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ABSTRACT tory dynamics of speech production is in itself an unsolved

This paper presents a new parameter estimation algo_problem, a simpler alternative is to describe the known spec-

. : tral manifestations of the process. In this paper the statisti-
rithm based on the E>.<te'nded Kalman Filter (.EKF) for the re- cal coarticulatory modelligg of the vocal—?ragt—resonances
cently proposed statistical coarticulatory Hidden D_ynamc (VTRs) proposed by Deng [2. 1, 3] is further investigated
Model (HDM). We show how the EKF parameter estimation The principal advantage of shch a model lies in the com-
algorithm unifies and simplifies the estimation of both the gjact structure for representing long-term contextual depen-
state and parameter vectors. Experiments based on N-be : . .
rescoring demonstrate superior performance of the (context—c oo " the observable speech acoustics. This is based

independent) HDM over a triphone baseline HMM in the on the lower-dimensional, less variable, VTR feature space
TIMIT phonetic recognition task. We also show that the compared to the higher-dimensional, highly variable MFCC

HDM is capable of generating speech vectors close to thosefeature space. The compact stlructure also result; n fewer
from the corresponding real data. parameters that need to be esUmated_and less training data
needed to estimate the parameters reliably.
In this paper we present a new parameter estimation al-
1. INTRODUCTION gorithm based on the full use of the extended Kalman filter
. ) (EKF) for both state and parameter estimation as an alter-
Hidden Dynamic models (HDMs) [1, 8,9, 2, 3, 4] attempt 0 pative to the use of the EM algorithm, where the EKF was
model the intrinsic dynamics in the human speech produc-,seq only for state estimation in the E-step [2]. Experiments
tion system in an effort to address some of the known weak- 4, the TIMIT phone recognition are performed to evaluate
nesses of the current hidden Markov modelling (HMM) para-ihe performance of the HDM based on rescoring of the N-
digm when applied to acoustic modelling for unconstrained, pegt jists generated by a baseline HMM. Investigation of the
spontaneous speech recognition. Such weaknesses includgey, jearning algorithm demonstrates the convergence of the

the HMM's inability to adequately model coarticulation and - 1y6qe| parameters to the corresponding realistic acoustic ob-
phonological variation without resorting to the use of very ggoryations.

large numbers of context-dependent models of an enumera-
tive type. There is an increasing demand for speech recog-
nisers to cope with larger vocabularies, less constrained task
grammars, large populations of speakers and background
and different speaking styles. With the current HMM para-

digm this can only be achieved by using copious amounts OfThe system model consists of a target-directed hidden dy-

training Qata and sophisticated clustering algorithms to reli- namic state process coupled with a non-linear observation
ably estimate the many parameters. The very large number

of model parameters makes it difficult for a speech recog- process.
. P P 9 The hidden dynamic “state” equation is used to describe
nizer to adapt to a new speaker, a new speaker style, and % . : )
) o . : e vocal-tract resonance (VTR) dynamics according to:
new environment. This is a direct consequence of the blind,
data-driven approach of the current HMM approach when 2(k+1) = & 2(k) + (I — )T + w(k) 1)
applied to acoustic modelling.

The HDM described in this paper adopts a more struc- wherez(k) is the three-dimensional state vector &ridand
tured model of the underlying human speech production dy- ®’ are the phone target and diagonal “time-constant” sys-
namics by describing the acoustic features as the observatem matrix parameters associated with the phone regime
tions measured from a state-space model description of thej. The process noisey(k), is represented in this study
speech production process. While describing the articula-by an i.i.d, zero-mean, Gaussian process with covariance

2. MODEL FORMULATION

SThe hidden dynamic model presented in this paper is based
on the statistical coarticulatory model described in [2, 1].



matrix Q. A feature of this model is its ability to switch where®’ (k) is row i of ®/(k). The new state equation
state-space parameters when crossing over to new phonbecomes

dynamic regimes and continuity of the hidden state variable Ok +1)= f(O(k)) +w(k), 4)
z(k) across phone regimes. The latter provides a long-span , . . . . .
cgn)tinuity across phone regimes and structurally models theWh'Ch is now non-linear in Fhe state variabfigk), and can
inherent context dependencies and coarticulatory manifes—be decomposed as follows:
tations between adjacent phone regimes. 2k 4+ 1)

The observation equation is used to describe the map-

ping between the hidden state dynamic to the observable ijéz i B N
acoustic features. The most general form of the observation . .
equation is a static, nonlinear mapping as follows: 7 (k)z(k) + (I — @7 (k))T'(k) ) w, (k) )
®i (k) + | wa(k)
O(k) = h"(2(k)) + v(k) ) T9 (k) wr (k)

where the acoustic observati6n(k) is the set of Mel cep-  The measurement equation becomes

stral coefficients (MFCCs) at framk, and v(k) is mod-

elled by an i.i.d, zero-mean, Gaussian process with covari- O(k) = h"(0(k)) + v(k), (5)
ance matrix® and represents the additive observation noise o . )

which captures the residual errors in mapping frofh) to where it is noted that the nonlinear mapping functtén.)

