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ABSTRACT

We consider the problem of image interpolation using
adaptive optimal recovery. We adaptively estimate the local
quadratic signal class of our image pixels. We then use op-
timal recovery to estimate the missing local samples based
on this quadratic signal class. This approach tends preserve
edges, interpolating along edges and not across them.

1. INTRODUCTION

Image interpolation is becoming an increasingly important
topic in digital image processing, especially as consumer
digital photography is becoming ever more popular. From
enlarging consumer images to creating large artistic prints,
interpolation is at the heart of it all. It has been known for
some time that classical interpolation techniques such as lin-
ear and bi-cubic interpolation are not good performers since
these methods tend to blur and smooth edges.

Wavelets have been successfully used in interpolation
[1, 4, 6]. These methods assume the image has been passed
through a low pass filter before decimation and then try to
estimate the missing details, or wavelet coefficients from the
low resolution scaling coefficients. One drawback to these
approaches is that they assume the knowledge of the low
pass filter.

Directional interpolation algorithms try to first detect
edges and then interpolate along edges, avoiding interpola-
tion across edges [5]. In this class, there are algorithms that
do not require the explicit detection of edges. Rather, the
edge information is built into the algorithm itself. For ex-
ample, [3] uses directional derivatives to generate weights
used in estimating the missing pixels from the neighboring
pixels. In [2], the local covariance matrix is used for esti-
mating the missing pixels. This interpolation tends to adjust
to an arbitrarily oriented edge.

In this paper we present a new directional interpolation
technique based on optimal recovery. The results of our in-
terpolation approach can be thought of as an extension to
[2]. In regions of high frequency our approach provides
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Fig. 1. Geometric Diagram of Ellipsoid Class

slightly better results than [2] and in some cases outper-
forms [9].

2. OPTIMAL-RECOVERY

In this section we briefly review the theory of optimal re-
covery as applied to the interpolation problem [8]. We then
apply this theory to develop a new adaptive approach to im-
age interpolation. The interpolation problem may be viewed
as a problem of estimating missing samples of an image.
This latter problem can be examined using the theory of op-
timal recovery. The theory of optimal recovery provides a
broader setting, which illuminates the process of interpola-
tion, by providing error bounds and allowing calculation of
worst-case images which achieve these bounds.

Locally, at locationy (Fig. 2), we model the image as
belonging to a certain ellipsoidal signal classK

K = fx 2 Rn : xTQx � �g (1)

whereQ is derived from the local image pixels as shown in
section 3. Vectorx is any subset of the image containing the
missing pixely. Vectorx is chosen such thatany L linear
functionals (Fi; i = 1; : : : ; L) of x are assumed known. If
we note the actual values of the functionals byfi we have
Fi(x) = fi. In this paper we assume that the functionals
are based on derivatives and/or actual pixel values of the
decimated image. The known functionalsFi, in the local
image, determine a hyper-planeX (Fig. 1).

The intersection of the hyper-plane and ellipsoid is a
hyper-circle inX . The intersection depends upon the known



functionals of the local image and we call itCx. Formally,

Cx = fx 2 X : Fi(x) = fi; kxkQ � 1g; (2)

For a linear mappingU, the image ofCx underU is the
range of values thatUf can take. The optimal recovery
problem is to select the value inX which is a best approxi-
mation over allUf inUCx. We want to minimize

Æ = max
xTQx

jŷ � yj

The Chebyshev center achieves this minimization. The Cheby-
shev center has been shown to be the minimumQ-norm sig-
nal on the hyper-plane determined by the known samples.
The solution to this problem is well-known: see [8, 7].

If the collection of known functionals isfi, the mini-
mum norm signal is�u. Signal�u is the unique signal inX
with the property,

k�ukQ = inf
Fi(x)=fi

kxkQ (3)

Our estimates signal�u must satisfyFi(�u) = fi and we are
estimatingF (�u) = f . As shown in [8] there exist vectors
�; �1; : : : ; �L such thatF (û) = (�; �u)Q and

Fi(û) = (�i; �u)Q (4)

where the parentheses denote a Q dot product. Vectors�i
are known as the representors. From [8] the solution is given
by

�u =

LX
i=1

�i�i (5)

where the constants�i are determined from the constraint
of equation (4).

An advantage of this approach is not only that we can
minimize the distanceÆ = maxxTQx jŷ � yj, but we also
obtain bounds on the maximum errorÆ and we can find the
image which achieves this maximum error.

