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ABSTRACT

In this work, an integrated approach to vector dynamic fea-

ture extraction is described in the design of a hidden Markov
model (VVD-IHMM) based speech recognizer. The new
model contains state-dependent, vector-valued weighting
functions responsible for transforming static speech features
into the dynamic ones. In this paper, the minimum classifi-
cation error (MCE) is extended from the earlier formulation
of VVD-IHMM that applies to a novel maximum-likelihood
based training algorithm. The experimental results on al-
phabet classification demonstrate the effectiveness of the
MCE-trained new model relative to VVD-IHMM using dy-
namic features that have been subject to optimization dur-
ing MLE-training.

1. INTRODUCTION

In the past few years, use of the coefficients that measure
dynamic changes in the spectra has resulted in demon-
strated success in enhancing the performance of both
speech recognition and speech parameter generation sys-
tems [6, 7, 9. The time-varying linear filter coefficients
[2] have been shown to provide an optimal construction of
dynamic parameters from existing static ones. The sta-
tistical model, called the wvector-valued dynamic integrated
HMM (VVD-IHMM), which incorporates generalized dy-
namic speech features described in this paper is an exten-
sion of the scalar-valed dynamic integrated HMM (SVD-
IHMM) [2]. The state-dependent weights to tranform static
speech features into dynamic ones as explained in [2] were
considered as scalar valued. The more general case of
matrix-valued weighting coefficients is described in this pa-
per. We show that our approach based on this technique
is appropriate to model the dynamics of cepstra since the
state-dependent regression is done independently for each
dimension of the transformed cepstral space.

2. DYNAMIC FEATURES

Let X = {X1,Xs, -+, X7} denote the vector sequence of
static feature parameters having the length of T frames.
The dynamic feature vector }); at time frame ¢ is defined
as a simple combination of the static features stretching
over the interval f frames forward and b frames backward
according to [3]

f
Ve = Z W, iXi+k, 1<t<T,
k=—b

where W ; are the matrix-valued weighting coefficients
(W’s can be treated as a diagonal matrix for mathemat-

ical simplicity) associated with the Markov state ¢. To sim-
plify the discussion, we assume that the static and dynamic
features are statistically independent [2]. A Gaussian den-
sity associated with each VVD-IHMM state 4 (a total of IV
states) assumes the form

bi(O) = bi(Xe, Vi) = bi(X)bi(Ve),

where O is the augmented feature parameters at frame
t consists of both static and the dynamic feature vectors.
In the above equation b;(X:) and b;()}:) are d-dimensional
unimodal Gaussian densities for static and dynamic features
respectively, as
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where variables X and ) indicate the static and the dy-
namic features, respectively. The parameters pq,;, py,i are
the state-dependent Gaussian mean vectors and Xz ;, Xy ;
are the state-dependent diagonal covariance matrices. Su-
perscripts —1 and T'r denote matrix inversion and vector
transposition with d being the dimension of the static and
dynamic feature vectors.

3. MATRIX DERIVATIVES

This section reviews the important theorems in vector and
matrix calculus. These theorems are necessary, in many
situations for example in the areas of multivariate analysis
and the linear model, to obtain the partial derivatives of a
function with respect to a vector or matrix as a variable.
Some general theorems, which are useful in statistical appli-
cations and closely related to this work, are demonstrated
in the following subsections. Note that the theorems are
not for general matrices, but each theorem is for a ma-
trix with a specific form or pattern. A further information
about the matrix calculus can be obtained from the litera-
ture [1, 5, 11, 13].

3.1. Theorem
Let g be a quadratic form in the n independent real variables

T1,T2, -+, T, defined by g(z) = 27" Az, where A = [ay)] is
a n X n symmetric matrix of constants. Then
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The t-th element of Oq(z)/0x is 8¢q/0x: , and clearly
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3.2. Result
Let @ be defined by

Q = AT"mA

where A is d x 1 vector given by
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¥ is d x d symmetric matrix, p and X (n) are d x 1 vectors,
W (n) are d x d matrices, for different values of n. Then
oQ
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for k=0,1,---,N.
Proof: The scalar function @) can be written as

= 2BAX"7(k),
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Now, the partial derivative of W (k) matrix with respect
to the scalar @ can be expressed, element by element, as
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for k=1,2,---,N.

