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ABSTRACT

We are looking for confidence scoring techniques that perform
well on a broad variety of tasks. Our main focus is on word-level
error rejection, but most results apply to other scenarios as well.
A variation of the Normalized Cross Entropy that is adapted to
that purpose is introduced. It is successfully used to automatically
select features and optimize the word-level confidence measure
on several test sets. Sentence-level confidence geared toward the
rejection of out-of-grammar utterances is also investigated. The
combination of a word graph based technique and the acoustic
score shows excellent performance across all the tasks we con-
sidered.

1. INTRODUCTION

Reliable confidence measures are critical to make speech appli-
cations more usable when recognition accuracy is less than per-
fect. Even when accuracy is high, out-of-vocabulary words or non-
speech events need to be detected.

We experiment with methods for estimating word-level con-
fidence on a wide array of continuous speech recognition tasks,
ranging from the large vocabulary broadcast news to the grammar-
based car navigation commands. The focus is on acceptance/rejection
scenarios, where the confidence measure is only used to ranks rec-
ognized words from least likely to most likely correct. We also
look for methods that work well across all tasks with little or no
training.

How to assess the quality of confidence measure is first dis-
cussed in section 2, and a variation of the widely used Normal-
ized Cross Entropy (NCE) is proposed. The most effective tool
in our arsenal is a lattice-based method similar to those proposed
before [1, 2]. It is studied in more detail in section 3. The com-
bination of lattice-based confidence with other techniques in order
to achieve increased performance and robustness is examined in
section 4. The same tools are finally applied to the rejection of
out-of-grammar utterances in section 5.

The various test sets we are using are described in Table 1.
The first two are publicly available, the others are internal.

The authors would like to thank Lidia Mangu and Salim Roukos for
their insightful comments and suggestions.

2. ASSESSING CONFIDENCE MEASURES

Confidence annotation consists in associating with each word or
phrase output by a speech recognizer a score that reflects the ex-
pected accuracy of the recognition. For some applications, like
speech understanding systems [3], the confidence measure may
be used as the probability of a word being correct, and should be
evaluated as such. We call this case the “confidence as probability
scenario”.

However, in many – if not most – cases, a confidence measure
is only used to determine whether a recognized word or sequence
of words should be trusted or rejected. Absolute values do not mat-
ter, only ranks do, since words are accepted or rejected according
to a threshold. The quality of the confidence measure resides in its
ability to distinguish between correct and wrong words. We call
this the “acceptance/rejection scenario”.

The performance a confidence measure used for rejection is
represented by its Receiver Operating Characteristic (ROC). Let�
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given acceptance/rejection tradeoff for a particular application de-
pends on the balance between three types of errors: recognizer er-
rors that are correctly detected, recognizer errors that are missed,
and correct words that are wrongly rejected. Normalized accep-
tance/rejection rates would hide that information.

It is often useful to have a single measure of the performance
of a confidence annotation technique. The Equal Error Rate is one
such measure: it is the operating point where the (normalized or
unnormalized) False Acceptance rate is equal to the False Rejec-
tion rate. It is the point of the ROC closest to the origin of the axes.
Unfortunately, it is also the least interesting area of the curve for
applications that need to detect the most likely correct words or the
most likely errors. Those correspond to the tails of the ROC. Ide-
ally, the operating point suited to the application should be used,
but how to choose it is not always known ahead of time. Besides,
confidence annotation techniques that can be used across many ap-



Name Channel LM Voc. size WER S+IR #words

A Broadcast News ’98 mixed 4-gram 68K 16.65 13.44 31166
B Switchboard ’98 telephone 3-gram 29K 38.50 29.61 18393
B Travel reservations telephone 3-gram 3.3K 19.13 14.56 2754
D Car environment far field mic FSG 11/127 2.53 2.01 50327
E Stocks Names cell phone FSG 8.5K 24.4 19.02 4116
F Car navigation cell phone FSG 20–20K 10.39 9.07 3141

