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ABSTRACT

This paper presents a matching pursuits sinusoidal speech
coder which incorporates new techniques including a novel
vector quantization (VQ) technique used for the weighted
quantization of spectral magnitude vector, and an inter-
frame quantization of spectral magnitudes using an inter-
polation matrix that minimize the weighted interpolation
error. The paper describes a novel vector quantization tech-
nique, wherein the quantized vector is obtained by applying
a linear transformation selected from a first codebook to a
codevector selected from a second codebook. The transfor-
mation is selected from a family of linear transformations,
represented by a matrix codebook. Vectors in the second
codebook are called residual codevectors. In order to avoid
high complexity during the search for the best linear trans-
formation, each linear transformation is assigned a repre-
sentative vector, such that the search can be done employ-
ing the representative vectors. The V(Q design algorithm
is based on joint optimization of the linear transformation
and the residual codebooks. The introduced techniques are
general enough to be used in any sinusoidal speech cod-
ing scheme. In this work we incorporated the techniques
into the matching pursuits sinusoidal model to achieve high
quality speech using sinusoidal speech coder at 4 kbps. Sub-
jective tests indicate that the proposed coding model at 4
kbps has quality comparable to that of G.729 at 8kbps.

1. INTRODUCTION

There is a growing demand to develop toll quality speech
coders at rates of 4 kbps and below. The successful use
of analysis-by-synthesis search procedure combined with a
perceptually weighted error measure has enabled the wave-
form coders such as code-excited linear predictive CELP
coder [1] to achieve toll or nearly toll quality speech at rates
above 5 kbps. However rapid degradation of speech quality
below 5 kbps show that waveform matching criteria does
not work well at low rates. On the other hand, paramet-
ric coders such as the sinusoidal-transform coder (STC) [2],
the waveform-interpolative (WI) coder [3], the multiband-
excitation (MBE) coder [4], and the mized excitation linear
prediction (MELP) coder [5] try to find a parametric repre-
sentation of the speech without the constraint of preserving
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the waveform and can synthesize good quality speech at
rates as low as 2 kbps, but they do not achieve toll quality.

This paper presents a matching pursuits sinusoidal speech
coder based on the sinusoidal model described in [6]. In gen-
eral sinusoidal speech coders belong to the parametric cod-
ing category, so they can only be successful if the model pa-
rameters are quantized efficiently. Since in sinusoidal coders
the variable dimension spectral magnitude vector usually
consume a large amount of available bits, and their faithful
reproduction is crucial for toll quality, their efficient quan-
tization is needed. To meet this goal, we propose a novel
VQ scheme for the weighted quantization of spectral mag-
nitude vector, and a matrix based interpolation of spectral
magnitudes that minimize the weighted interpolation error
for the inter-frame coding of magnitudes. In the past, the
idea of using a linear transform in vector quantization in a
different context is suggested in [7], but no design rules are
derived for optimal quantization.

In this paper, the variable dimension spectral vector is
first transformed into a fixed dimension vector, and then
the fixed dimension vector is quantized efficiently using the
proposed VQ technique. The proposed VQ approach recon-
structs the input vector by applying a linear transformation
selected from a first codebook to a codevector selected from
a second codebook. The transformation is selected from a
family of linear transformations, represented by codebook of
matrices. Vectors in the second codebook are called residual
codevectors. In order to avoid high complexity during the
search for the best linear transformation, each linear trans-
formation is assigned a representative vector, such that the
search can be done employing the representative vectors.
The design algorithm is based on joint optimization of the
linear transformation and the residual codebooks. Subjec-
tive tests using the 4 kbps matching pursuit sinusoidal coder
shows that it has quality comparable to that of G.729 at
8kbps.