4. DISCRIMINATIVE TRAINING

The approach we employed in previous work to the pa-
rameter estimation problem associated with the integrated
HMM has been built on the basis of the maximum likeli-
hood (MLE) principle [3, 4]. Use of an entirely new the-
oretical principle, the minimum classification error (MCE)
principle, to design the integrated HMM is the subject of
the current section [8, 10]. In the supervised training mode
which we assume, each training token (an augmented l-th
data sequence having the length of T frames X, T, , yTl))
known to belong to one of K classes {C7}_;. The goal
of the MCE-training is to find the classifier parameter set,
denoted by ® = {®7}/,, such that the probability of mis-
classifying any ©' is minimized and the resulting ® gives
the optimal solution of the classifier.

The first step in the formulation of the objective function
is to choose an appropriate discriminant function g, (0", ®)
according to the following decision rule for classification:

c(0') =

C", if go(O',®) = max g;(0', ®)
J

where C(.) is the class associated with the test data O'
as determined by the classifier. In our implementation of
the integrated HMM, we choose the most likely (optimal)
state path traversing the Markov model as the basis for
defining the discriminant function. The log-likelihood score
of the input utterance ©' along the optimal state sequence
O = {67,605 ---, 07, } for the model associated with the xth
class ®" can be written as

QN(OI: Q)

Tl
Z log bor (O})
t=1

where bgr (O!) is the probability of generating the feature

vector O at time ¢ in state 8¢ by the model for class sth,
and T' is the number of frames of the Ith observation se-
quence.

In our implementation of the integrated HMM, we as-
sume uncorrelatedness between the static features and the
generalized dynamic features. Hence, the output probabil-
ity takes the form

bor (OF) = bor (X, Vi) = bor(X)bor (W),
Given a discriminant function, a misclassification measure
for an input training utterance @' from class k can be de-



fined as follows to quantify the classification behavior:
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where 7 is a positive number and K is the total number
of classes. d.(O',®) above is a quantity that indicates the
degree of confusion between the correct class and the other
competing classes for a given input utterance @'. When 75
approaches oo, the misclassification measure becomes

d.(0',®) = —gm(ol,¢)+m¢axgj((’)l,@)
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where C? is the most confusable class. Clearly, a positive
value of d.(O',®) indicates a misclassification and a neg-
ative value of d,. (O, ®) implies a correct decision. Given
a misclassification measure, we further define a smoothed
loss function for each class «:

1
1+ e—rdn(01,2)’

Tn(ol, ) = p>0
which approximates the classification error count. Finally,

given a loss function defined for each class, we define the
overall loss function for the entire classifier as

ZT (0!, 8)8[0

where §[¢] is the Kronecker indicator function of a logic
expression £ that gives value 1 if the value of £ is true and
value 0 otherwise. The loss function Y(©', ®) is minimized,
each time a training token (' is presented, by adaptively
adjusting the parameter set ® according to
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where ®; is the parameter set at the [th iteration,
VY(O'!, &) is the gradient of the loss function for train-
ing sample O'. ¢ is a small positive learning constant. Let
¢’ denote a parameter associated with model j, then in the
case of token-by-token training, we can write the gradient
as
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In the remaining of this section, class index j will be omitted
for clarity of presentation. By using the matrix derivative
result (3.2), the partial derivative of Y(O', ®) with respect
to each W;(k) is given by
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for i = 1,2,---,N, k = —b,—b+1,---, f and the set T/

includes all the time indices such that the state index of the
state sequence at time ¢ belongs to state ith in the Markov
chain, i.e. T/ = {t|6; =i}, 1<i<N, 1<t<T.