Table 1. The test sets. From left to right: Label, Task name, Channel, Language modeling (either n-gram or finite-state grammar), Word
Error Rate, Substitution+Insertion Rate, Number of Annotated Words.

plications are desirable.
The Normalized Cross Entropy introduced by NIST provides

an interesting alternative. It is defined as the relative decrease in
uncertainty brought by the confidence measure about the status of
the words (correct or wrong) :
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measure b J has been replaced by

T J
in the above formula to stress

that NCE requires the confidence values to be also probability es-
timates. This may require an additional – and potentially difficult
– step in the estimation procedure. In [2], a decision tree is used
to map b J into

T J
. However, as long as this last step does not affect

the ranking of the scores (i.e. the mapping is a monotone increas-
ing function) it is irrelevant to all rejection scenarios. On the other
hand, an attractive feature of NCE is that it gives a larger weight
to words that are annotated with confidence close to zero or one.

In order to combine the advantages of both NCE and ROC, we
propose to incorporate the optimal monotone increasing mapping
T4J @�c
d S b J1V into the figure of merit. We define NMCE as
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NMCE only depends on how the words are sorted from lowest to
highest confidence, yet provides a single measure of performance.
The function c SXs V needs only to be defined for the values b J . The
following simple algorithm due to Ayer et al. [4] can be used for
that purpose. First, all words that share the same confidence valueb J are grouped together. c4t S b J�V is initialized to ratio of correct
words in that set. Then all pairs of distinct values

S b J f b(u V that
violate the monotonicity constraint ( c t S b J Vwv c t S b u V f b Jyx b u )
merge and c F S b J1V @/c F S b7u V are re-estimated as the ratio of correct
words in the merged set. The procedure terminates in a finite num-
ber of steps and produces c d SXs V . NMCE is NCE computed with
T4J @zc
d S b J1V as defined above. We will use this figure of merit
in the following sections to select features and optimize combina-
tions of features.

In a scenario where the confidence has to be used as a probabil-
ity estimate, a similar algorithm can be used to learn the mapping
function from held out data instead of the test data. The function
has to be further adjusted such that its output is inside the

_�{ f W Linterval with some margin [2].
It should be noted that although NCE or NMCE provide some

degree of normalization, they do not allow a fair comparison of
confidence annotation techniques across recognition systems. The

influence of the error rate was noted by [5], as well as the fact that
word accuracy can be traded for NCE. One partial solution could
be to compare confidence measures that are applied not only to the
same speech data but also to the same fixed decoded script.

3. LATTICE-BASED METHODS

Methods based on word graphs have been shown to be the sin-
gle most useful confidence measure available [1, 6], slightly out-
performing similar-minded methods based on N-best lists. They
proceed as follows. The set of hypotheses considered by the rec-
ognizer is represented as a directed graph with exactly one start
node and one end node. Each arc |~} L

W r�r�r7� _ carries a word
along with its score (denoted ��u , usually a mixture of acoustic and
language model log-likelihoods: ��uy@��`�]u D�� u ), and a start and
end time. Each possible path in the graph defines one hypothe-
sis. The arc scores are first scaled and the exponential is taken:� u�@i����k S#� ��u V . A forward-backward procedure is then applied to
come up with arc posteriors � u . The forward-backward performs
a normalization over all complete path probabilities. Provided

�
is strictly positive, the complete path probabilities still reflect the
ordering determined by the recognizer. The posterior of an arc is
the sum of the probabilities of all the paths that go through that
arc. Next, frame-based confidence is computed. For each time
frame, it is the sum of the posteriors of all arcs accounting for that
frame that carry the same word as the recognized word account-
ing for that frame. Finally, the frame confidence over all frames
spanned by each decoded word is combined to give a word-level
confidence.

Lattice-based methods are attractive because they combine sev-
eral features traditionally used for confidence annotation (acoustic
and language modeling scores, number of competing words in N-
best list, etc.) in a way that is consistent with how the recognizer
used them in the first place. Another example of the power of word
posteriors is that they can also be used to increase the word accu-
racy [7].

