
BRIDGING SCALE-SPACE TO MULTISCALE FRAME
ANALYSES

Yufang Bao and Hamid Krim

ECE Dept., NCSU,
Raleigh, NC 27695-7914,

yfbao@eos.ncsu.edu, ahk@eos.ncsu.edu

ABSTRACT

We address a well known problem of nonlinear image diffusion
techniques, namely the loss of texture information. We do so by
first determining that it is due to unaccounted correlation struc-
ture in the image which we subsequently mitigate by proposing
a wavelet frame-based technique. This, by the same token estab-
lishes a theoretical bridge between the scale space methodology
and the multiscale analysis approach. We provide examples to il-
lustrate the effectiveness of the proposed approach.

1. INTRODUCTION
Several developments in image nonlinear filtering have fol-
lowed as a result of adopting Witkin’s proposed equivalence
of a heat Partial Differential Equation (PDE)-based evolu-
tion of a process and its smoothing by a Gaussian kernel
[1]. Such an evolution leads to the so-called linear scale
space of a process, parameterized by scale t,

@U(t;x)

@t
= �U(t;x); (1)

with x as a spatial vector coordinates. On the other hand
Mallat [2] proposed a systematic multiscale analysis frame-
work using Gaussian wavelets as well as orthonormal wavelet
basis. A wavelet ability to focus on and localize salient fea-
tures of a signal, together with its efficient numerical imple-
mentation, have gained multiscale analysis a great popular-
ity. While the latter provided a rigorous and flexible frame-
work, with a solid mathematical foundation and a wealth
of novel ideas in denoising, segmentation [3, 4, 5], etc.,
its analytical tractability has always imposed stringent and
even unrealistic statistical assumptions. Specifically, the im-
plicit/explicit assumption of independence of the wavelet
coefficients, for example, has been key in several theoret-
ical developments, and has also been limiting or unrealistic
for some signal classes and down right incorrect for images.
The continuous scale approach (or redundant representa-
tion), on the other hand, naturally preserves intra-scale cor-
relation information and is amenable to including inter-scale
information, hence giving one reasons to believe that such
a strategy might be a more adapted and viable approach.
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Such an approach which is necessarily nonlinear in nature,
was first proposed by Perona and Malik in their landmark
paper [6] where they aimed at preserving important sharp
features of an image, such as edges. The novelty of this ap-
proach together with its very promising results triggered a
tremendous research activity in computer vision and applied
mathematics (see [7] for a good review of the literature)
and opened up more research avenues. A number of very
good and recent papers have provided inspiring variational
interpretations of various nonlinear smoothing techniques
[7, 8]. The predominantly deterministic and more recently
stochastic analyses [9], share a common limitation of even-
tually adversely affecting any texture information present in
an image. This as further elaborated below, is inherent to
the first order Markov property assumed for the image.

In this paper, we address this problem and show that us-
ing wavelet frames with wavelets of higher order than Haar
is tantamount to accounting for longer term correlation and
leads to a good preservation of texture while removing noise
and making the image more amenable to other processing.
In the next section, we give a brief background review and
formulate the problem. In Section 3, we develop a con-
nection between linear filtering using a heat operator and
smoothing by Haar frames. In Section 4, we propose a more
general frame-based smoothing approach using higher order
wavelets such as Daubechies’ or others, and provide some
substantiating examples in Section 5.

2. BACKGROUND AND PROBLEM STATEMENT
As noted above the Perona-Malik equation still enjoys a
great deal of popularity for achieving a selective nonlin-
ear filtering, compatible with the desired objective of im-
age filtering, namely that homogeneous areas be maximally
smoothed while edge contours be maximally preserved (or
equivalently minimally smoothed). It is expressed as

@U(t;x)

@t
= div (g (jr(U(t;x))j)rU(t;x)) ; (2)

Where g(v) can be chose as g(v) = e�
v2

K2 , K determines
the rate of decay and thus the extent of smoothing of U(t;x)
for a given gradient size. Many other techniques have been
proposed and each addressing different aspects of the limi-
tations of the above equation. To the best of our knowledge,



none of these techniques [7, 9] resolves the problem of tex-
ture loss alluded to in the introduction. The fact that the
gradient-based (or Markovian property) selective filtering
of an image is a main contributor may easily be observed
by the convergence of the data to staircase functions[10] as
can be seen in Fig. 1.
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Figure 1: A profile of noisy Lenna image and filtered result
with Random walk algorithm.

3. BRIDGING MULTISCALE ANALYSIS AND
SCALE-SPACE ANALYSIS

3.1. Frame Representation and Reconstruction

As is well known, an image may be well represented in a
Haar wavelet frame by obviating the dyadic down-sampling
step of the usual orthonormal representation (or the redun-
dant representation). While the latter representation yields
a perfect reconstruction, it experiences a visually noticeable
loss of information in the course of a smoothing transfor-
mation for noise removal. This is particularly evident when
a nonlinear smoothing is locally applied and where a coeffi-
cient has a significant impact on the visual outcome. By opt-
ing for a redundant representation, we in a sense counterbal-
ance this singular effect. Our goal in this section is to then
demonstrate the intrinsic interplay between the smoothing
of an image by a linear heat equation and a specific transfor-
mation of its frame coefficients. Subsequently using judi-
ciously selected wavelets in the nonlinear filtering, we take
advantage of the selected wavelet support size to capture a
longer term correlation structure which is crucial to better
preserving some features such as texture.

