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ABSTRACT

Discrete-time linear systems that possess scale-invariance
properties even in the presence of continuous dilation were
proposed by Zhao and Rao. The principa purpose of thisarticleis
to describe results of subsequent investigation which have led to
characterization of self-similarity properties of discrete-time
signals synthesized by these systems. It is shown that white noise
inputs to these linear scale invariant systems, which are unique in
DSP literature, produce self similar outputs regardless of the
marginal distribution of the noise. In most instances the output is
fractional Gaussian. For heavy tailed input distributions, the
output is also heavy-tailed and self-similar. It is aso shown that it
is possible to synthesize statistically self-similar signals whose
self-similarity parameters are consistent with those observed in
network traffic.

1. INTRODUCTION

The previous work of Zhao and Rao [10]-[14] has shown
that it is possible to formulate continuous dilation Linear Scale
Invariant (LSI) systems in discrete-time. The basis for their
formulation is provided by a definition of scaling or dilation in
discrete-time using warping and unwarping functions. Our
subsequent work investigating self-similarity properties of signals
generated by these systems with white noise inputs has produced
important results, the presentation of which is the main purpose of
the paper.

A motivation for studying self-similar signals has been
provided by the seminal work of Leland et al [1] showing that
Ethernet traffic is self-similar. Self-similarity has since been found
in other types of network traffic including wireless networks
[2][3]. Self-similar traffic gives rise to buffering requirements that
are different and usually higher from those predicted by Poisson
assumptions[4]. Much of the theoretical foundation related to the
characterization of dtatistica self-similarity was laid by
Mandelbrot and Van Ness [5] in the context of describing
fractional Brownian motion (fBm) and fractional noise. For
simulating data such as, for example, network traffic we clearly
require synthesis of discrete-time self-similar random processes.
Severa methods have been proposed for generating discrete-time
self-similar signals [6],[7],[8].[9]. This paper demonstrates that
synthesis of self-similar signals using white noise inputs to our
discrete-time LS| produces data whose properties are consistent
with that of network traffic.
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The paper is organized as follows. Section 2 overviews the
discrete-time LS| systems. Simulation results for synthesizing and
verification of properties of self-similar data using LS| systems
are presented in Section 3 and concluding remarks are made in
Section 4.

2. OVERVIEW OF DISCRETE-TIME LSI

SYSTEMS

2.1 Time-Scaling

The definition of self-similarity rests on the operation of
time scaling or dilation. Whereas it is possible to dilate a
continuous-time signal in a continuous fashion, the same cannot
be done with discrete-time signals. To avoid this difficulty, Zhao
and Rao [10]-[14] define a scaling operator for discrete-time
signals that can work with any real-valued scaling factor greater
then zero based on a warping transform f(w) which transforms a
discrete-time frequency (w) to continuous-time frequency (Q).
The inverse transform f () defines the continuous-time frequency
to discrete-time frequency or unwarping transform. One examples
of the warping transform is bilinear transform (BLT)

Q= f(w) =2tan(w/ 2) . @

Using the warping transform defined above and time-
frequency scaling property of the continuous time Fourier
transform, the scaling operator S| ] of discrete-time sequence x(n)
is defined by

y(n) = S,[x(n)] =aG™{ X[ A, (w)]} @

where y(n) is the output of the operator, G is the discrete-

time Fourier tranform (DTFT), A (w)=f*[af ()] . The
scaling operator is shown in figure 1.

For a stochastic input sequence, if the input X(n) of the
discrete-time scaling operator S ] is a discrete-time wide-sense
stationary random process with power spectral density Py(a), it
was shown the output is also wide-sense stationary with power
spectral density given by
&P, [, (@]

|/\ Ia(a))l
where A\’ J(¢) isthefirst derivative of A,(«) with respect to w.

