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ABSTRACT 

Discrete-time linear systems that possess scale-invariance 
properties even in the presence of continuous dilation were 
proposed by Zhao and Rao. The principal purpose of this article is 
to describe results of subsequent investigation which have led to 
characterization of self-similarity properties of discrete-time 
signals synthesized by these systems. It is shown that white noise 
inputs to these linear scale invariant systems, which are unique in 
DSP literature,  produce self similar outputs regardless of the 
marginal distribution of the noise. In most instances the output is 
fractional Gaussian. For heavy tailed input distributions, the 
output is also heavy-tailed and self-similar. It is also shown that it 
is possible to synthesize statistically self-similar signals whose 
self-similarity parameters are consistent with those observed in 
network traffic. 

1.  INTRODUCTION 
The previous work of Zhao and Rao [10]-[14] has shown 

that it is possible to formulate continuous dilation Linear Scale 
Invariant (LSI) systems in discrete-time. The basis for their 
formulation is provided by a definition of scaling or dilation in 
discrete-time using warping and unwarping functions. Our 
subsequent work investigating self-similarity properties of signals 
generated by these systems with white noise inputs has produced 
important results, the presentation of which is the main purpose of 
the paper. 

A motivation for studying self-similar signals has been 
provided by the seminal work of Leland et al [1] showing that 
Ethernet traffic is self-similar. Self-similarity has since been found 
in other types of network traffic including wireless networks 
[2][3]. Self-similar traffic gives rise to buffering requirements that 
are different and usually higher from those predicted by Poisson 
assumptions [4].  Much of the theoretical foundation related to the 
characterization of statistical self-similarity was laid by 
Mandelbrot and Van Ness [5] in the context of describing 
fractional Brownian motion (fBm) and fractional noise. For 
simulating data such as, for example, network traffic we clearly 
require synthesis of discrete-time self-similar random processes. 
Several methods have been proposed for generating discrete-time 
self-similar signals [6],[7],[8],[9]. This paper demonstrates that 
synthesis of self-similar signals using white noise inputs to our 
discrete-time LSI produces data whose properties are consistent 
with that of network traffic.   

The paper is organized as follows. Section 2 overviews the 
discrete-time LSI systems. Simulation results for synthesizing and 
verification of properties of self-similar data using LSI systems 
are presented in Section 3 and concluding remarks are made in 
Section 4. 

2. OVERVIEW OF DISCRETE-TIME LSI 
SYSTEMS 

 
2.1 Time-Scaling   

The definition of self-similarity rests on the operation of 
time scaling or dilation. Whereas it is possible to dilate a 
continuous-time signal in a continuous fashion, the same cannot 
be done with discrete-time signals. To avoid this difficulty, Zhao 
and Rao [10]-[14] define a scaling operator for discrete-time 
signals that can work with any real-valued scaling factor greater 
then zero based on a warping transform f(ω) which transforms a 
discrete-time frequency (ω) to continuous-time frequency (Ω). 
The inverse transform f –1( ) defines the continuous-time frequency 
to discrete-time frequency or unwarping transform. One examples 
of the warping transform is bilinear transform (BLT) 
 ( ) 2 tan( / 2)f ω ωΩ = ≡ . (1) 

Using the warping transform defined above and time-
frequency scaling property of the continuous time Fourier 
transform, the scaling operator Sa[ ] of discrete-time sequence x(n) 
is defined by 
 [ ] [ ]{ }1( ) ( ) ( )a ay n S x n aG X ω−= = Λ  (2) 

where y(n) is the output of the operator,  G-1 is the discrete-
time Fourier transform (DTFT), [ ]1( ) ( )a f afω ω−Λ = .  The 
scaling operator is shown in figure 1. 

For a stochastic input sequence, if the input X(n) of the 
discrete-time scaling operator Sa[ ] is a discrete-time wide-sense 
stationary random process with power spectral density PX(ω), it 
was shown the output is also wide-sense stationary with power 
spectral density given by 
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where Λ’a(ω) is the first derivative of Λa(ω) with respect to ω.  
2.2 Discrete-Time Self-Similarity 

Using the discrete-time continuous-dilation scaling operator  
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Figure 1. Block diagram of the discrete-time scaling function 



Sa[ ] in (2), discrete-time stochastic self-similar signals can be 
defined as follows: a discrete-time random signal X(n) is said to 
be self-similar with degree H in the wide-sense if it satisfies the 
following equations 
 ( )[ ][ ] ( )[ ]H

aE S X n a E X n−=  (4) 
and 

 [ ] 2
, ( , ') ( , ')H

a a XX XXS R n n a R n n−=  (5) 
for any a > 0, where RXX(n, n’) is the autocorrelation 

function of the sequence X(n). For a discrete-time wide-sense 
stationary random process, the condition of self-similarity simply 
reduces to 
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where PX(ω) is the power spectral density of the signal. 
Therefore, a stationary random process X(n) whose power spectral 
density satisfies (6) is a self-similar signal in the statistical sense. 
Zhao and Rao suggested the next power spectrum for the density. 
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where f’(ω) is the first derivative of f with respect to ω. 