Towards that end, let �(x) be a scaling function with a
compact support such thatf�(x�n)g is an orthonormal ba-
sis of V0, the space of observations,and �(x) with Fourier

transform �̂(!) =
1p
2
ĥ(
!

2
)�̂(

!

2
):  (x) be a function with

a Fourier transform  ̂(!) =
1p
2
ĝ(
!

2
)�̂(

!

2
) i.e., a so-called

mother wavelet. As is well known [11], we can write

1p
2
�(
x

2
) =

+1X
�1

h(n)�(x�n); 1p
2
 (
x

2
) =

+1X
�1

g(n)�(x�n);

where fh(n)gandfg(n)gwith Fourier transformĥ(!); ĝ(!)
that satisfies ĝ(!) = e�i!ĥ�(! + �).

Define

(
�j;n(x) =

1p
2j
�(x�2

j�1n
2j )

 j;n(x) =
1p
2j
 (x�2

j�1n
2j )

with f�j;n(x)g and f j;n(x)g as tight frames of Vj andWj

(the so-called approximation and detail subspaces). It fol-
lows that f�j;2n(x)g and f�j;2n+1(x)g as well as f j;2n(x)g
and f j;2n+1(x)g are respectively orthonormal bases of Vj
and Wj . As noted above, our goal is to show that a lin-
ear heat operation on a process/image may be implemented
using the latter’s frame coefficients and the following will
consequently result.

Proposition 1. The discrete second difference numerical im-
plementation of a Laplacian operator in a linear heat equa-
tion, is equivalent to the highest detail of a wavelet packet
frame decomposition of a signal, with a Haar mother wavelet
function.

Prior to proving this proposition, we have to establish the
following two lemma.

Lemma 1. Given a function f(x) together with its frame
representation coefficients,

aj(n) =< f; �j;n > and dj(n) =< f;  j;n >;

and hence the scaling coefficients �aj(n) = aj(2n); in or-
thonormal bases f�j;2n(x)g and f�j;2n+1(x)g, we have

aj+1(p) =

+1X
�1

h(n� p)�aj(n) and

dj+1(p) =
+1X
�1

g(n� p)�aj(n); (3)

with either of the following two reconstructions of aj(n)

�aj(p) =

+1X
�1

aj+1(2n)h(2n�p)+
+1X
�1

dj+1(2n)g(2n�p);

or

�aj(p) =

+1X
�1

aj+1(2n+1)h(2n+1�p)+
+1X
�1

dj+1(2n+1)g(2n+1�p)

Proof: The proof is immediate by noting that

< �j;p(u); �j;2n(u) >=R
1p
2j+1

�(x�2
jp

2j+1 ) 1p
2j
�(x�2

jn
2j )dx =R

1p
2
�(u�n2 )�(u� n)du

= h(n� p); (4)

and similarly <  j+1;p; �j;2n >= g(n� p).
We now look at the frame representation, and bearing in

mind that details of a signal include some signal and noise
and that the high frequency portion is mostly noise, which
would ideally be removed. Towards that end, we decompose
the detail space using a wavelet packet frame as spelled out
in the following lemma,



Lemma 2. The detail space Wj can be expressed as a di-
rect sum of two subspaces Wj = Vj;L

L
Wj;L. Defining

 aj;p(x) =

+1X
�1

h(n� p) j;n(x) and

 dj;p(x) =

+1X
�1

g(n� p) j;n(x); (5)

then f aj;p(x)g and f dj;p(x)g are respectively frames of
Vj;L;Wj;L with (f aj;2n(x)g; f dj;2n(x)g) and
(f aj;2n+1(x)g; f dj;2n+1(x)g are the respectively correspond-
ing orthonormal bases of Vj;L and Wj;L. Furthermore de-
noting fdaj(n)g and fddj(n)g as the coefficients of the de-
composition of the details in frames f aj;p(x)g and f dj;p(x)g,
the following reconstruction relationship follows,

dj(n) = (

+1X
�1

daj(2n)h(2n� p) +

+1X
�1

ddj(2n)g(2n� p)

or

dj(n) =

+1X
�1

daj(2n+1)h(2n+1�p)+
+1X
�1

ddj(2n+1)g(2n+1�p):

Having established the above two lemmas and specializ-
ing it to a Haar function leads to

�(x) =

�
1 0 < x < 1
0 others,  (x) =

( �1 0 < x < 0:5
1 0:5 < x < 1
0 otherwise;

This leads to that the formula 1
2 (u(t; i � 1) � 2u(t; i) +

u(t; i + 1)) is tantamount to iteratively subtracting details
from detail to achieve a Heat diffusion and proves the propo-
sition.

