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ABSTRACT
We consider the problem of image interpolation using
adaptive optimal recovery. We adaptively estimate the local A 7 B R
guadratic signal class of our image pixels. We then use op-
timal recovery to estimate the missing local samples based %
on this quadratic signal class. This approach tends preserve X

edges, interpolating along edges and not across them.

Fig. 1. Geometric Diagram of Ellipsoid Class
1. INTRODUCTION

Image interpolation is becoming an increasingly important slightly better results than [2] and in some cases outper-
topic in digital image processing, especially as consumerforms [9].
digital photography is becoming ever more popular. From
enlarging consumer images to creating large artistic prints, 2. OPTIMAL-RECOVERY
interpolation is at the heart of it all. It has been known for
some time that classical interpolation techniques such as lin-In this section we briefly review the theory of optimal re-
ear and bi-cubic interpolation are not good performers sincecovery as applied to the interpolation problem [8]. We then
these methods tend to blur and smooth edges. apply this theory to develop a new adaptive approach to im-
Wavelets have been successfully used in interpolationage interpolation. The interpolation problem may be viewed
[1, 4, 6]. These methods assume the image has been passex a problem of estimating missing samples of an image.
through a low pass filter before decimation and then try to This latter problem can be examined using the theory of op-
estimate the missing details, or wavelet coefficients from thetimal recovery. The theory of optimal recovery provides a
low resolution scaling coefficients. One drawback to these broader setting, which illuminates the process of interpola-
approaches is that they assume the knowledge of the lowtion, by providing error bounds and allowing calculation of
pass filter. worst-case images which achieve these bounds.
Directional interpolation algorithms try to first detect Locally, at locationy (Fig. 2), we model the image as
edges and then interpolate along edges, avoiding interpolabelonging to a certain ellipsoidal signal cldss
tion across edges [5]. In this class, there are algorithms that W7
do not require the explicit detection of edges. Rather, the K={zeR":2 Qr<e} )
edge information is built into the algorithm itself. For ex-
ample, [3] uses directional derivatives to generate weights
used in estimating the missing pixels from the neighboring
pixels. In [2], the local covariance matrix is used for esti-
mating the missing pixels. This interpolation tends to adjust
to an arbitrarily oriented edge.

whereQ is derived from the local image pixels as shown in
section 3. Vectog is any subset of the image containing the
missing pixely. Vectorz is chosen such thany L linear
functionals ¢;,i = 1,..., L) of x are assumed known. If
we note the actual values of the functionals faywe have
F;(xz) = f;. In this paper we assume that the functionals

¢ rl}r:]ithls %ape:jwe pret_sen': anew d|re19rt]|onal |r:;cerpfolat|9n are based on derivatives and/or actual pixel values of the
echnique based on optimal recovery. 1 € resulls ot ourin:yq iy ateq image. The known functiondly in the local

terpolation approach can be thought of as an extension to

. . . Image, determine a hyper-plafg(Fig. 1).
[2]. I regions of high frequency our approach provides The intersection of the hyper-plane and ellipsoid is a
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functionals of the local image and we caltit,.. Formally, a, a, b, b,
Co={reX:F)=fildlo<1}, @ Vil el 1Y
a, a, b, b,
For a linear mappindJ, the image ofC, underU is the y y y
range of values thall f can take. The optimal recovery 4 &
problem is to select the value i which is a best approxi- d| |4, ¢ S
mation over allU f in UC,,. We want to minimize Y, Yg Yo
d, d, C, C,

0 = max |§j —
;I%ley yl

The Chebyshev center achieves this minimization. The Che 19 2. Interpolate pixel. The only known pixels are the

shev center has been shown to be the miningiamorm sig- ay pixels.
nal on the hyper-plane determined by the known samples.
The solution to this problem is well-known: see [8, 7]. this small example, the problem is that of estimating pixel
If the collection of known functionals ig;, the mini- 4. Our first step is to choose a signalthat contains the
mum norm signal igi. Signalu is the unique signal i’ missing pixely. For reasons that will be clear in a moment,
with the property, let
lelle = inf l=le (3) = [y1 y> ys a3 ba ya y Yo do ¢1 Y1 ys yo]"

Our estimates signal must satisfyF;(z) = f; and we are ~ Next, we assume that there exists weight ..., w4 such

estimatingF (z) = f. As shown in [8] there exist vectors that locally, each pixel can be estimated by the weighted
¢, ¢1,...,¢r such thatF (i) = (¢, @)g and sum of the four closest diagonal pixels. With

Fi(a) = (¢i,u)q (4) 1é][* = min [|e]|?

where the parentheses denote a Q dot product. Vegtors  oyr measure of how well the data matches the nearby points
are known as the representors. From [8] the solution is givenig

by
L n ap az as ag
U= Z i () Y2 az b by az
i=1 Y3 bi by b b4 wy
where the constants; are determined from the constraint . as ap b ¢ dp wo
of equation (4). €= by | T |ax by 2 do w3 @)
An advantage of this approach is not only that we can Ya ag a3 dy di Wy
minimize the distancé = max,rq, |y — y|, but we also Yy az by c1 do
obtain bounds on the maximum erand we can find the : oo
image which achieves this maximum error.
We now deal with the problem of determinidgadap- or equivalently
tively from the image data. To make this explanation as e=x—Tw
simple and as straight forward as possible, we demonstrate .
our method with a simple toy example. The norm squared dfs given by
&e=x"[1-w(v7w)"" o] x
3. ADAPTIVE, OPTIMAL-RECOVERY
INTERPOLATION Thus,
Our adaptively determined quadratic signal class) owill Q= [I - v (‘I’T‘I’) ' ‘I’T] (8)

be a measure of how well the local data matches the alread
known functionalsF;. We want to find an adaptive signal
classK of the form:

¥he problem of finding estimatg which minimizes§ =
max,q, |J—y|is equivalent to finding which minimizes
xT Qx given the known functionals;.
K={zeR":2"Quz<¢} (6) Assuming? is full rank, matrix Q has four zero eigen-
values with the rest of them being all one. The null space of
To best understand this process, let’s look at Fig. (2). In Q is spanned by the column vectorsbf At first glance, it



seems that the solution to this problem might be any vector  For our results section we have compared the adaptive,
in the null space, since that will give zero error. That how- optimal recovery image interpolation algorithm against the
ever, is not true since the solution must also satisfy the givenalgorithm presented in [2], against bi-cubic interpolation
functionals. Unless there aomly four known functionals,  and against a commercially available algorithm [9]. When
our solution will not be in the null space @ . compared against [2] the algorithm outperformed slightly,
Known functionals can be pixel values of the decimated especially around sharp and/or thin edges. The algorithm al-
image, derivative assumptions or any other linear function- ways outperformed bi-cubic interpolation. When compared
als of the high resolution image. In our toy example, the against [9] there were places where the adaptive, optimal-
linear functionals are the given pixels, by, c1, d> and as- recovery interpolation outperformed [9], but there were also
sumptions about the derivatives. In particular, we look at the places where it under-performed. Some sample images are

derivatives in the direction, — b, andas — ¢;. We chose

included at the end of this section, but the reader is encour-

the direction with the smallest change and assume that theaged to view TIF images at
derivatives of the unknown pixels in that direction are equal ww.ee.cornell.eduéplab.

with the derivatives of the known pixels in the same direc-

Finally, we would like to thank Xin Li for providing us

tion. For example, iby — d» has the smallest difference, the with his interpolation algorithm [2].

derivative based functionals would be
yg—y:b2—b4andy7—y:d4—d2

When the known functionals are only the decimated pixel (1]
values, this method simplifies to the method presented in
[2].

The formulation of our problem and the adapt@ama- 2]
trix is also quite useful when we assume that the image went
through a low pass filter, before decimation. In this case, our
assumption is that the pixel values of Fig. 2 are samples of
the filtered image. If we let! be a filtering matrix and we
assume that the image before filtering is

r=Hz (9)

then Q of (8) become® = HTQH. The newQ will still (4]
have four zero eigenvalues, but the other eigenvalues will
no longer be one.

The approximation of the signal class, and therefore the
interpolation results, can be further improved by an iterative 5]
process as follows:

1. Interpolate the missing pixels with the method de-
scribed above. [6]

2. Using the interpolated pixels, return to equation (2)
and add the calculated pixels at the higher resolution
as extra functionals.

We haven't proved convergence here, but from our experi- [7]
mental results, repeating this process three times seems to
be enough.

4. RESULTS (8]

In obtaining our results we first started with a high resolu-
tion image. We then filtered the higher resolution image by

a low pass filter (Daubechies 1), to simulate camera Ienses[ ]
and decimated by two. We then reconstructed the image
using different interpolation approaches.

5. REFERENCES

D. Darian Muresan and Thomas W. Parks, “Predic-
tion of Image Detail,"IEEE ICIP, Vancouver, Sept.
2000.

Xin Li and Michael T. Orchard, “New Edge Di-
rected Interpolation JEEE International Conference
on Image Processingyancouver, Sept. 2000.

Ron Kimmel, “Demosaicing: Image Reconstruction
from Color CCD Samples,IEEE Transactions on
Image Processingyol. 8, No. 9, (September 1999),
pp.1221-1228.

W. Knox Carey, Daniel B. Chuang and Sheila S.
Hemami, “Regularity-Preserving Image Interpola-
tion,” IEEE Transactions on Image Processing.

8, No. 9 (Sept. 1999), 1293-1297.

J. Allebach and P. W. Wong “Edge-directed Inter-
polation,” IEEE Proceedings of ICIFL996, pp.707-
710.

S. Grace Chang, Zoran Cvetkovic, and Martin Vet-
terli, “Resolution Enhancement of Images Using
Wavelet Transform Extrema InterpolationlEEE
ICASSP(May 8-12, 1995), pp. 2379-2382.

C. A. Michelliand T. J. Rivlin, “ A Survey of Optimal
Recovery,” inOptimal Estimation in Approximation
Theory,C. A. Michelli and T. J. Rivlin, Eds. New
York: Plenum 1976, pp. 1-54.

M. Golomb and H. F. Weinberger, “Optimal approx-
imation and Error BoundsOn Numerical Approxi-
mation,R. E. Langer ed., The University of Wiscon-
sin Press, Maddison, pp. 117-190, 1959.

Commercial, Fractal Based Interpolation Algorithm
(www.genuinefractals.com)



e

Fig. 3. Altamira (top), Cubic (center), Optimal-Recovery Fig. 4. Altamira (top), Cubic (center), Optimal-Recovery
(bottom). (bottom).



