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ABSTRACT

We present a method to find the mean square estimate of
the original image using a Gauss-Markov image model and
a known point spread function. The performance of the
edge adaptive technique compares favorably to the Wiener
filter on synthetic and real images with mild linear
(motion) blur and additive white Gaussian noise.

1.  INTRODUCTION

There are many techniques for restoring noisy, blurred
images; however, the major drawback with most of these
techniques is the performance in the vicinity of edges.
Because most noise reduction techniques take advantage
of the low pass nature of most images to reduce the noise
at higher frequencies. Thus, when high frequency content
is present in images (such as edges), then image restoration
filters do not restore the edges, but instead generate addi-
tional error. A simple example of this performance can be
illustrated by observing Gibbs’ phenomena: When a
square wave is passed through a low pass filter, the loss of
high frequency content actually causes ripples in the wave-
form emanating from the edge.

Prior to the consolidation of image restoration tech-
niques in Lagendijk’s monograph [7], the existing tech-
niques fell into three main categories: stochastic
restoration, algebraic restoration, and multiple constraints
restoration. 

Stochastic techniques use a stochastic image model to
determine the appropriate level of noise filtering to apply
during restoration [1, 11]. Algebraic techniques adjust the
convergence factor or the regularization filter of iterative
solutions to the inverse filtering problem based upon the
presence of edges [3, 5, 6]. The methods using constraints
apply the technique of projection onto convex sets (POCS)

[8, 10, 12, 13]. Newer techniques use wavelet transforms
to preserve edge information in the detail channels [2].

We develop the edge adaptive signal model first for
one dimensional signals in Section 2 and the correspond-
ing one dimensional estimator in Section 3. After a brief
presentation of a one dimensional example in Section 4,
we extend the signal model to two dimensional images in
Section 5. We present our results using both a synthetic
image and a real image in the presence of linear (motion)
blur and white noise in Section 6.

2.  ADAPTIVE SIGNAL MODEL

Many signals can be characterized by a Gauss-Markov
process which states that the current value of a signal can
be determined as a linear combination of past values of the
signal and a Gaussian random signal [9]. For discrete sig-
nals, a first order Gauss-Markov process combines the
immediate past value of the signal with a Gaussian random
signal to produce the current signal. In mathematical nota-
tion, this is expressed as

(1)

where s(k) is the value of the signal at step k, v(k) is a ran-
dom variable, and a and b are the weights. If the system is
time invariant, then the signal can be represented in vector
form as

(2)
where A is a diagonal matrix with the first subdiagonal
populated with the value a, and B is a diagonal matrix
equal to bI.

To create a system model that more closely models
edges or discontinuities, we have to include the edge in the
model. To accomplish this we simply add a hypothesis to
our Gauss-Markov model:

(3)
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In vector form, we get the same equation (2), but with
some values in A equal to zero, and B no longer a multiple
of the identity matrix. Many methods exist to determine
the location of edges in signals. For images, a two dimen-
sional edge detector can be found in [4]. Another method
could be to classify any location that falls outside the non-
edge model by three standard deviations as an edge. For
the purpose of this development, we will assume that the
edges are known.

3.  MEAN SQUARED ESTIMATOR

Now that we have a signal model, we can explore how our
knowledge of the measurement system can be exploited to
provide an optimal estimate of the signal. If we consider
that our system is a typical AWGN system consisting of
noisy measurements of the signal that have passed through
a time invariant filter, then the system can be written as

(4)
where C is the system matrix, and D is a diagonal matrix
that allows for time varying noise contributions. We would
like to find the optimal mean square estimate of the signal
given the entire signal frame.

From the fundamental theorem of estimation theory
[9], we know that the mean squared estimator is

(5)

If r and s are multivariate Gaussian random variables, then
the estimator can be expressed as

(6)

where  is the covariance of r and  is the cross-cova-

riance between s and r.
First, we examine the statistical nature of the signal s.
Solving (2) for s, we write

(7)

Because v is defined as a zero mean Gaussian random

variable with variance , then we can determine the

mean and covariance matrix of s:

(8)

(9)

Next, substituting (7) into (4), we write

(10)

We can determine by inspection that the mean of r is also
zero. From our knowledge that w is a zero mean white
Gaussian independent of v and the definitions of s and r in

(7) and (10), we can solve for the cross-covariance matrix
between s and r as 

(11)

The covariance of r can be as easily solved as

(12)

Finally, by substituting (11) and (12) into (6), we can
write the mean squared estimator of the signal as

(13)

This estimator may be simplified slightly by taking advan-
tage of the diagonal matrices B and D. For the special case
that B=D=I, this estimator reduces to the vector-matrix
form of the Wiener filter found in [7], which we write as

(14)

We present a simple example in the next section.

