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ABSTRACT

We are interested in the problem of learning stochastic lan-
guage models on-line (without speech transcriptions) for adap-
tive speech recognition and understanding. In this paper
we propose an algorithm to adapt to variations in the lan-
guage model distributions based on the speech input only
and without its true transcription. The on-line probability
estimate is defined as a function of the prior and word er-
ror distributions. We show the effectiveness of word-lattice
based error probability distributions in terms of Receiver
Operating Characteristics (ROC) curves and word accuracy.
We apply the new estimates Padapt(w) to the task of adapt-
ing on-line an initial large vocabulary trigram language model
and show improvement in word accuracy with respect to the
baseline speech recognizer.

1. INTRODUCTION

We are interested in the problem of learning stochastic lan-
guage models on-line (without speech transcriptions) for adap-
tive speech recognition and understanding. Currently, speech
understanding systems are designed for a given application
and trained on the domain-specific speech and text corpus.
On-line learning is critical to enable spoken dialog systems
to shift the goal of existing tasks or adapt to new domains.

In this paper we propose an algorithm to adapt to varia-
tions in the language model distributions based on the speech
input only and without its transcription. Since the speech
recognizer output is noisy we need an error probability dis-
tribution to account for the input noisy channel and com-
plete the probabilistic model:

Padapt(w) = F (Po(w); Perror(w)) (1)

where Padapt(w) is the on-line adapted word distribution,
F is a function of Po(w), the initial probability distribution
of word w and of Perror(w), the error probability distribu-
tion.
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In the literature there are two types of word error proba-
bility distributions. The first type is based on acoustic mea-
surements [1] and the other type on word lattices. The latter
has the advantage that the probabilities are computed on-
line and does not require training. In particular, sausages [2]
are compact representations for word lattices. Sausages topol-
ogy is such that posterior probabilities are easily estimated
and are effective predictors for word accuracy. In the next
paragraph we review the sausage lattice representation and
provide experimental data for the word error distribution
and word accuracy results on a large vocabulary task. In
the second paragraph, we describe the on-line experiments
performed with the goal of learning F (Po(w); Perror(w)).
We apply the new estimates Padapt(w) to the task of adapt-
ing on-line an initial trigram language model from untran-
scribed speech data and show improvement in word accu-
racy with respect to the baseline speech recognizer.

2. LATTICES AND SAUSAGES

One of the possible outputs of a speech recognizer is a word
lattice. A word lattice is a connected graph, where each state
has a time information and each arc represents a word that
has been hypothesized during the decoding. Each arc has
a score, which comes from the combination of the acoustic
and language models; the topology of the lattice reflects the
constraints of the language model.

Recently, an algorithm has been proposed [2] for con-
verting a lattice in a compact format, called sausage. A
sausage is a simplified lattice with a particular topology: it
turns out to be a sequence of confusion sets, each one be-
ing a group of words, which may include a null word (eps),
competing in the same (with some approximation) time in-
terval. Each word has a posterior probability, which is the
sum of the probabilities of all the paths of that word oc-
currence in the lattice. In each confusion set, the sum of all
posteriors equals 1. In a sausage the time order is preserved,
but time information is lost. The main motivation of this al-
gorithm is that of minimizing the Word Error Rate (WER),
instead of the Sentence Error Rate (SER).

We briefly review Mangu’s algorithm. Mangu’s algo-



rithm takes a word lattice as input and goes through the fol-
lowing steps:

� low probability links of the lattice are pruned;

� a posterior probability for each link of the lattice is
computed;

� a “temporal” order over the states of the lattice is
found;

� different occurrences of the same word in the “same”
time interval are merged (intra - word clustering stage)
and their posteriors summed;

� words which compete in the “same” time interval are
grouped together to form a confusion set (inter - word
clustering stage).

It is straightforward to extract from a sausage what is
called the Consensus Hypothesis, which is the word sequence
obtained by picking up from each confusion set the word
with the highest posterior. This sequence can differ from
the best path hypothesis, i.e. the optimal word sequence in-
side the lattice. The Consensus Hypothesis is said to have a
better WER of the best path hypothesis, and experiments on
the HMIHY task ([3]) confirm this. In fact, on the 1K test
set, a gain of 0.6% was obtained1, as shown in Table 1.

CORR WA INS DEL SUB
best path 67.8% 62.6% 5.2% 12.0% 20.2%
consensus 68.1% 63.2% 4.9% 12.5% 19.4%

Table 1. Consensus Hypothesis gain over Best Path, for the
HMIHY task.

