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ABSTRACT

We address a well known problem of nonlinear image diffusion
techniques, namely the loss of texture information. We do so by
first determining that it is due to unaccounted correlation struc-
ture in the image which we subsequently mitigate by proposing
awavelet frame-based technique. This, by the same token estab-
lishes a theoretical bridge between the scale space methodology
and the multiscale analysis approach. We provide examplesto il-
lustrate the effectiveness of the proposed approach.

1. INTRODUCTION

Several developmentsin image nonlinear filtering have fol-
lowed asaresult of adopting Witkin's proposed equival ence
of a heat Partial Differential Equation (PDE)-based evolu-
tion of a process and its smoothing by a Gaussian kernel
[1]. Such an evolution leads to the so-called linear scale
space of a process, parameterized by scale t,

aU(t,x)
ot

with 2 as a spatial vector coordinates. On the other hand
Mallat [2] proposed a systematic multiscale anaysis frame-
work using Gaussian wavel etsaswell as orthonormal wavel et
basis. A wavelet ability to focus on and localize salient fea-
tures of asignal, together with its efficient numerical imple-
mentation, have gained multiscale analysis a great popular-
ity. While the latter provided arigorous and flexible frame-
work, with a solid mathematical foundation and a wealth
of novel ideas in denoising, segmentation [3, 4, 5], etc.,
its analytical tractability has always imposed stringent and
even unrealistic statistical assumptions. Specifically, theim-
plicit/explicit assumption of independence of the wavelet
coefficients, for example, has been key in several theoret-
ical developments, and has also been limiting or unrealistic
for some signal classes and down right incorrect for images.
The continuous scale approach (or redundant representa-
tion), on the other hand, naturally preserves intra-scale cor-
relation information and isamenableto includinginter-scale
information, hence giving one reasons to believe that such
a strategy might be a more adapted and viable approach.

= AU(t,x), (1)
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Such an approach which is necessarily nonlinear in nature,
was first proposed by Perona and Malik in their landmark
paper [6] where they aimed at preserving important sharp
features of an image, such as edges. The novelty of this ap-
proach together with its very promising results triggered a
tremendousresearch activity in computer vision and applied
mathematics (see [7] for a good review of the literature)
and opened up more research avenues. A number of very
good and recent papers have provided inspiring variational
interpretations of various nonlinear smoothing techniques
[7, 8]. The predominantly deterministic and more recently
stochastic analyses [9], share acommon limitation of even-
tually adversely affecting any textureinformation present in
an image. This as further elaborated below, is inherent to
thefirst order Markov property assumed for the image.

In this paper, we address this problem and show that us-
ing wavel et frames with wavelets of higher order than Haar
is tantamount to accounting for longer term correlation and
leads to agood preservation of texture while removing noise
and making the image more amenable to other processing.
In the next section, we give a brief background review and
formulate the problem. In Section 3, we develop a con-
nection between linear filtering using a heat operator and
smoothing by Haar frames. In Section 4, we propose amore
general frame-based smoothing approach using higher order
wavel ets such as Daubechies' or others, and provide some
substantiating examplesin Section 5.

2. BACKGROUND AND PROBLEM STATEMENT

As noted above the Perona-Malik equation still enjoys a
great deal of popularity for achieving a selective nonlin-
ear filtering, compatible with the desired objective of im-
age filtering, namely that homogeneous areas be maximally
smoothed while edge contours be maximally preserved (or
equivalently minimally smoothed). It is expressed as

AU (1,z)
at

Where g(v) can be chose as g(v) = e~ x2, K determines
the rate of decay and thus the extent of smoothing of U (¢,2)
for agiven gradient size. Many other techniques have been
proposed and each addressing different aspects of the limi-
tations of the above equation. To the best of our knowledge,

= div (g9 (Iv(W(t,2)1) VU (t,2)) , @)



none of these techniques[7, 9] resolves the problem of tex-
ture loss aluded to in the introduction. The fact that the
gradient-based (or Markovian property) selective filtering
of an image is a main contributor may easily be observed
by the convergence of the data to staircase functiong[10] as
canbeseeninFig. 1.

noisy signal
- filter signal

Figure 1: A profile of noisy Lennaimage and filtered result
with Random walk algorithm.