O(k). The multivariate nonlinear mappiny; (z(k)), is im- is strictly dependent only oa(F). _ _
plemented by a multi-layer perceptron (MLP) for each dis-  The standard EKF algorithm recursion [7, 5] is used to
tinct manner of articulation. yield joint state and parameter estimates at each time-step.

A three-layer feedforward multi-layer perceptron was This use of the EKF obviates the need for an additional EM

implemented for the nonlinear functiari(z(k)) with linear ~ @lgorithm step for parameter estimation, and conveniently
activation function on the output layer and the antisymmet- €Stimates both the system dynamic and MLP weight param-

ric hyperbolic tangent function: eters. _
The expression for th&m + m?) x (2m + m?) state
g(xz) = 1.7159 tanh((2/3)x) equation Jacobian matriky[0(k|k)] = _3f(9)’ )
9 |g—b(k+1/k)

on the hidden layer. used in the EKF recursion can be shown to be:

A i (klk) S (klk) I — ©9(klk)
3. PARAMETER ESTIMATION BY EKF Fyl0(k|k)] = 0 L2 0
0 0 I
The parameter estimation method for the hidden dynamic "
model can be based on a generalised EM algorithm [2].\yhereds is the current estimate of the x 1 time-constant
However due to the nonlinear equations in the M-step and atrix and
the crude approximation for estimation of the MLP weights

in this paper we propose to use the EKF algorithm for joint g(lﬂk) _
state and parameter estimation. This is achieved by using 0P
the appropriate augmented form of the state equation de- [2(k|k) — Tj(k|k)}’ 0
fined as: : . :
(k) 0 c [ (klR) = T (klR))
o(k) = | @i(k) @ L . .
79 (k) is them x m* partial derivative submatrix expression for
of
~ oD
where®i (k) is them? x 1 time-constant vector anag = 3 The (n) Re (2m + m?) observation equation Jacobian
is the dimension of the state vectdr/ (k) is related to the ~ matrix, Hy[0(k + 1|k)] used in the EKF recursion, is only
time-constant matri®’ (k) as follows: dependent oa(k + 1|k) and is expressed as:
o7 (k) Hplf(k +1|k)] = [ H.[2(k+1[k)] 0 0 ]
j/
<I5j(k) = ® (k) wheren is the dimension of the acoustic observation vector

and the elements of ther x m Jacobian submatrix,
" (k) H.[2(k + 1|k)], at row; and columni are defined as:



zero and arbitrary values for state error covariaft{é)
00, (k + 1) were chosen to drive the EKF state and parameter estima-
7} tion updates. Identical initialisation of the state and param-
Ozi(k +1) eter vectors was used for all phone models.

The HMM was used to generate the 100-best and 5-best
time-aligned transcription for the dr8 test data utterances
and the corresponding reference transcription. The HMM,

whereW;; is the MLP weight vector of nodgin layer! and HDMm and HDMc rescored the 100-best, 100-best+ref, 5-
¢'(x) is the derivative of the activation function. best and 5-best+ref transcriptions and the top score was used
Use of the EKF for joint state and parameter estimation to evaluated the WER and sentence error rate (SER) perfor-
requires initial values for both the augmented state vector,mance of the system. The bounds on performance were pro-
0(0[0) = (2(0]0), ®(0|0),T(0]0)), state error covariance vided by the Chance and Oracle systems. A random tran-
matrix, P(0|0) and specification of the noise covariances scription was chosen for Chance (lower bound) and the best
Q(k) and R(k). Selection of the covariance parameters is transcription was chosen for Oracle (upper bound). In addi-
crucial in guaranteeing convergence of the EKF recursion. tion to recognition performance the number of parameters to
Evaluation of the HDM is based on a rescoring task be estimated for each system was also derived. The results
which requires the model to output a score (i.e. likelihood) of the evaluations obtained so far are presented in Table 1.
of a given utterance given the segmented phone transcrip- Both the HMM and HDM systems yield similar WERs
tion. The log-likelihood scoring function used in this work which are little better than Chance when presented with