2. PROPOSED CODER SCHEME

Figure 1 shows the overall structure of the encoder and
the decoder. In the encoder, the input LP residual is clas-
sified into one of the three classes: voiced, transition, or
unvoiced speech. Then depending on the class the cor-
responding matching pursuit analysis is performed to de-
termine sinusoidal model parameters. Extracted spectral
magnitude and phase (only in transition class) information
are quantized. The decoder uses overlap-and-add synthesis
model to reconstruct the LP residual. The processing flow
in the whole encoder/decoder system is the same as that
in described in [6]. Therefore, only the new techniques are
discussed in this paper.
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Figure 1: Block diagram of the Encoder and Decoder

2.1. Spectral Magnitude Quantization

In sinusoidal coders, generally, the spectral magnitudes are
obtained by sampling the spectrum of either the speech or
the LP residual at frequencies corresponding to pitch har-
monics. In the proposed sinusoidal coder, matching pur-
suits [8] is used in a pitch dependent manner [6] to deter-
mine the spectral magnitudes. Both of these procedures
generate a variable dimension vector since the number of
pitch harmonics changes in time.

In the proposed scheme the spectral magnitudes are de-
termined twice per frame. The variable dimension spectral
vectors of dimension less than 48 are transformed into one
of the three possible fixed dimensions (M = 24, 36,48) by
zero padding. The spectral vectors of dimension greater
than 48 are truncated to a fixed dimension of M = 48.
To exploit the high correlation of magnitudes between the
1st and 2nd subframe, only the magnitudes corresponding
to 2nd subframe are quantized. The 1st subframe mag-
nitudes are estimated using a linear interpolation of the
quantized 2nd subframe magnitudes in current and previ-
ous frames. Then the interpolation error is quantized. This
section describes the weighted VQ technique, and the inter-
polation scheme used in inter-frame coding of magnitudes
is described in the next section.

Let x be an M-dimensional input vector. According to
the proposed approach, the quantized vector X is given by

% ="Te (1)

where T represents the linear transformation matrix se-
lected from the matrix codebook Cr and € represents a
residual codevector which is a member of the residual code-
book C;..

The quantization distortion criterion is defined by the
distance between the original spectral vector and the quan-
tized spectral vector weighted by the spectral magnitude
of the LP synthesis filter and a perceptual weighting fil-
ter. The weighting matrix W is diagonal and ¢th diagonal
element corresponding to the ith spectral sample at the fre-
quency w; is given by
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The average distortion D on a set of N vectors {xx} with
weighting matrices {Wk} is

R
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where T, is the transformation matrix and & is the residual
codevector corresponding to the input vector xk.

The objective here is to design the codebooks Cr, C,
that minimize (4) and to develop an efficient coding rule
for this VQ technique.

2.1.1. Encoding/Decoding

Given the linear transformation codebook Cr and the resid-
ual codebook C, the optimal pair (T, &) for encoding the
vector x is simply given by

(T,&) =arg  min |x—Te|? (5)
Tecr.eec, w

The minimization required in (5) is computationally in-
tensive if an exhaustive search in both codebooks is em-
ployed. To avoid high search complexity, a sequential search
is employed whereby the linear transformation T is deter-
mined first.

To simplify the search of the linear transformation code-
book Cr, we map this codebook into a set of codevectors
{t;} stored in Ci, so that the ith matrix of Cr namely, Tj,
is mapped into a corresponding codevector, t; in C;. The
codebooks Cr and C; are related such that the linear trans-
formation to be assigned to the input vector x will be given
by the code-matrix i iff

t = i — ]2 6
arg min lIx =ty (6)

Note that the search in (6) has the same computational
complexity as the usual VQ search. However, the use of
transforms associated with the vectors {t;} allow us to
trade-off a larger memory (required for storing the trans-
forms) for improved performance.

Once the vector t; is determined, the associated linear
transformation T = T; is employed to search the second
stage by choosing ¢ to minimize

min ||x — T¢||? (7)
eelCr

The quantized vector is given by X = Te. Depending on
the memory and complexity requirements the search in (7)



can be done by either generating the reconstruction vectors
using matrix multiplication at the time of search, or storing
pre-computed reconstruction vectors. In the former case,
the complexity is larger than MSVQ, while in the latter
case the computational complexity is practically the same
as in MSVQ.