From  (6), (7) and [ ]1( ) ( )a f afω ω−Λ = , 
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Thus, X(n) is a self-similar random process with H = -(r + 
1)/2.  

If the power spectral density Px(ω) satisfies the Paley-
Wiener condition, the density can be factorized as a product 

( ) ( )*L Lω ω and by passing white noise through a linear system 
with frequency response L(ω), the corresponding stochastic self-
similar process can be generated.  

The power spectral density for the BLT is 
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and this was known to satisfy the Paley-Wiener condition. 
Let z = ejω, then  PX(ω) transforms to 
 1( ) ( ) ( )XP z L z L z−=  (10) 
where the causal part L(z) is 
 / 2 1 1 / 2 1 1 / 2( ) 2 (1 ) (1 )r r rL z z z− − − −= − +  (11) 
Note that the spectrum is rational only for integer value of r.  

The corresponding impulse response of is a causal filter 
whose coefficients are given by 
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where ( )n is the Pochammer’s symbol defined as 
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The impulse response corresponding to L2(z) is a 2-tap filter 
with coefficients given by  
 ( ) ( ) / 2 1

2 20 1 2rl l −= =  (15) 

The overall impulse response l(n) corresponding to the 
system transfer function given in (11) can be represented by two 
cascaded filters l1(n) and l2(n).  
2.3 LSI System 

A linear scale-invariant (LSI) system is a linear operator L{ 
} whose output is invariant to scale changes of the input signals, 
that is, 

 { } [ ] [ ]{ }( ) ( ) ( ) ( )a ay n L x n S y n L S x n= ⇒ =  (16) 
where x(n) and y(n) are the input and output sequence 

respectively. 
 A discrete-time causal LSI system for a given x(n) can be 

defined similar to the continuous-time case [15]. Let h(k) be any 
one-dimensional discrete-time sequence. The discrete-time causal 
LSI system is defined by the following relationship : 
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The output of the system is the sum of a series of dilation of 
the input sequence by k that are linearly weighted by h(k)/k.  

If the input of the LSI system is a discrete-time stochastic 
self-similar signal with degree H, then the output is also a 
stochastic, self-similar signal with degree H [10]-[12]. In addition, 
if the input to a discrete-time LSI system is a discrete-time wide-
sense stationary random process, the output of the system is non-
stationary due to the fact that the system is time-varying. Using 
this property, a non-stationary self-similar random signal with 
parameter H = -(r + 1) / 2 can be generated by first generating a 
discrete-time self-similar random process with degree H by 
passing zero-mean white noise through a linear system with a 
frequency response given by (11), and then passing the signal thus 
obtained through a discrete-time LSI system. Note that the choice 
of the one dimensional function h(k) in the discrete-time LSI 
system is arbitrary. This provides flexibility in signal construction. 
h(k) can be chosen so that the output of the system has certain 
properties as desired. 

3. EXPERIMENTAL CHARA-
CTERIZATION OF SELF-SIMILARITY 

Given data that are nominally self-similar, the degree of 
self-similarity H can be estimated in several different ways 
[1][18]. Three methods are used here. The first method, the 
aggregated variance method relies on the slowly decaying 
variance of a self-similar series. 

 ( )
2var( ) ~ , as , with 0 1mX a m mβ β− → ∞ < <  (18) 

where, X(m) denote a new time series by averaging X(n) over m 
non-overlapping sub-blocks and β = -2H. The degree of self-
similarity H can be obtained by drawing corresponding log-log 
plot and estimating the slope. The second method, the R/S plot, 
uses the fact that for a self–similar dataset, the rescaled range or 
R/S statistic grows according to a power with exponent H as a 
function of the number of points included (n). If the process is 
self-similar, R/S statistic has the following property.  