Two choices have been left open in the technique described
above. One is the rather arbitrary scaling

��v�{
applied to the

scores, which does not change the ranking of the hypotheses. For
small

�
, the probability distribution over the hypotheses becomes

more uniform, pulling down the confidence of the best path. For
large

�
, the probability mass tends to be concentrated on the best

path, yielding higher confidence scores. In [2],

� @ W
is used, so

that the scale of the language model score is one, in [6],

� x W
.

The other choice that needs to be made is how to combine the
frame confidences to obtain word-level confidence. We report ex-



periments with the arithmetic average, the geometric average, the
minimum and the maximum values. We have evaluated the vari-
ous choices on our test set A, Broadcast News, using NMCE as a
figure of merit. The results are shown in Figure 1. A nearly iden-
tical behavior has been observed on test B, Switchboard, and con-
firmed by ROC plots. The arithmetic average slightly outperforms
the geometric average and clearly outperforms the minimum, for
an optimal scale factor ������� � . More surprising is the perfor-
mance of the maximum value, which works best for a scale factor�+����� � . Taking the maximum frame confidence over the duration
of a word tends to yield more words with the maximum confidence
score of one, narrow the range of confidence scores. We consider
both choices ( �+����� � & average and �+����� � & max) in the next
section.
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Fig. 1. Effect of scaling and combining technique on performance.

4. LINEAR COMBINATION OF CONFIDENCE
MEASURES

We are trying to determine whether combining the lattice-based
confidence measure described in section 3 with other techniques
can lead to a significant increase on performance, and whether
there is a combination that perform well across all tasks. We con-
sider several features that we have found to be useful for confi-
dence annotation:

LB the lattice-based confidence, with scale ��� � , arithmetic av-
erage,

LX the lattice-based confidence, with scale ��� � , maximum over
word duration,

AC the acoustic score of each word, divided by the word dura-
tion,

SC the search score, i.e. the weighted sum of acoustic and lan-
guage model scores, divided by the word duration,

BK the background difference score, defined as the difference
of between the Viterbi score of the word and the score of a
filler model on the same time interval, divided by the word
duration.

Table 2 shows the performance of each feature used alone. For
each test set, linear combinations of all pairs of features are op-
timized for NMCE. The optimal NMCE for all pairs are reported

Set LB LX AC SC BK
A 0.307 0.321 0.128 0.165 0.130
B 0.228 0.242 0.087 0.089 0.093
C 0.304 0.298 0.241 0.232 0.248
D 0.216 0.213 0.278 0.278 0.269
E 0.290 0.299 0.270 0.270 0.290
F 0.434 0.462 0.082 0.082 0.090

Table 2. NMCE of several confidence measures used alone

in Table 3, with the exception of the pairs involving the search
score, which do not bring significant gains over pairs involving
the acoustic score instead. In addition, the optimal NMCE for 3-
feature combinations are reported in the last column. The number
in parenthesis in the BK/LB cells is the NMCE of the BK+LB
combination with weights optimized for the all six test sets, to be
compared with the figure in the LB/BK cells.

Since the objective of this experiment is not to report absolute
performance values, but to select and compare combinations of
features, we feel entitled to optimize the linear weights on the same
test for which we report NMCE values. Yet, we have checked that
even on the smaller test sets, overfitting does not occur.

Several conclusions can be drawn from those figures. First,
alone or in combination, taking the maximum frame confidence
over the word duration is slightly better than averaging it. Next,
combining the lattice-based confidence with the acoustic score or
the background difference score yields a significant gain in most
cases. On the other hand, there is little evidence that adding a third
feature from those that we considered would be helpful. It is also
interesting to note that the same weights can be used across all test
sets with little loss of performance compared to weights specifi-
cally optimized for each test set. Finally, the automatic optimiza-
tion of the weights by minimizing the NMCE consistently yield
solutions that match those obtained by examining ROC curves.

