability that it will be in another state the next in-
stant, which incidentally is only dependent on its current
state. With a hidden Markov model, on the other hand, we
do not explicitly know the state of the process. The state is
associated with some other probability distribution which is
the one we observe. This results is a largely probabilistic
inference for what state the process is in. A Markov tree is
a structure where the state a node is in is only dependent on
its immediate parent and any children it may have.

The wavelet coefficients were modeled as a hidden Markov
tree with each coefficient was taken as a node in the tree
with a certain hidden state. The parent of a particular node
would be the coefficient at the next coarsest scale directly
before it in what would amount to the same spatial location.
The node also has a hidden state with a probability distri-
bution associated with it, which is what we observe. We
can see that the Markov framework effectively models the
persistence property of wavelets since relationships between
coefficients across scale are captured. The other property
to be modeled, that of the non-Gaussian distribution of co-
efficients is done by the mixture probability of the hidden



states. Since each state has a different probability density
associated with it we can easily see that this will result in a
mixture density. The probability densities themselves were
chosen to be Gaussian with different means and variances
according to state. The result of such a mixture probability
is, in our case, the eventual probability distribution of the
wavelet coefficients looking like a Laplacian distribution.
The model used here is the same as that given in [4] and [5],
and for convenience the same notation will be used here.

The Expectation Maximization (EM) algorithm was used
to train the Markov tree model. The algorithm essentially
works by finding the set of parameters which would most
likely result in the set of observed wavelet coefficients. In
this particular implementation the algorithm takes as input
the wavelet coefficients and produces the state transition
probabilities, and the means and variances for each differ-
ent state for each coefficient. The parameters are enough
to fully model the hidden Markov tree but additional infor-
mation is also produced, which are the state probabilities
for the wavelet coefficients. This information, though not
necessary for the model itself, is highly useful as will be
discussed later. The EM algorithm works by successively it-
erating model parameters until a specified error is achieved.
The algorithm is implemented by splitting the problem into
the E and M steps. In the E step, the joint pdf for the hid-
den state variables is calculated. In the M step, we set the
model parameters to the ones which maximize the expecta-
tion of the parameters calculated in the E step. The process
is repeated until a convergence error criterion is reached.
An in-depth description of the EM algorithm is given in [4].
An important question to ask at this point is whether the pa-
rameters are all different within a scale. At first glance we
can see that since we are training the transition probabili-
ties, means, and variances, that to get the lowest error rates
it would be best to have different parameters for each node
in the tree. However, as the wavelet transform of a signal
is local in both space and frequency, we can see that this
would result in a model of very little use since even training
on a slightly shifted signal would result in a different set of
parameters. The logical thing is to therefore ‘tie’ the param-
eters within scales such that there are the same parameters
for each scale. As we shall see later, tying is not always
used as there are cases in which we would like to know the
state of individual coefficients.

4. IMPLEMENTATION

The problem of image interpolation lends itself very nicely
to the hidden Markov tree structure. More specifically, the
problem was formulated as one of predicting the HL, LH,
and HH bands of an image and then taking the inverse wavelet
transform, resulting in a picture of twice the resolution. Since
our hidden Markov tree requires training, a simple ques-

tion would be what to train the model on. It can even be
expected that there might be a universal set of parameters
which work well on most real world images as described in
[4], [5]. However, in [4] and [5] the focus was on denois-
ing whose formulation uses a hidden Markov tree but is less
sensitive to slight differences in parameters. The reason be-
hind this lies in the fact that denoising is performed using
state transition probabilities to find the conditional mean es-
timates of the wavelet coefficients. On the other hand, for
the present interpolation method, the state transition prob-
abilities themselves are directly used in prediction. This
makes the method more sensitive.

Two similar methods with important differences were
investigated for predicting the coefficients at the finest scale.
The first formulation for predicting coefficients in finest bands
in our case is:
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Wherewk
i are the wavelet coefficients at the finest scale k

which we are trying to predict. Variables�ki;m, �ki;m are
obtained from the training set once we find the expected
value of the state:

E(Ski ) =
X

M

mP (Ski = m) (2)

with

P (Ski = m) =
X

M

P (Ski = mjSk�1i = n)P (Sk�1i = n)

(3)
In the second method, we find the expected value of the

state of the parent state, and then use the state transition
probabilities to arrive at the child state:

E(Sk�1i ) =
X

M

mP (Sk�1i = m) (4)

P (Ski = mjSk�1i = n) (5)

A random number generator is used together with the state
transition probabilities, to arrive at the predicted state. Look-
ing at these two methods, we can see that the main differ-
ence lies in the way the states of the coefficients we want to
predict are found. One uses a deterministic approach which
will yield the same value for the states each time while the
other uses a stochastic approach. The values for the co-
efficients themselves will inherently be different each time
whether we use the deterministic or stochastic approach as
we are generating them according to a Gaussian probability
distribution. Essentially we can see that we are modeling
the exponential decay of the wavelet coefficients using the
variance of our Gaussian distribution. In other words, look-
ing at the variances obtained from training with tying from



our model, we see that the magnitude of the variances decay
exponentially as we go down to finer scales.