3. BRIDGING MULTISCALE ANALYSISAND
SCALE-SPACE ANALYSIS

3.1. Frame Representation and Reconstruction

Asis well known, an image may be well represented in a
Haar wavel et frame by obviating the dyadic down-sampling
step of the usual orthonormal representation (or the redun-
dant representation). While the latter representation yields
aperfect reconstruction, it experiencesavisually noticeable
loss of information in the course of a smoothing transfor-
mation for noise removal. Thisis particularly evident when
anonlinear smoothingislocally applied and where a coeffi-
cient hasasignificant impact on the visual outcome. By opt-
ing for aredundant representation, wein a sense counterbal -
ance this singular effect. Our goal in this section is to then
demonstrate the intrinsic interplay between the smoothing
of animage by alinear heat equation and a specific transfor-
mation of its frame coefficients. Subsequently using judi-
ciously selected wavelets in the nonlinear filtering, we take
advantage of the selected wavelet support size to capture a
longer term correlation structure which is crucial to better
preserving some features such as texture.

Towards that end, let ¢(z) be a scaling function with a
compact support such that{¢(« — n)} is an orthonormal ba-
sis of 1}, the space of observations,and ¢(x) with Fourier

transform ¢(w) = %ﬁ(%)&(%). () be afunction with
a Fourier transform ¢ (w) = %g(%)é(%) i.e., aso-called

mother wavelet. Asiswell known [11], we can write

1 T = 1 T =
Eﬂg) = §h(”)¢($—n)§ ﬁ#}(i) = §g(n)¢($—”)a

where {h(n)}and{g(n)} with Fourier transformh(w), §(w)
that satisfies §(w) = e “h*(w + 7).
Define

{ bin(@) = F=0(220)
Yin(@) = F(=52)

with {¢; »(x)} and {¢; ,,(z)} astight framesof V; and W;

(the so-called approximation and detail subspaces). It fol-

lowsthat {2, () } aNd {6 21 () } asWell & {1 20 () }
and {9 2n+1 ()} are respectively orthonormal bases of V;

and W;. As noted above, our goal is to show that a lin-

ear heat operation on a process/image may be implemented

using the latter’s frame coefficients and the following will

consequently result.

Proposition 1. Thediscrete second difference numerical im-
plementation of a Laplacian operator inalinear heat equa-
tion, is equivalent to the highest detail of a wavelet packet
frame decomposition of a signal, with a Haar mother wavel et
function.

Prior to proving this proposition, we have to establish the
following two lemma.

Lemmal. Given a function f(x) together with its frame
representation coefficients,

a; (n) =<, ¢j,n > and dj (n) =< f, wj,n >,
and hence the scaling coefficients @;(n) = a;(2n), in or-
thonormal bases {¢; 2, ()} and {¢; 241 ()}, we have

+oo
aji1(p) = Y h(n—p)a;(n) and

—+o0
dig1(p) = > g(n—p)a;(n), ®)

with either of the following two reconstructions of a;(n)

+oo +oo
a;(p) =Y a1 (2n)h(2n—p)+ Y _ d;j1(2n)g(2n —p),
or

+oo +00
a;(p) = a1 @nADh@n+1-p)+ Y dia@ntl)g@n+1-p

Proof: The proof isimmediate by noting that

< Pjp(u), djon(u) >=
i mizjn)dm =

f \/zljﬁ(ﬁ( 27T )\/%(15( 27
J 256(552)6(u — n)du
= h(n —p), (4)

andsimilarly < ¢j11,p, ¢j2n >= g(n — p). [ |

We now ook at the frame representation, and bearing in
mind that details of a signal include some signal and noise
and that the high frequency portion is mostly noise, which
would ideally beremoved. Towardsthat end, we decompose
the detail space using awavelet packet frame as spelled out
in the following lemma,




Lemma 2. The detail space I¥; can be expressed as a di-
rect sum of two subspaces W; = V; 1, @ W, ;.. Defining

+00
i (1) = Z h(n — p)Y; n(x) and
oo
ﬁp(x) = Zg(n _p)z/)j,n(x); (5)

then {¢¢ (x)} and {4¢ (x)} are respectively frames of
Vj.o, Wiz with ({4, (2) }, {5, () }) and

({t5 2n11(2)}, {2041 () } aretherespectively correspond-
ing orthonormal bases of V; , and W; ;. Furthermore de-
noting {da;(n)} and {dd;(n)} asthe coefficients of the de-

composition of thedetailsinframes {+¢ ()} and {4¢ ,(x)},
the following reconstruction relationship follows,

+00 Too
dj(n) = (Y da;(2n)h(2n — p) + Y _ dd;(2n)g(2n — p)

or

—+o0 +oo
dj(n) = da;(2n+l)h(2nH-p)+ Y _ dd;(2n+1)g(2n+1-p).

Having established the above two lemmas and specializ-
ing it to a Haar function leads to

-1 0<z<0.5
1 0<z<l
¢(m):{ z/)(m):{l 05<z<1
0 others, 0  otherwise,
This leads to that the formulal (u(t,i — 1) — 2u(t,i) +

u(t,i + 1)) is tantamount to iteratively subtracting details
fromdetail to achieveaHeat diffusion and provesthe propo-
sition.