2.1.2. Joint Codebook Optimization

In order to jointly optimize the codebooks, we use an it-
erative sequential optimization. The algorithm iterates be-
tween optimizing linear transformation codebook Cr and
the associated C; for a given residual codebook C, and opti-
mizing the residual codebook for the given linear transfor-
mation codebook.

In order to sequentially optimize the codebooks, the in-
put vector space is partitioned with respect to the codebook
whose entries are being optimized. Let R; ; denote the set
of input vectors whose assigned indices are i for the code-
book Cr(C:), and j for the codebook C,. Given R; ;, the set
of input vectors assigned to the ith entry of the codebook
Cr(Ct) is given by

Ny
Ui = U Ri; (8)
j=1

and the set of vectors assigned to the jth entry of residual
codebook C, is

N
V; = J R ()
i=1

where N, is the size of C,- and Nt is the size of both Cr and
Ce .

2.1.8. Design of the Linear Transformation Codebook
For a Given Residual Codebook

Given the fixed residual codebook and the partition U,
our objective is to compute T; for i = 1,..., Ny to mini-
mize (4). In other words, T; is obtained as the solution of
the optimization problem

T; = arg mi — Tey|? 10
gmin > [ — Tew g, (10)
k:xeU;

The solution of the above minimization problem may not
be unique. The jth row of Tj, ri; will be chosen as the
solution with the minimum norm and is given by

g =z5Y i=1,...M (11)

where
2y = [wien i e (12)
Yy o= [wllenwl guyl (13)

YiJJf denotes the pseudoinverse of Yij, wy, ; denotes jth di-
agonal element of the kth weight matrix, and ||U;|| denotes
the cardinality of Us;.

Experimental evidence shows that a good way of de-
signing t; for i = 1,..., Np, is to update t; as the weighted
Euclidean centroid of the reconstructed vectors Xx whose
input vectors xx € Uj;

ti = (Z Wk)71 Z WXy = (Z Vvk)71 Z Wi T;Cx

k:xyp€eU; k:xyp€eU; k:xpeU; k:xpeU;
(14)

There is a simple analytical justification for this approach.
In the case of high bit rate quantization or highly clus-
tered input vectors, for an input vector x, which has t; =
argming;ec, |[Xn — t; Hi?V , the weighted Euclidean distance

n
between t; and Xn will be small due to (14). Furthermore
using the triangle inequality the Euclidean distance between
Xn and X, can be upper bounded as

0 = Rallyy, < Ixn = tillyy, + 1t~ Ry, (15)

The right hand side of (15) is expected to have a low value
at 7 = i, because the first term is minimized by the choice
j = i and the second term corresponds to the weighted
distance between a vector and its weighted centroid. This
shows that by employing the sequential encoding rule given
by (6) we can obtain a low value for the upper bound on
the quantization error.

2.1.4. Design of the Residual Codebook For a Given
Linear Transformation Codebook

Given the fixed linear transformation codebook and the par-
tition Vj, we will compute c; for j = 1,..., N, to mini-
mize (4). So ¢; will be given by

— 1 —_— T ¢ 2
¢; = argmin Z |Ixx TkC”Wk (16)
k:xy €V

The minimum norm solution of the above minimization is
the centroid equation for the jth centroid and computed as

c;=A"b (17)
where
w12y Wi %%,
A= : b= : (18)
Wi\/;j“Tnvjn Wi\/;juxnvjn

2.1.5. Joint Codebook Design

The main design algorithm can now be stated by using the
centroid computations and the sequential encoding rule de-
scribed in earlier sections.

Once the codebooks are initialized, the main design al-
gorithm performs the following steps:

1. Partition the training set to obtain R; ;.

2. Compute the overall distortion, if termination crite-
rion is satisfied then stop else continue.

3. Compute the optimum codebook Cr using (11), up-
date the codebook C; using (14).

4. Partition the training set to obtain a new R; ;.
5. Compute the optimum codebook C, using (17).
Go to 1.

While steps 3 and 5 of this algorithm always decrease
the overall distortion, the partitioning steps 1 and 4 may
increase the distortion due to the suboptimal sequential en-
coding rule. Hence, the algorithm does not guarantee strict
descent, however, in practice the distortion generally de-
creases. The termination criterion adopted in this algo-
rithm is to stop when the relative change in the distortion
is less than a given threshold.