3.2. Haar Frame-Based Decomposition and Reconstruc-
tion
To further investigate the interplay and connection between
PDE-based filtering and multiscale analysis, we proceed to
specialize the foregoing development to a Haar wavelet frame
and subsequently show an underlying direct connection to a
Heat equation. For clarity of notation as well algebraic ex-
pediency, w adopt a matrix formalism which is also compat-
ible with an image representation as a matrix. A nonorthog-
onal Haar representation of a signal can still yield a recon-
struction. When using a Haar wavelet basis, the discrete

form of the low pass filter is h(0) = h(1) =
1p
2

, and that

of the high pass filter is g(0) = � 1p
2

and g(1) =
1p
2

. First

write the the following circulant matrices,

H = Cir[h(0)h(1)] andG = Cir[g(0) g(1)]

Theorem 1. Denote an initial image by a matrix A0. Its
redundant representation using a separable Haar function

(i.e., obtaining the following spectral decomposition Low-
Low,L0w-High, High-Low, High-High) can be written as

A1 = HA0H
0; D1 = HA0G

0;
D2 = GA0H

0; D3 = GA0G
0;

where “ ’ ” denotes transposition. The reconstruction ma-
trices can similarly be written as

Rh
1 = h(0)I ; Rg

1 = g(0)I ;

Rh
2 = h(1)I1;N ; Rg

2 = g(1)I1;N

where

I1;N =

2
64

0 0 � � � 0 1
1 0 � � � 0 0
� � � � � � � � � � � � � � �
0 0 � � � 1 0

3
75 :

in light of the fact that the redundant representation is
given or may be computed, the exact reconstruction meth-
ods have to be carefully rewritten. Towards that end we have
the following:

Proposition 2. Any of the following four methods will ex-
actly reconstruct the original image. Denoting,

RAij
0 = Rh

i A1R
h
j

0
;RDij

1 = Rh
i D1R

g
j

0
; (6)

RDij
2 = Rg

iD2R
h
j

0
;RDij

3 = Rg
iD3R

g
j

0
; i; j = 1; 2:

we have,
method1: A0 = RA11

0 +RD11
1 +RD11

2 +RD11
3

method2: A0 = RA21
0 +RD21

1 +RD21
2 +RD21

3
method3: A0 = RA12

0 +RD12
1 +RD12

2 +RD12
3

method4: A0 = RA22
0 +RD22

1 +RD22
2 +RD22

3 :

4. FRAME-BASED SMOOTHING
The above decomposition and reconstruction would be the
same for Daubechies wavelet with a slight modification of
the matricesH andGwhich are detailed in [9]. The smooth-
ing in a frame representation may be carried out upon writ-
ing,

A0 = RA1
0 +Rh

1D1R
g
1
0
+Rg

2D2R
h
1

0
+Rg

1D3R
g
1
0(7)

and denoting the details of detailDi; i = 1; 2; 3; 4 byW j
i ; j =

1; 2; 3; 4:. By using method 1-4 to reconstructD1; D2; D3; D4,
we use the knowledge that noise primarily dominates high
frequency information. We then proceed to decrease its con-
tribution by using the detail of detail terms fromA0 to result
in the following recursion,

Un = Un�1 � (Rh
1R

g
2W

3
1R

g
2
0
Rg
1
0

+ Rg
1R

g
2W

3
2R

g
2
0
Rh
1

0
+Rg

1R
g
2W

3
3R

g
2
0
Rg
1
0
): (8)

Filtering via this recursion is equivalent to that of a Heat
PDE, as show in prop.1. it behavior as a low pass filter
which will ultimately completely smooth an image. Gener-
alizing the above equation using higher order wavelets than
Haar basis will achieve a more graceful lowpass filtering
and a better preservation of features. Fig. 2 amplitudes of
both low pass filters obtained by using Haar and Daubechies
4 demonstrate that additional high frequency content can
pass.



Figure 2: Compare Frequency content of low pass filter us-
ing Haar and Daubechies 4 basis.

4.1. Nonlinear Reconstruction
Inspired by the algorithms of the first section such as that
we proposed or that of Perona-Malik, and to better preserve
features well captured by some correlated structure reflected
now in the coefficients, we can just as well proceed to con-
struct a reconstruction filter based on a set of transformed
frame coefficientsfrom Daubechies 4 as indicated below,
D1 = D1 � exp(�D2

1=2K);
D2 = D2 � exp(�D2

2=2K); D3 = D3 � exp(�D2
3=2K).

and iterate the reconstruction as noted above.

5. EXPERIMENTAL RESULTS AND
CONCLUSION

To illustrate the performance of our proposed nonlinear fil-
ter, we show a Lenna picture with three different denoising
techniques. Our originally proposed technique[10], Perona-
Malik’s, and the newly proposed technique. The advantages
of removing noise while preserving features like texture are
readily apparent in Figures 3, 4.

Noisy lenna image Filtered by our random walk algorithm

Filtered by PM algorithm Filtered by our wavelet algorithm

Figure 3: A noisy Lenna image and filtered result with three
algorithms.

Original texture Noisy texture Filtered of noisy texture

Figure 4: A texture image, noisy texture image and filtered
result with Daubechies 4
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