3. LATTICE-BASED POSTERIOR PROBABILITY

As previously said, each word of the sausage (and in partic-
ular the words of the Consensus Hypothesis) has associated
a posterior probability. In Table 2 an example is reported
for the sausage of Figure 1.

ref yeah I’m making a credit card call
b p yeah I’m making a yet credit card call
cns yeah I’m making a yet credit card call
pst .995 .994 .997 .997 .622 .994 .998 .999

Table 2. Reference, Best Path, Consensus Hypothesis and
Posteriors for an HMIHY sentence. In this case Best Path
and Consensus Hypothesis are the same, but the posterior is
a good indicator of a possible speech recognition error.

1In this experiment, lattices did not contain time information.
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Fig. 1. A sausage. Note the empty word eps.

Another quantity that can be used as a confidence score
is a local entropy, computed on each confusion set:

H = �

P
N

i=1
post(wi)� log(post(wi))

where N is the number of competing hypotheses and
post(wi) is the posterior of word wi. This measure includes
more information than the previous one, because it takes
into account not only the posterior of the winning word,
but also the distribution of the posteriors of the competing
words.

Posterior distributions - HMIHY test
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Local entropy distributions - HMIHY test
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Fig. 2. Distributions for posteriors and local entropy, for
words correctly recognized (solid lines) and for words mis-
recognized (dotted lines).

Posteriors and local entropy have been computed on the
HMIHY test set. Figure 2 shows their distributions for words
that have been correctly recognized and for words that have
been misrecognized. In both cases there is separability among
distributions. Thus the posterior appears to be a good can-
didate as a confidence score. The posterior is then inter-
preted as the probability of correctly recognizing a word w

(1� Perror(w)).
Then a ROC curve was drawn for both quantities, show-

ing a very similar behavior. Figure 3 shows false rejection
rate

(100� (1� correct=occurrences))
against correct classification rate

(100� (correct=hypothesized))
for the HMIHY test set.

Both posterior and local entropy give a measure of the
acoustic / linguistic confusion found during the decoding



Word level roc curves - HMIHY test 
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Fig. 3. ROC curves.

stage; in this sense, they can identify speech segments with
problematic speech recognition. Compared to other mea-
sures, like the likelihood ratios ( [1]), they are robust toward
changes in the speech recognizer and do not need training.
As far as implementation issues are concerned, they can be
computed as a simple post processing of the recognizer’s
output, without need for a second recognition stage.

4. UNSUPERVISED ON-LINE LEARNING

A set of experiments were performed to verify the possi-
bility of using the posteriors of the Consensus Hypothesis
to improve the performance of a system in an unsupervised
way.

For this experiment we used the following databases
from the How May How Help You? task [3]:

� Tr (HMIHY ’95, 7844 sentences): speech and tran-
scription corpus used to train the acoustic and lan-
guage models; this corpus is a collection of speech
transcriptions from human-human interactions.

� Tr1 (HMIHY ’97, 6896 sentences): speech corpus
used to adapt the language models; this corpus is a
collection of speech transcriptions from human-machine
interactions. The corpora Tr and Tr1 have signifi-
cantly different language distributions [3].

� Test: (HMIHY ’97, 899 sentences): test corpus from
the same collection as the set Tr1.

The goal here is that of using only the speech data of
Tr1, without transcriptions, to modify the language mod-
els of the baseline, trying to improve the word accuracy on

true transcription sequence
to Paul Barlett
collect to Kayme
-irectly to the number I’m calling from thank you

after <UNKNOWN> replacing
to <UNKNOWN><UNKNOWN>
collect to <UNKNOWN>
<UNKNOWN> to the number I’m calling from thank you

Table 3. Upperbound: the label <UNKNOWN> replaces
the words outside the initial lexicon

Test. The set of sentences on which the language model
(trigrams) will be trained is the sole part of the system that
will change during the experiments: lexicon, acoustic mod-
els and other parameters (language model weight, insertion
penalties, etc.) will be kept fixed.