2.2. Inter-frame Quantization of Spectral Magni-
tudes

As mentioned before, the variable dimension spectral vec-
tors are transformed into one of the three possible fixed
dimensions (M = 24,36,48). Using a linear interpolation
of the quantized 2nd subframe magnitudes in current and
previous frames, an estimate of the 1st subframe magni-
tudes is constructed as

Rk =PXay 1 — (I—P)Ray (19)

where x; x denote the fixed dimension vector corresponding
to ith subframe of frame k for ¢ = 1,2 and P denotes the
interpolation matrix.

For each possible fixed dimension, an optimum inter-
polation matrix is determined that minimize the weighted
interpolation error (weights are defined in section 2.1);

argm;n ”Xl,k Xl’k”Wk (20)
k:xy kERM

- i ~Ra s~ PRz g1 Rax)|I2

arg min Z |x1,k — %2,k —P(X2 k-1 Xz,k)HWk

k:xlvaR]W

where Rj; denotes the set of 1st subframe vectors of dimen-
sion M. To simplify the notation, the vectors fix and gk are
defined as

fkx = x1k—X2x (21)
gk = X2k-1—X2k (22)
The minimization problem can be reformulated as
_ ; _ 2
P = arg min Z |Ific ng“Wk (23)

kixy k€ERM

The solution of the above minimization problem may not be
unique. The jth row of P, p; will be chosen as the solution
with the minimum norm and is given by

pi =qfV] j=1,....M (24)
where
T 1/2 1/2
Q4 = [wl,/j fri "w||§2M||,jf||RM||7j] (25)
_ 1/2 1/2
Vi = [wgien w8l (26)

VJ.+ denotes the pseudoinverse of Vj, wy,; denotes jth diag-
onal element of the kth weight matrix, and ||Ras| denotes
the cardinality of Rys.

3. BIT ALLOCATION

The bit allocation for basic types of speech frame is given
in Table 1. The frame size is 20 ms.

We used the described techniques specifically in voiced
frames for which accurate quantization of spectral magni-
tudes is needed to achieve high perceptual quality. In voiced
frames, the variable dimension spectral magnitudes corre-
sponding to the second subframe are quantized using a 3-
stage (7+7+7) VQ with the first two stages designed using
weighted linear transformations method introduced, and a
last stage designed to quantize the residual error. The in-
terpolation error defined in Section 2.2 corresponding to 1st
subframe spectral magnitudes is quantized using 7 bits. Fi-
nally the gain is quantized using 6 bits resulting in a total of
34 bits. The remaining 6 bits are used to quantize spectral
magnitudes corresponding to the aperiodic components of
the voiced frame [6].

( Parameter | Transition | Voiced | Unvoiced ||

LSF 18 24 18
Magnitude 27 40 34
Frequency 2x3=6 0 0
Pitch 0 8+5=13 0
Linear Phase 4 0 0
Dispersion Phase | 2 x 6 = 12 0 0

Envelope 2x5=10 0 2x9=18
Classifier 3 3 3
Total 80 80 73

Bit-rate 4kbps 4kbps 3.65kbps

Table 1: Bit allocation

4. SUBJECTIVE RESULTS

We have conducted a preference listening test to compare
the subjective performance of the proposed matching pur-
suits sinusoidal coder with the G.729 standard. The test
data included 16 MIRS speech sentences, 8 from female
speakers and 8 from male speakers. Eight listeners partic-
ipated in the test. The subjective test results presented in
Table 2, indicate that the proposed coder at 4 kbps have
quality comparable to that of G.729 at 8kbps.

[ Speakers | Proposed coder | G.729 [ Same ||
Female 21.88% 43.75% | 34.37%
Male 43.75% 18.75% | 37.50%

[ Total [  3281% | 31L.25% | 35.94% |

Table 2: Preference test results
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