HE (e 100)] = |

— [Z Wa; (h)g (Wypz(k + 1)) Wi (i)

h=1

is identical to that reported in [3]. the N-best list without inclusion of the reference transcrip-
tion (these observations are similar to those in [8]). How-
4. EXPERIMENTS ever upon exposure to the reference transcription the WER

drops significantly for the HDM, by 6% in the case of 100-

Due to the complexity of direct search and of lattice rescor- best+ref to as much as 14% in the case of 5-best+ref. This
ing with the HDM, the evaluation of the new HDM learning can be attributed directly to the HDMs ability to select the
algorithm was carried out performing N-best rescoring on reference transcription in favour of the N-best transcriptions
time aligned transcriptions produced by a baseline HMM as evidenced by the significant reduction in SER. Whereas
system [8]. Evaluation of the HDM in this paper was based the HMM fails to select the reference transcription, the HDM
on the phone recognition task using the TIMIT corpus. Due correctly identifies the correct reference transcription in at
to the large computational requirements of the current im- least 20% of the cases for 100-best+ref and almost 50% of
plementation, only the dr8 dialect subset was used for train-the cases for 5-best-+ref.
ing the HDM phone models. To produce time-aligned tran- Another important consideration for the HDM is the use
scriptions a baseline context-dependent phone HMM sys-of a more structured modelling paradigm that requires fewer
tem was trained on the complete TIMIT training data. An parameters to be estimated. The HDMm requires around
HMM trained on the complete training data is superior to 1.5% of the number of parameters needed for the HMM
one trained on the dr8 dialect subset and represents the besthile the HDMc requires only 0.14%. This is a highly de-
performing HMM system for phone recognition. The per- sirable property since it would make any adaptive learning
formance of both these systems were evaluated on the dr&lgorithm (to be developed) much more effective. Further-
testing subset. more the currentimplementation of the HDM suffers by us-

The acoustic features used were 13 dimensional staticing time-aligned transcriptions derived from the HMM. Re-
MFCC vectors for the HDM models and 39 dimensional sults with optimal segmentation strategies during the HDM
static, delta and delta-delta MFCC vectors for the HMM decoding process [2, 6] have been shown to yield a further
models. The HDM hidden dynamic was a 3-dimensional 3% reduction in WER.

VTR state vector requiring a 3-input, 13-output MLP non- To investigate the generative properties of the HDM, we
linear mapping functiom” (z(k)) to map the VTR dynamic  show a typical plot in Figure 1 of the real MFCC acous-
to the observable MFCC observation vectors. tic feature vectorO(k), together with the corresponding

Two implementations of the HDM were evaluated. The HDMm and HDMc outputsh(z(k)). It is evident that the
HDMm implementation used one 3-layer, 12 hidden node, HDMs attempt to converge to the observation output as a
MLP per phone model for the nonlinear mapping in the ob- consequence of the EKF parameter estimation being driven
servation process. The HDMc implementation used only by minimisation of the innovation sequence. Some evidence
three broad-class (Silence, Voiced, Unvoiced) 3-layer, 16 of the target-directed nature of the underlying production
hidden node MLPs. For both implementations 5 iterations process can also be seen by the positioning of the phone
of the EKF parameter estimation were used, the noise co-segment centers where there is a change in the target and
variance@ (k) associated with the parameters was set to time-constant dynamics.



System | Oracle| Chancee HMM | HDMm | HDMc
184 | 291 | 28.7 | 289 | 29.1

100-best | 516 | 100.0| 100.0 | 100.0 | 100.0
100-best | 0.0 | 28.4 | 28.7 | 224 | 222
+ref | 00 | 99.1 | 100.0 | 80.0 | 81.8
cboct | 247 | 276 | 278 | 282 | 277
99.1 | 100.0| 100.0 | 100.0 | 100.0

5best | 0.0 | 268 | 27.7 | 17.7 | 131
+ref | 00 | 909 | 991 | 654 | 518
Parameters N/A | N/A | 778245 11350 | 1115

Table 1. Analysis of WER (normal), SER (italics), and
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aligned transcriptions with and without the reference tran-

scription.

5. SUMMARY AND CONCLUSION

The HDM approach represents an important new paradigm

Fig. 1. Plot of the first component of the MFCC acous-
tic observation and HDM model output vectors from frame
100 to 202. The phone segment centers are indicated by the
vertical lines.

for acoustic modelling based on a more structured and par- [2] L. Deng, J. Ma, *A statistical coarticulatory model for

simonious model of the human speech generation process.
The results presented in this paper indicate the superior per-
formance of the HDM, especially when exposed to the ref- 3]
erence transcription. The HMM often failed to provide high
scores for the reference transcription while the HDM suc-
ceeded in this in most cases. The main contribution of this
paper is the novel EKF-based parameter learning algorithm

which enables such success.

Further work is needed to develop a lattice scoring al-
gorithm with optimal segmentation of the dynamic regimes
to properly evaluate the performance of the HDM and to
investigate alternative parameter estimation algorithms that
incorporate estimation of the phone boundaries. Optimal
combination of the HDM and HMM recognisers for overall
improvement in system performance should also be investi-

gated.
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