The extent to which a certain set of parameters trained
on an image are generalizable was investigated as there are
definitely some interesting implications. On first thought, it
can be expected that a set of parameters will work well on
images with similar statistics in the wavelet domain. How-
ever, for a very large number of states, it can be expected
that the set of parameters will start to be more image spe-
cific. Before continuing it is more instructive to outline the
precise steps taken in the interpolation scheme. To interpo-
late an image:

1. Create a hidden Markov tree of the image statistics of
a relatively similar image. The model will consist of
the state transition probabilities, the state means and
variances, and the state probabilities. Training should
be done using tying within scale. Tying within scale
refers to the option where the same set of parameters
is used for every node of the Markov tree within a
scale. For example, with tying all the nodes in the
HL band of a image will have the same state transi-
tions probabilities, etc. The reason for using tying is
twofold. Firstly, the wavelet transform is sensitive to
shifts and hence without tying the parameters would
be different for a slightly shifted image. Secondly, we
would like to capture only the characteristics of the
wavelet transform previously mentioned, and not any
image specific statistical dependencies. In this step
we obtain�ki;m, �ki;m andP (Ski = mjSk�1i = n)
used in (2).

2. Obtain information about all sign changes occurring
in the training set wavelet coefficients from parent to
child in the hidden Markov tree. For example, look
at the sign of the wavelet coefficient associated with
a node in the HL band and look at the sign of the
wavelet coefficient associated with its parent. Count
the total number of such sign changes and obtain an
empirical sign change probability for use later.

3. Take the wavelet transform of the image to be inter-
polated.

4. Iterate the EM algorithm for a single iteration for the
Markov tree found during training. Tying must not be
used here because the state probabilities will be used
later for prediction. Here we obtainP (Sk�1i = n)
used in (3)

5. Use the appropriate equations according to which method
is being chosen and find the states of the coefficients
in the finest scale.

6. Use the Gaussian probability distribution to randomly
generate a value for the wavelet coefficient.

7. Using the probabilities of sign change, check the signs
of the coefficients and make any appropriate changes.

8. Introduce a post-processing step which consists of a
Gaussian low-pass filter followed by a simple sharp-
ening mask to remove any stray noise.

An important observation is that the algorithm will give
us different results every time we interpolate an image. The
hope however, is that the results we are given will be accept-
able every or most of the time such that the interpolation is
useful.

There are two post-processing steps used in this algo-
rithm, both of which contribute to higher visual quality and
PSNRs. The first step is that of sign changes. In our model,
the coefficients are modeled as a Gaussian mixture den-
sity. From empirical evidence, and as also mentioned in
[3], the means of those Gaussian densities tend to be very
close to zero and the main distinction between states tend
to be in variance. After all, this was also the initial as-
sumption where a Laplacian distribution was being model
by a Gaussian mixture density with zero means and differ-
ent variances. We can now see that an inherent drawback
in this model is that the Gaussian distribution of zero mean
is symmetric around the origin and hence there is no way to
keep track of sign changes. This is only really a problem for
when this model is used in interpolation. For applications
such as denoising in [4], we already have the coefficients in
the finest scale so sign information is more or less implicit.
The easiest way to correct this to obtain empirical proba-
bilities of sign change and apply them as a post-processing
step. It is expected that if the parent of a particular node
is in a high state with a large magnitude coefficient, then
the node will also probably have a large coefficient of the
same sign. This is in line with the persistence property of
wavelets. As a last step, the interpolated image is convolved
with a 3 x 3 Gaussian low-pass filter mask to remove stray
noise. Since the filter has the effect of slightly blurring the
image, it is then convolved with a 3 x 3 high boost filter.

5. RESULTS

Overall, the algorithm was found to outperform most other
interpolation schemes. This was especially true for images
which tend to lend themselves to wavelet methods. Such
images have clear edges delineated by smooth regions. Im-
ages with large texture regions do not perform as well as
was also observed in [3] for another wavelet based method.
The output of our interpolation process for Lena is Fig. 3,
where the predicted details are the HL, LH and HH. For the
rays image we can see similar performance to the method
in [3], except for the center region which, as expected, does
not display a completely uniform pattern as can be seen in
Fig. 2.



Fig. 2. Interpolation Performance. Left is the original im-
age, center is the difference between the original image and
the cubic interpolated image and right is the difference be-
tween the original image and the wavelet based interpola-
tion

6. CONCLUSION

One of the main problems with the model used was the
Gaussian mixture model for the wavelet coefficients. For
denoising applications the model is fine but for interpola-
tion the main shortcoming is the inherent inability to keep
track of the sign of coefficients. This stems from the fact
that the variance is being modeled which when combined
with a mean of 0, cannot model whether a coefficient is pos-
itive or negative. This shortcoming was partially reduced by
the post-processing step which flipped the signs according
to empirical probabilities obtained from training. This is
definitely not the best method as it does not take into ac-
count the whole Markov tree structure. A possible remedy
to be investigated would be to use a distribution which does
take into account sign information. Other possible improve-
ments include tying on smaller parts of the sub-band during
training and then deciding to use different state transition
probability matrices. Indeed, there are truly many possible
improvements and enhancements which can be done on the
model itself as well as the post-processing step used later
on. More than anything our results up to now show that this
method of interpolation has definite potential and performs
reasonably well even at this level of refinement.
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