The baseline, an upperbound, and a first experiment (best
path) for this data have been obtained by training the lan-
guage model on the following data:

� baseline: the training set is only Tr;

� best path: the training set is the concatenation of Tr
and the output of the recognizer (baseline) on Tr 1;

� upperbound: the training set is composed by Tr and
Tr1: this is the unique experiment in which the man-
ual transcriptions of Tr1 have been used. Note that,
in order to keep the lexicon fixed, words not in the
original lexicon (that of Tr) were replaced by the la-
bel <UNKNOWN> in the training data, as shown in
Table 3. Then, after trigram estimation, all the paths
using the label <UNKNOWN> were removed from
the grammar.

perpl WA INS DEL SUB
baseline 17.60 58.5% 12.6% 5.7% 23.3%
best path 14.73 58.6% 13.2% 5.1% 23.1%

upperbound 14.01 60.7% 12.1% 5.4% 21.8%

Table 4. Results for the baseline

Table 4 reports results obtained in these experiments, ex-
pressed both in terms of perplexity on the test set and in
Word Accuracy (WA). Note that, while in both cases (best
path and upperbound) there is a significant decrease in per-
plexity with respect to the baseline, recognition performance
improves only for the upperbound: adding the output of
the recognizer to the initial training set does not give ben-
efits with respect to the baseline. In the next experiment



consensus hypothesis with posteriors
dial(0.46) the(0.29) call(0.96) calling(0.95) card(0.94)
call(0.91) my(0.84) phone(0.76) bill(0.58)
yes(0.66) calling(1) card(1) six(0.99) six(0.52) oh(0.71)

corresponding training set
<UNUSED><UNUSED> call calling card
call my phone <UNUSED>
<UNUSED> calling card six <UNUSED> oh

Table 5. Posterior thresholding: the label <UNUSED> re-
places the words with a low posterior (<0.7)

we used the posteriors for the Consensus Hypothesis, mark-
ing as <UNUSED> all the words of Tr1 having a posterior
below a given threshold. This is shown in the sample of
Table 5. By varying the threshold, the percentage of words
of Tr1 marked as <UNUSED> changes, modifying there-
fore the training set. The probability estimate Padapt(w) is
computed from the count Cadapt(w):

Cadapt(w) = CTr(w) + CTr1(w; tsh) (2)

whereCTr(w) is the number of occurrence of wordw in the
corpus Tr, and CTr1(w; tsh) is the number of occurrences
of word w with error probability less than tsh. The count
Cadapt(w) is used in the back-off probability estimate for-
mula for n-grams in a straightforward manner. This allows
to obtain different perplexities and performances, as shown
in Table 6. In particular, while the perplexity monotonically
increases with the percentage of unused words, the word ac-
curacy has a maximum when about half of the words of Tr 1

are used to train the language model.

thr unused perpl WA INS DEL SUB
0.50 7.38% 14.69 58.8% 13.0% 5.5% 22.7%
0.70 20.25% 14.71 58.9% 12.7% 5.7% 22.6%
0.90 35.68% 14.76 58.7% 12.6% 5.7% 23.0%
0.95 42.39% 14.85 59.1% 12.3% 5.8% 22.8%
0.98 50.00% 15.13 59.1% 12.2% 5.8% 22.9%
0.99 55.16% 15.33 59.0% 12.3% 5.9% 22.8%
.999 73.33% 15.73 58.7% 12.3% 6.0% 23.0%
1.0 82.90% 15.91 58.8% 12.2% 5.8% 23.1%

Table 6. Posterior thresholding: results for different values
of the threshold.

The last experiment was performed by using the posteri-
ors directly in the trigram computation, i.e. by incrementing
the counters for the trigram estimation by the posteriors in-
stead of 1. The estimate for the word counts is then:

Cadapt(w) = CTr(w) +
X

w2Tr1

(1� Perror(w)) (3)

= CTr(w) + CTr1(w) �
X

w2Tr1

Perror(w)

In this way all the words of the consensus hypotheses
were used during training, but weighted by their confidence
scores. To be more precise, the training set in this case was
composed by the transcriptions of Tr and the consensus
hypothesis computed on Tr1; the words of Tr (for which
we used the true transcriptions) incremented the counters
by 1, while the words of Tr1 incremented the counters by
their posterior. This leads (see Table 7) to a low perplexity
(14.67) and good WA (59.0%).

perpl WA INS DEL SUB
counters 14.67 59.0% 12.9% 5.5% 22.6%

Table 7. Results using posteriors as counters in trigram es-
timation.

5. CONCLUSIONS

On-line learning of language models is crucial for creating
adaptive spoken dialog systems. In this paper we have pro-
posed an algorithm to adapt to variations in the language
model distributions based on the speech input. The on-
line probability estimate is defined as a function of the prior
and word error distributions. We have shown the effective-
ness of word-lattice based error probability distributions in
terms of Receiver Operating Characteristics (ROC) curves
and word accuracy. We have investigated two update schemes
for the on-line probability estimates. We have applied the
new estimates to the task of adapting on-line an initial large
vocabulary trigram language model and shown improve-
ment in word accuracy with respect to the baseline speech
recognizer.
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