                           [ ] 1( ) / ( ) ~ HE R n S n an +                         (19) 
Thus the R/S plot on a log-log plot has slope that is an estimate of 
H. The third approach, the periodogram method, uses the slope of 
the power spectrum of the series as frequency approaches zero. 
The slope of the log–log plot of the periodogram is –1-2H. 

In order to synthesize the discrete-time self-similar signal, 
we applied several types of white noise to the filter in (11) with r 
= –0.6 (H = -0.2).  Figure 2 (a), (b) and (c) show the variance-time 
plot, the pox plot of R/S, and the periodogram plot that confirm to 
the observed self-similar properties of Ethernet traffic in figure 
(7). The synthesized self-similar signals from various inputs such 
as white Gaussian, uniform, and Pareto distribution are depicted in 
figure 3. For the heavy-tailed case we chose the simple heavy-
tailed Pareto distributed signal, with probability density function 



 ( ) 1, , 0, .p x k x k x kα αα α− −= > ≥  (20) 

The cumulative distribution of (20) is given by 

 ( ) [ ] ( )1 / .F x P X x k x α= ≤ = −  (21) 

The results, shown in Figure 3, suggest that the output self-similar 
signal has Gaussian characteristics regardless of the input of the 
system. In addition, the signal generated from the Pareto 
distribution shows heavy tailed characteristics. Figure 4(a) plots 
the autocorrelation function of fractional Gaussian given by 

 ( ) ( ){ }' ''2 21 22 1 2 1 , 0H HHh h h h hγ −= + − + − ≥  (22) 

The plot of the autocorrelation of the output of our system for 
white noise input is shown in Figure 4(c). The autocorrelation 
function decays hyperbolically which confirms its agreement with 
the decaying characteristic of the fractional Gaussian noise.  
Figure 5 gives the relationship between the fractional Gaussian 
noise (FGN) and the generated self-similar signal for different r-
values and H’=-(r+1)/2. We get a linear plot with a slope close to 
1 again confirming that the output is fractional Gaussian. The 
slope of the line depends on the H’ value and the relationship 
between the system Hurst parameter and the conventional 
parameter (H) is H’=H+1. Figure 6 shows the original plots of [1] 
obtained from Ethernet traffic data. Their closeness to the plots in 
Figure 2 confirm that it is possible to synthesize data with white 
noise driven LSI models that conform to network traffic 
characteristics. 

4. CONCLUSION 
The discrete-time LSI systems proposed previously by Zhao 

and Rao provide a potential tool for the analysis and simulation of 
natural self-similar signals because of their scale invariant 
property  (even though they are time-varying in general) in 
continuous scale and flexibility in the choice of the 1-D kernel. 
The paper has provided an empirical demonstration of the fact that 
white noise driven discrete-time LSI systems can be used to 
synthesize self-similar sequences with specified value of the H 
parameter. The outputs of these systems are fractional Gaussian 
for different types of white noise inputs. The explanation for the 
non-dependence of the output distribution on the input distribution 
is provided by the central limit theorem. However, the outputs 
exhibit a heavy-tailed distribution for heavy-tailed inputs.  The 
systems are capable of synthesizing data consistent with the self-
similarity that has been documented in network traffic. The 
discrete-time LSI systems are multi-parametric and are influenced 
by more than the Hurst exponent. We believe the discrete-time 
LSI system formulation occupies a place in the study of scale-
invariance and self-similarity that corresponds to the position of 
linear discrete-time time-invariant systems in the study of 
stationary random processes. A challenging area for further 
research will be to investigate physical interpretation of LSI 
models and transformation tools for such systems analogous to 
Fourier analysis. 
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Figure 2. Statistical properties of synthesized self-similar 
signal (system input: white Gaussian noise, r = -0.6, H = -0.2) 
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Figure 3. Histograms of self-similar signals from several types 
of white noise, (a),(b) input: Gaussian, (c), (d) uniform, (e),(f) 
Pareto distribution 
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Figure 4. (a) autocorrelation of  the fractional Gaussian noise, 
(b) log-log scale of (a), (c) autocorrelation of the self-similar 
signal, (d) log-log scale of (c) 
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Figure 5. Estimated vs. true slopes of log-log scaled 
autocorrelation functions  (r = -0.1 ~ -0.9, H = -0.45~-0.05) 

 (a) variance plot (b) pox plot 

 
(c) periodogram plot  

Figure 6. Statistical property of practical Ethernet network 
traffic (H ≈≈≈≈ -0.2, r ≈≈≈≈ -0.6). After Leland et al. 