2.2 Discrete-Time Self-Smilarity
Using the discrete-time continuous-dilation scaling operator

R(w) = ©)

Xa(n)

Figure 1. Block diagram of the discr ete-time scaling function



S ] in (2), discrete-time stochastic self-similar signals can be
defined as follows: a discrete-time random signal X(n) is said to
be self-similar with degree H in the wide-sense if it satisfies the
following equations

E[s.[X(n)]] =a™E[X(n)] @
S,.[Ru(nn)] =a™ R (n,n) ®)

for any a > 0, where Ry(n, n’) is the autocorrelation
function of the sequence X(n). For a discrete-time wide-sense
stationary random process, the condition of self-similarity simply
reduces to

and

P A@)] _
(A (@)]

where Py(a) is the power spectral density of the signal.
Therefore, a stationary random process X(n) whose power spectral
density satisfies (6) is a self-similar signal in the statistical sense.
Zhao and Rao suggested the next power spectrum for the density.

|f (@)f
P (w) = —2- 7
% (@) @) ™
where f' (a) isthefirst derivative of f with respect to w.
From (6), (7) and A, (@) = f *[af (0] ,
ANC)
(A (@)

Thus, X(n) is a self-similar random process with H = -(r +

a™"?P, (w) (6)

= 2P, (w). ®)

1)/2.

If the power spectral density Px(w) satisfies the Paley-
Wiener condition, the density can be factorized as a product
L (w)L* (w)and by passing white noise through a linear system
with frequency response L(w), the corresponding stochastic self-
similar process can be generated.

The power spectral density for the BLT is

f@) _ . {1— cos’ (w! 2)
| (@)
and this was known to satisfy the Paley-Wiener condition.
Let z= €% then Py(c) transformsto

P(w) =

cos (] 2) } cos’ (wl 2) 9

P.(2) =L(2L(Z") (10
where the causal part L(2) is
L(Z) = 2r/271(1_ Zfl)r/Z(l + Zfl)lfr/2 (11)

Note that the spectrum is rational only for integer value of r.
The corresponding impulse response of is a causal filter
whose coefficients are given by

1 n=0
l,(n) = ) n(r/2-k+1), (12)
(—l) (r/2)kz=ow n>0
where (), is the Pochammer’s symbol defined as
(u), =1 (13
Mu+v)

and (u), =uU+DU+2)---(u+v -1 = 14

r(u)
The impul se response corresponding to L,(2) is a 2-tap filter
with coefficients given by
1,(0) =1, (1) =2 (15)

The overal impulse response I(n) corresponding to the
system transfer function given in (11) can be represented by two
cascaded filters1,(n) and I5(n).

2.3 LS System

A linear scale-invariant (LSI) system is a linear operator L{

} whose output is invariant to scale changes of the input signals,

that is,
y(n) =L{x(n} = s, [ym] =L{S[x(n]} (16
where x(n) and y(n) are the input and output sequence
respectively.

A discrete-time causal LS| system for a given x(n) can be
defined similar to the continuous-time case [15]. Let h(k) be any
one-dimensiona discrete-time sequence. The discrete-time causal
LSl systemis defined by the following relationship :

y(n) = ih(k)q [x(m)] /K (17)

The output of the system is the sum of a series of dilation of
the input sequence by k that are linearly weighted by h(k)/k.

If the input of the LSl system is a discrete-time stochastic
self-similar signal with degree H, then the output is also a
stochastic, self-similar signal with degree H [10]-[12]. In addition,
if the input to a discrete-time LS| system is a discrete-time wide-
sense stationary random process, the output of the system is non-
stationary due to the fact that the system is time-varying. Using
this property, a non-stationary self-similar random signal with
parameter H = -(r + 1) / 2 can be generated by first generating a
discrete-time self-similar random process with degree H by
passing zero-mean white noise through a linear system with a
frequency response given by (11), and then passing the signal thus
obtained through a discrete-time LS| system. Note that the choice
of the one dimensiona function h(k) in the discrete-time LS
system is arbitrary. This providesflexibility in signal construction.
h(k) can be chosen so that the output of the system has certain
properties as desired.