5. REJECTION OF OUT-OF-GRAMMAR UTTERANCES

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Acceptance

C
or

re
ct

 A
cc

ep
ta

nc
e

Lattice−based     
Background        
Linear Combination

Fig. 2. Receiver Operating Characteristic for rejection of out-of-
grammar utterance, car navigation data.

In this section we apply the same techniques as above to the
problem of out-of-grammar utterance rejection. Out-of-grammar



Broadcast News
LB LX AC BK

LB 0.307 0.324 0.327 0.328 LB+AC+BK
LX 0.321 0.340 0.341 0.329
AC 0.128 0.130 LX+AC+BK
BK (0.328) 0.130 0.341

Switchboard
LB LX AC BK

LB 0.228 0.242 0.235 0.234 LB+AC+BK
LX 0.242 0.251 0.248 0.237
AC 0.087 0.095 LX+AC+BK
BK (0.234) 0.093 0.252

Travel reservations
LB LX AC BK

LB 0.304 0.304 0.362 0.360 LB+AC+BK
LX 0.298 0.363 0.362 0.370
AC 0.241 0.258 LX+AC+BK
BK (0.353) 0.248 0.368

Car commands
LB LX AC BK

LB 0.216 0.220 0.384 0.381 LB+AC+BK
LX 0.213 0.402 0.390 0.391
AC 0.278 0.285 LX+AC+BK
BK (0.354) 0.269 0.407

Stock Names
LB LX AC BK

LB 0.290 0.299 0.395 0.426 LB+AC+BK
LX 0.299 0.397 0.414 0.427
AC 0.270 0.290 LX+AC+BK
BK (0.382) 0.290 0.419

Car navigation
LB LX AC BK

LB 0.434 0.462 0.448 0.446 LB+AC+BK
LX 0.462 0.468 0.469 0.449
AC 0.082 0.091 LX+AC+BK
BK (0.440) 0.090 0.468

Table 3. NMCE of linear combinations of features for word-level
confidence. Left: two components, right: three components, in
parenthesis: weights optimized on all test sets.

utterances come in two flavors. One consists of non-speech events,
like breath noises, laughter, background noises, music, etc. The
other consists of well-formed utterances that do not belong to the
set allowed by the grammar. We focus on the second, and more
difficult, class.

The data of our last test set is recognized using 14 different
grammars (city names, hotels, addresses, etc.). In order to gen-
erate out-of grammar samples, we decoded every utterance with
all grammars. In an attempt to focus only on the out-of-grammar
rejection problem, we discarded all the erroneous decodings ob-
tained with the correct grammar, and all the correct decoding ob-
tained with the wrong grammars (since some of the grammars
overlap). During the optimization of the combination weights, a
larger weight was given to the in-grammar samples in order to off-
set the larger amount of out-of-grammar samples. The word-level
features used in the previous section are averaged in order to obtain

LB LX AC BK
LB 0.240 0.244 0.577 0.591 LB+AC+BK
LX 0.222 0.577 0.588 0.597
AC 0.502 0.520 LX+AC+BK
BK 0.510 0.594

Table 4. NMCE of pair-wise linear combinations for out-of-
grammar utterance rejection, Car navigation.

sentence-level features.
The effectiveness of the lattice-based measure is less than for

word-level confidence annotation. Yet, as in the latter case, its
addition to either the acoustic score or the background difference
score yields a significant improvement, as shown by the ROC on
Figure 2.

6. CONCLUSIONS

We have proposed a new figure of merit, the Normalized Maxi-
mum Cross Entropy, that is well suited to word or utterance rejec-
tion. We used it as an objective function to choose the parameters
of a confidence measure based on word graphs, and to optimize
combinations of various confidence measures. It was found that
combining the same two features, including the one based on word
graphs, performs well on several, very different, tasks. Rejection
of out-of-grammar utterances was also addressed using the same
techniques.
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