The following gradient equations are obtained by using
the matrix calculus techniques [1] and by computing the
partial derivatives of Y(O', ®) with respect to each inte-
grated HMM parameter for a given training token ' be-
longing to class kth:
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where I denotes d x d identity matrix, Ay ;¢ = X} — pa s,
Ayie = Y- Wy,i, For easier implementation, the con-
strained parameters are transformed to an unconstrained
domain and the gradient is computed with respect to the

transformed parameters f]w- =log ¥;,; and f]y,i =logXy,;.
5. CLASSIFICATION EXPERIMENTS

The experiments conducted to evaluate the various inte-
grated HMMs are aimed at recognizing the 26 letters in the



Type of model MLE-model | MCE-model
Conventional HMM | 80.11% 84.68%
SVD-THMM 81.55% 86.16%
VVD-IHMM 82.57% 87.45%
VVD-IHMM”™ 82.57% 88.39%

Table 1. TI 26-alphabet classification rate as a func-
tion of the model type.

English alphabet, contained in the TI46 isolated word cor-
pus. The speaker-independent training set consists of 10
tokens per word from two male and two female speakers
(m1, m2, f1 and £2). The remaining 16 tokens per word for
each of the above four speakers is used as test data. The
preprocessor produces a vector of 13 Mel-frequency cepstral
coefficients (MFCCs) for every 10 msec throughout the sig-
nal. The augmented feature vectors used for the benchmark
HMM consist of 26-elements, with 13 cepstrum coefficients
and 13 delta cepstra. For the integrated HMMs, only the
static feature vectors are used as the raw data to the rec-
ognizer, which constructs the dynamic feature parameters
internally within the recognizer. To be consistent with the
conventional delta parameter techniques, the window vari-
ables f, b are set to 2 and the matrix Wy ; is constrained
to be diagonal.

Each word is represented by a single left-to-right, three-
state HMM (no skips), with single Gaussian state observa-
tion densities. The covariance matrices in all the states of
all the models are diagonal and are not tied. All transition
probabilities are uniformly set to 0.5 and are not learned
during the training process. The conventional HMM mod-
els are trained from training data using five-iterations of
the MLE-training with single mixture for each state in
the HMMs [12]. The scalar-valued dynamic integrated
HMM (SVD-IHMM) are trained using five-iterations of the
MLE-algorithm with non-linear type constraint [2]. The
vector-valued dynamic integrated HMM (VVD-IHMM) are
trained according to the training procedure outlined in [3].
The MLE-trained models are used as the initial model for
the ensuing MCE-training step. The conventional HMM
models and SVD-IHMM are discriminatively trained using
five iterations of gradient probabilistic descent based MCE-
algorithm [2]. The VVD-IHMM" is trained using five iter-
ations of MCE-procedure outlined in the previous section.
During MCE-training for VVD-IHMM, we updated only
the state-dependent mean and variance parameters and the
vector-valued dynamic feature parameters are kept constant
during MCE-training process, but they are trained using
non-linear type contraint based MLE-training [4].

The experimental results are summarized in Table 1. We
observe from Table 1 that all the IHMMs are superior
to the conventional HMM. The SVD-IHMM based classi-
fier produces 86.16% accuracy with an error rate reduc-
tion of 10% compared with the convention HMM classifier
(84.68%). From the final classifier based on VVD-IHMM™,
which incorporated vector-valued dynamic weighting func-
tions, the best classification results have been obtained
(88.39%). The recognition rate using the VVD-IHMM* im-
proved from 84.68% (conventional MCE-trained HMM) to
88.39% which translates to 24% error rate reduction. It also
represents a 16% error rate reduction compared with SVD-
THMM. Among all four types of the model evaluated, the
MCE-trained VVD-IHMM* performs better than the other
models.

6. CONCLUSIONS

The state-dependent weights to tranform static speech fea-
tures into dynamic ones as explained in [2] were consid-
ered as scalar valued. The more general case of matrix-
valued weighting coefficients is developed and evaluated us-
ing MCE-training algorithm. The best error rate reduction
of 24% is obtained using the MCE-trained VVD-IHMM*,
tested on a TI alphabet classification task, relative to con-
ventional HMM. Compared across all four MCE-trained
classifiers, VVD-IHMM* produced the lowest error rate and
is the new efficient way of describing the dynamic charac-
teristics of speech cepstra.
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