4.  1-DIMENSIONAL EXAMPLE

To illustrate the benefits of edge adaptive estimation, we
restored a noisy and smeared square wave using both the
traditional Wiener filter and the edge adaptive filter. The

impulse response of the smearing function was [0.1 0.5
0.4] and the signal to noise ratio (SNR) was 30 dB.
Figure 1 contains the original and noisy signals. Figure 2
demonstrates the superior performance of the edge adap-
tive method.
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Figure 1.  1-D Original and Noisy Signals
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5.  ADAPTIVE IMAGE RESTORATION

The application of the one dimensional method can be eas-
ily adapted for a two dimensional image by representing
the image as a vector of lexicographically ordered pixels.
With this representation, the same equations apply directly
as in the one dimensional case. The only change required
is to the Gauss-Markov signal model to add dependence on
the pixels in the neighboring row above the pixel of inter-
est.

We use the quarter plane model to model the relation-
ship between a pixel and it’s neighbors. With the image in
lexicographical vector form, the hypothesis in (3) is then
modified such that non-edge pixels satisfy the equation

(15)

where n is the length of a row. The use of (15) results in a
slightly different form of the A matrix.

6.  RESULTS

Before we can evaluate the performance of the edge adap-
tive technique against other techniques, we must define a
performance measure. The signal to noise ratio improve-
ment (ISNR) is the measure we choose. The ISNR is cal-
culated as

(16)

and, in this form, is written in units of decibels (dB).
We applied the edge adaptive filter to the simulated

image shown in Figure 3 that had been blurred by horizon-
tal linear blur of two pixels and with additive white Gauss-
ian noise with variance in a range from -60 dB to 0 dB

the edge adaptive technique is compared to that of the
Wiener filter in Figure 4. The technique was also applied

to part of the cameraman image shown in Figure 5. The

performance for the two techniques applied to part of this

Figure 2.  1-D Restoration Results
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Figure 3.  Synthetic Image

Figure 4.  ISNR for synthetic image.

Figure 5.  Part of cameraman image.
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image is shown in Figure 6. For both images, the edge

adaptive technique was able to further improve the image
quality beyond that attainable by the Wiener filter, in some
cases by 2-5 dB for SNR values of 30-60 dB.

7.  CONCLUSIONS

We have developed an edge adaptive image restoration
technique that provides a significant improvement over the
Wiener filter. This technique, as demonstrated in the
development of the estimator, can also be applied to one
dimensional signals that contain discontinuities.

Further investigations include expansion of the signal
model to include different models for the possible edge
orientations, which should provide additional noise reduc-
tion along edges away from the corners. We also are inves-
tigating the use of iterative forms of this technique in
simultaneously identifying and restoring images and image
sequences.

8.  REFERENCES

[1] D. L. Angwin, “Image Restoration Using Reduced
Order Models,” Signal Processing Magazine, vol. 16,
pp. 21-28, 1989.

[2] M. Belge, M. E. Kilmer, and E. L. Miller, “Wavelet
Domain Image Restoration with Adaptive Edge-Pre-

serving Regularization,” IEEE Transactions on
Image Processing, vol. 9, pp. 597-608, 2000.

[3] Y. Ichioka and N. Nakajima, “Image Restoration
Considering Visibility,” Journal of the Optical Soci-
ety of America, vol. 71, pp. 983-988, 1981.

[4] A. K. Jain, Fundamentals of Digital Image Process-
ing. New Jersey: Prentice Hall International, Inc.,
1989.

[5] M. G. Kang and A. K. Katsaggelos, “General Choice
of the Regularization Functional in Regularized
Image Restoration,” IEEE Transactions on Image
Processing, vol. 4, pp. 594-602, 1995.

[6] A. K. Katsaggelos, “A General Formulation of Adap-
tive Iterative Image Restoration Algorithms,” in Pro-
ceedings of the Princeton Conference on Information
Sciences and Systems, pp. 42-46, Princeton, NJ,
1986.

[7] R. L. Lagendijk and J. Biemond, Iterative Identifica-
tion and Restoration of Images. Boston: Kluwer Aca-
demic Publishers, 1991.

[8] R. L. Lagendijk, J. Biemond, and D. E. Boekee,
“Regularized Iterative Image Restoration with Ring-
ing Reduction,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 36, pp. 1874-
1888, 1988.

[9] J. M. Mendel, Lessons in Estimation Theory for Sig-
nal Processing, Communications, and Control.
Englewood Cliffs, N.J.: Prentice Hall PTR, 1995.

[10] M. I. Sezan and A. M. Tekalp, “Adaptive Image Res-
toration with Artifact Suppression Using the Theory
of Convex Projections,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 38,
pp. 181-185, 1990.

[11] A. M. Tekalp, H. Kaufman, and J. W. Woods, “Edge-
Adaptive Kalman Filtering for Image Restoration
with Ringing Suppression,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 37,
pp. 892-899, 1989.

[12] Y.-L. You and M. Kaveh, “A Regularization
Approach to Joint Blur Identification and Image Res-
toration,” IEEE Transactions on Image Processing,
vol. 5, pp. 416-428, 1996.

[13] Y.-L. You and M. Kaveh, “Ringing Reduction in
Image Restoration by Orientation-Selective Regular-
ization,” IEEE Signal Processing Letters, vol. 3, pp.
29-31, 1996.

Figure 6.  ISNR for cameraman image.
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