3. EXPERIMENTAL CHARA-

CTERIZATION OF SELF-SIMILARITY
Given data that are nominaly self-similar, the degree of
self-similarity H can be estimated in several different ways
[1][18]. Three methods are used here. The first method, the
aggregated variance method relies on the dowly decaying
variance of a self-similar series.
var(X™) ~am?, asm - o, with 0< 3 <1 (18)
where, X™ denote a new time series by averaging X(n) over m
non-overlapping sub-blocks and B = -2H. The degree of self-
similarity H can be obtained by drawing corresponding log-log
plot and estimating the slope. The second method, the R/S plot,
uses the fact that for a self-similar dataset, the rescaled range or
R/S statistic grows according to a power with exponent H as a
function of the number of points included (n). If the process is
self-similar, R/S statistic has the following property.
E[R(n)/ S(n)] ~ an™" (19)
Thus the R/S plot on alog-log plot has Slope that is an estimate of
H. The third approach, the periodogram method, uses the slope of
the power spectrum of the series as frequency approaches zero.
The slope of the log- og plot of the periodogramis—1-2H.
In order to synthesize the discrete-time self-similar signa,
we applied several types of white noise to the filter in (11) with r
=-0.6 (H=-0.2). Figure2 (a), (b) and (c) show the variance-time
plot, the pox plot of R/S, and the periodogram plot that confirm to
the observed self-similar properties of Ethernet traffic in figure
(7). The synthesized self-similar signals from various inputs such
as white Gaussian, uniform, and Pareto distribution are depicted in
figure 3. For the heavy-tailed case we chose the simple heavy-
tailed Pareto distributed signal, with probability density function



p(x)=ak’x*?, a, k>0, x=k. (20)
The cumulative distribution of (20) is given by
F ()= P[x 5 =1-(k/x)" @

The results, shown in Figure 3, suggest that the output self-similar
signal has Gaussian characteristics regardless of the input of the
system. In addition, the signal generated from the Pareto
distribution shows heavy tailed characteristics. Figure 4(a) plots
the autocorrelation function of fractional Gaussian given by

y(h)= 2‘1{(h +2)™ —2n*" +|n —Jf”‘}, h=0 (22

The plot of the autocorrelation of the output of our system for
white noise input is shown in Figure 4(c). The autocorrelation
function decays hyperbolically which confirms its agreement with
the decaying characteristic of the fractional Gaussian noise.
Figure 5 gives the relationship between the fractional Gaussian
noise (FGN) and the generated self-similar signal for different r-
values and H'=-(r+1)/2. We get a linear plot with a slope close to
1 again confirming that the output is fractiona Gaussian. The
dlope of the line depends on the H' value and the relationship
between the system Hurst parameter and the conventional
parameter (H) is H'=H+1. Figure 6 shows the original plots of [1]
obtained from Ethernet traffic data. Their closeness to the plotsin
Figure 2 confirm that it is possible to synthesize data with white
noise driven LSl models that conform to network traffic
characteristics.

4, CONCLUSION

The discrete-time LS| systems proposed previoudly by Zhao
and Rao provide a potentia tool for the analysis and simulation of
natural self-similar signals because of their scale invariant
property (even though they are time-varying in general) in
continuous scale and flexibility in the choice of the 1-D kernel.
The paper has provided an empirical demonstration of the fact that
white noise driven discrete-time LSl systems can be used to
synthesize self-similar sequences with specified value of the H
parameter. The outputs of these systems are fractional Gaussian
for different types of white noise inputs. The explanation for the
non-dependence of the output distribution on the input distribution
is provided by the central limit theorem. However, the outputs
exhibit a heavy-tailed distribution for heavy-tailed inputs. The
systems are capable of synthesizing data consistent with the self-
similarity that has been documented in network traffic. The
discrete-time LS| systems are multi-parametric and are influenced
by more than the Hurst exponent. We believe the discrete-time
LSl system formulation occupies a place in the study of scale-
invariance and self-similarity that corresponds to the position of
linear discrete-time time-invariant systems in the study of
stationary random processes. A challenging area for further
research will be to investigate physical interpretation of LSl
models and transformation tools for such systems analogous to
Fourier analysis.
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(@) varaince plot (b) pox plot
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Figure 2. Statistical properties of synthesized self-similar
signal (system input: white Gaussian noise, r =-0.6, H =-0.2)

(b) output

(@) input: Gaussian
(c) input: Uniform (d) output
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Figure 3. Histograms of self-similar signals from several types
of white naise, (a),(b) input: Gaussian, (c), (d) uniform, (e),(f)
Pareto distribution

© (d)

Figure4. (a) autocorrelation of thefractional Gaussian noise,
(b) log-log scale of (a), (c) autocorrelation of the self-similar
signal, (d) log-log scale of ()
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Figure 5. Estimated vs. true dopes of log-log scaled
autocorrelation functions (r =-0.1~-0.9, H = -0.45~-0.05)
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Figure 6. Statistical property of practical Ether net network
traffic (H =-0.2, r =-0.6). After Leland et al.