We now deal with the problem of determiningQ adap-
tively from the image data. To make this explanation as
simple and as straight forward as possible, we demonstrate
our method with a simple toy example.

3. ADAPTIVE, OPTIMAL-RECOVERY
INTERPOLATION

Our adaptively determined quadratic signal class, orQ, will
be a measure of how well the local data matches the already
known functionalsFi. We want to find an adaptive signal
classK of the form:

K = fx 2 Rn : xTQx � �g (6)

To best understand this process, let’s look at Fig. (2). In
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Fig. 2. Interpolate pixely. The only known pixels are the
gray pixels.

this small example, the problem is that of estimating pixel
y. Our first step is to choose a signalx that contains the
missing pixely. For reasons that will be clear in a moment,
let

x = [y1 y2 y3 a3 b4 y4 y y6 d2 c1 y7 y8 y9]
T

Next, we assume that there exists weightw1; : : : ; w4 such
that locally, each pixel can be estimated by the weighted
sum of the four closest diagonal pixels. With

kêk2 = min
w

kek2

our measure of how well the data matches the nearby points
is
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or equivalently
ê = x�	w

The norm squared of̂e is given by
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(8)

The problem of finding estimatêy which minimizesÆ =
maxxTQx jŷ�yj is equivalent to findingx which minimizes
xTQx given the known functionalsFi.

Assuming	 is full rank, matrix Q has four zero eigen-
values with the rest of them being all one. The null space of
Q is spanned by the column vectors of	. At first glance, it



seems that the solution to this problem might be any vector
in the null space, since that will give zero error. That how-
ever, is not true since the solution must also satisfy the given
functionals. Unless there areonly four known functionals,
our solution will not be in the null space ofQ .

Known functionals can be pixel values of the decimated
image, derivative assumptions or any other linear function-
als of the high resolution image. In our toy example, the
linear functionals are the given pixelsa3; b4; c1; d2 and as-
sumptions about the derivatives. In particular, we look at the
derivatives in the directionsd2 � b4 anda3 � c1. We chose
the direction with the smallest change and assume that the
derivatives of the unknown pixels in that direction are equal
with the derivatives of the known pixels in the same direc-
tion. For example, ifb4�d2 has the smallest difference, the
derivative based functionals would be

y3 � y = b2 � b4 andy7 � y = d4 � d2

When the known functionals are only the decimated pixel
values, this method simplifies to the method presented in
[2].

The formulation of our problem and the adaptiveQ ma-
trix is also quite useful when we assume that the image went
through a low pass filter, before decimation. In this case, our
assumption is that the pixel values of Fig. 2 are samples of
the filtered image. If we letH be a filtering matrix and we
assume that the image before filtering isz

x = Hz (9)

then Q of (8) becomesQ = HTQH . The newQ will still
have four zero eigenvalues, but the other eigenvalues will
no longer be one.

The approximation of the signal class, and therefore the
interpolation results, can be further improved by an iterative
process as follows:

1. Interpolate the missing pixels with the method de-
scribed above.

2. Using the interpolated pixels, return to equation (2)
and add the calculated pixels at the higher resolution
as extra functionals.

We haven’t proved convergence here, but from our experi-
mental results, repeating this process three times seems to
be enough.

4. RESULTS

In obtaining our results we first started with a high resolu-
tion image. We then filtered the higher resolution image by
a low pass filter (Daubechies 1), to simulate camera lenses,
and decimated by two. We then reconstructed the image
using different interpolation approaches.

For our results section we have compared the adaptive,
optimal recovery image interpolation algorithm against the
algorithm presented in [2], against bi-cubic interpolation
and against a commercially available algorithm [9]. When
compared against [2] the algorithm outperformed slightly,
especially around sharp and/or thin edges. The algorithm al-
ways outperformed bi-cubic interpolation. When compared
against [9] there were places where the adaptive, optimal-
recovery interpolation outperformed [9], but there were also
places where it under-performed. Some sample images are
included at the end of this section, but the reader is encour-
aged to view TIF images at
ww.ee.cornell.edu/~splab.

Finally, we would like to thank Xin Li for providing us
with his interpolation algorithm [2].
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Fig. 3. Altamira (top), Cubic (center), Optimal-Recovery
(bottom).

Fig. 4. Altamira (top), Cubic (center), Optimal-Recovery
(bottom).