3.2. Haar Frame-Based Decomposition and Reconstruc-
tion

To further investigate the interplay and connection between
PDE-based filtering and multiscale analysis, we proceed to
specialize theforegoing development to aHaar wavel et frame
and subsequently show an underlying direct connectionto a
Heat equation. For clarity of notation as well algebraic ex-
pediency, w adopt amatrix formalism which is also compat-
ible with an image representation as a matrix. A nonorthog-
ona Haar representation of a signal can still yield a recon-
struction. When using a Haar wavelet basis, the discrete

form of the low passfilter is h(0) = h(1) = % and that
of the high passfilterisg(0) = —% andg(1) = % First

write the the following circulant matrices,
H = Cir[h(0) h(1)] andG = Cir[g(0) g(1)]

Theorem 1. Denote an initial image by a matrix Aq. Its
redundant representation using a separable Haar function

(i.e., obtaining the following spectral decomposition Low-
Low,LOw-High, High-Low, High-High) can be written as

A1 = HA()H’; D1 - HA()GI;

Dy = GAgH'; D3 = GALG',
where“ ' " denotes transposition. The reconstruction ma-
trices can similarly be written as
Ry =h(0)I;  R{ =g(0)I;
Ry =nh(1)yn; R§=g(1)Lin
where
o 0 --- 0 1
nw=| 5 D
o o0 -~ 1 0

in light of the fact that the redundant representation is
given or may be computed, the exact reconstruction meth-
odshaveto be carefully rewritten. Towardsthat end we have
the following:

Proposition 2. Any of the following four methods will ex-
actly reconstruct the original image. Dencting,

RAY =RMARY;RDY =RID/RY, (6)
RDY =R!D,R!;RDY =R{D;RY, i,j=1,2.
we have,
methodl: Ay = RA}' + RD{' + RD3' + RD}!
method2: Ay = RAD 4 RD?' + RD3' + RD3
method3: 4, = RA§2 + RD{? + RD%2 + RD3?
method4: Ay = RA2> + RD?* + RD3? + RD3.

4. FRAME-BASED SMOOTHING
The above decomposition and reconstruction would be the
same for Daubechies wavelet with a slight modification of
thematrices H and G which aredetailedin [9]. The smooth-
ing in a frame representation may be carried out upon writ-
Ing,

Ao = RAL+R!'D\RY + RID,R" + RID3R(7)
and denoting the detailsof detail D;,i = 1,2,3,4by W/, j =
1,2, 3,4.. By using method 1-4 to reconstruct D, Ds, D3, Dy,
we use the knowledge that noise primarily dominates high
frequency information. We then proceed to decreaseits con-
tribution by using the detail of detail termsfrom A, to result
in the following recursion,

Up = Un_1— (RIRIWRY' RY
+ RIRIWERYRM + RIRIWERIRY). (8)

Filtering via this recursion is equivalent to that of a Heat
PDE, as show in prop.1l. it behavior as a low pass filter
which will ultimately completely smooth an image. Gener-
alizing the above equation using higher order wavelets than
Haar basis will achieve a more graceful lowpass filtering
and a better preservation of features. Fig. 2 amplitudes of
both low passfilters obtained by using Haar and Daubechies
4 demonstrate that additional high frequency content can
pass.
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Figure 2: Compare Frequency content of low pass filter us-
ing Haar and Daubechies 4 basis.

4.1. Nonlinear Reconstruction

Inspired by the algorithms of the first section such as that
we proposed or that of Perona-Malik, and to better preserve
featureswell captured by some correlated structure reflected
now in the coefficients, we can just as well proceed to con-
struct a reconstruction filter based on a set of transformed
frame coefficientsfrom Daubechies 4 as indicated below,
D, = Dy xexp(—D?/2K);

Ds = Dy x exp(—D35/2K); D3 = D3 x exp(—D3/2K).
and iterate the reconstruction as noted above.

5. EXPERIMENTAL RESULTS AND
CONCLUSION

To illustrate the performance of our proposed nonlinear fil-
ter, we show a Lenna picture with three different denoising
techniques. Our originally proposed technique[ 10], Perona-
Madlik’s, and the newly proposed technique. The advantages
of removing noise while preserving featureslike texture are
readily apparent in Figures 3, 4.

Noisy lenna image Filtered by our random walk algorithm
S .

Filtered by PM algorithm Filtered by our wavelet algorithm

Figure 3: A noisy Lennaimage and filtered result with three
algorithms.

Filtered of noisy texture

result with Daubechies 4
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