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ABSTRACT

We are interested in the problem of learning stochastic lan-
guage model s on-line (without speech transcriptions) for adap-
tive speech recognition and understanding. In this paper
we propose an algorithm to adapt to variations in the lan-
guage model distributions based on the speech input only
and without its true transcription. The on-line probability
estimate is defined as a function of the prior and word er-
ror distributions. We show the effectiveness of word-lattice
based error probability distributions in terms of Receiver
Operating Characteristics (ROC) curves and word accuracy.
We apply the new estimates P, 4, (w) to the task of adapt-
ingon-lineaninitial large vocabulary trigram language model
and show improvement in word accuracy with respect to the
baseline speech recogni zer.

1. INTRODUCTION

We are interested in the problem of learning stochastic lan-
guage model s on-line (without speech transcriptions) for adap-
tive speech recognition and understanding. Currently, speech
understanding systems are designed for a given application
and trained on the domain-specific speech and text corpus.
On-linelearning is critical to enable spoken dialog systems
to shift the goal of existing tasks or adapt to new domains.

In this paper we propose an algorithm to adapt to varia-
tionsin thelanguage model distributionsbased on the speech
input only and without its transcription. Since the speech
recognizer output is noisy we need an error probability dis-
tribution to account for the input noisy channel and com-
plete the probabilistic model:

Padapt(w) = F(Po(w): Perror(w)) (1)

where Ppqqp (w) is the on-line adapted word distribution,
F isafunction of P,(w), theinitial probability distribution
of word w and of P.,....(w), the error probability distribu-
tion.
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In theliterature there are two types of word error proba
bility distributions. Thefirst typeis based on acoustic mea-
surements[1] and the other type on word lattices. Thelatter
has the advantage that the probabilities are computed on-
lineand doesnot requiretraining. In particular, sausages|[2]
are compact representationsfor word lattices. Sausagestopol-
ogy is such that posterior probabilities are easily estimated
and are effective predictors for word accuracy. In the next
paragraph we review the sausage | attice representation and
provide experimental data for the word error distribution
and word accuracy results on a large vocabulary task. In
the second paragraph, we describe the on-line experiments
performed with the goal of learning F/(P,(w), Perror(w)).
We apply the new estimates P, 44, (w) to the task of adapt-
ing on-line an initial trigram language model from untran-
scribed speech data and show improvement in word accu-
racy with respect to the baseline speech recognizer.

2. LATTICES AND SAUSAGES

One of the possible outputs of a speech recognizer isaword
lattice. A word latticeisaconnected graph, where each state
has a time information and each arc represents a word that
has been hypothesized during the decoding. Each arc has
a score, which comes from the combination of the acoustic
and language models; the topology of the lattice reflects the
constraints of the language model.

Recently, an algorithm has been proposed [2] for con-
verting a lattice in a compact format, called sausage. A
sausage is a simplified lattice with a particular topology: it
turns out to be a sequence of confusion sets, each one be-
ing a group of words, which may include a null word (eps),
competing in the same (with some approximation) time in-
terval. Each word has a posterior probability, which is the
sum of the probabilities of all the paths of that word oc-
currencein the lattice. In each confusion set, the sum of all
posteriorsequals 1. In asausage thetime order is preserved,
but time informationislost. The main mativation of thisal-
gorithm is that of minimizing the Word Error Rate (WER),
instead of the Sentence Error Rate (SER).

We briefly review Mangu’'s agorithm. Mangu’s algo-



rithm takes aword lattice as input and goes through the fol -
lowing steps.

o |ow probability links of the lattice are pruned;

e a posterior probability for each link of the lattice is
computed,;

e a “tempora” order over the states of the lattice is
found;

o different occurrences of the same word in the “ same”
timeinterval are merged (intra- word clustering stage)
and their posteriors summed;

e words which compete in the “same” time interval are
grouped together to form a confusion set (inter - word
clustering stage).

It is straightforward to extract from a sausage what is
called the Consensus Hypothesis, whichisthe word sequence
obtained by picking up from each confusion set the word
with the highest posterior. This sequence can differ from
the best path hypothesis, i.e. the optimal word sequence in-
side the lattice. The Consensus Hypothesisis said to have a
better WER of the best path hypothesis, and experimentson
the HMIHY task ([3]) confirm this. In fact, on the 1K test
set, again of 0.6% was obtained?, as shownin Table 1.

CORR | WA INS | DEL SuUB
best path | 67.8% | 62.6% | 5.2% | 12.0% | 20.2%
consensus | 68.1% | 63.2% | 4.9% | 12.5% | 19.4%

Table 1. Consensus Hypothesis gain over Best Path, for the
HMIHY task.

3. LATTICE-BASED POSTERIOR PROBABILITY

As previously said, each word of the sausage (and in partic-
ular the words of the Consensus Hypothesis) has associated
a posterior probability. In Table 2 an example is reported
for the sausage of Figure 1.

ref  yeah I'm  making a credit cad cal

bop yesh I'm making a yet  credit cad cal
cns  yeah  I'm making a yet  credit cad cal
pst .995 .994 .997 997 622 994 998 .999

Table 2. Reference, Best Path, Consensus Hypothesis and
Posteriors for an HMIHY sentence. In this case Best Path
and Consensus Hypothesis are the same, but the posterior is
agood indicator of a possible speech recognition error.

1IN this experiment, lattices did not contain time information.

yet
have

making a yes credit| | card | | call
s es i a [ my €ps 7| eps 1 eps
had

€ps
half

Fig. 1. A sausage. Note the empty word eps.

Another quantity that can be used as a confidence score
isalocal entropy, computed on each confusion set:

H=- Efil post(w;) x log(post(w;))

where N is the number of competing hypotheses and
post(w;) isthe posterior of word w;. Thismeasureincludes
more information than the previous one, because it takes
into account not only the posterior of the winning word,
but also the distribution of the posteriors of the competing
words.

Posterior distributions- HMIHY test Local entropy distributions - HMIHY test
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Fig. 2. Distributions for posteriors and local entropy, for
words correctly recognized (solid lines) and for words mis-
recoghized (dotted lines).

Posteriors and local entropy have been computed on the
HMIHY test set. Figure2 showstheir distributionsfor words
that have been correctly recognized and for words that have
been misrecognized. In both casesthereis separability among
distributions. Thus the posterior appears to be a good can-
didate as a confidence score. The posterior is then inter-
preted as the probability of correctly recognizing a word w
(1 — Perror (w))

Then aROC curvewas drawn for both quantities, show-
ing a very similar behavior. Figure 3 shows false rejection
rate

(100 x (1 — correct/occurrences))
against correct classification rate

(100 x (correct/hypothesized))
for the HMIHY test set.

Both posterior and local entropy give a measure of the
acoustic / linguistic confusion found during the decoding
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Fig. 3. ROC curves.

stage; in this sense, they can identify speech segments with
problematic speech recognition. Compared to other mea-
sures, likethelikelihood ratios ( [1]), they are robust toward
changes in the speech recognizer and do not need training.
As far asimplementation issues are concerned, they can be
computed as a simple post processing of the recognizer’'s
output, without need for a second recognition stage.

4. UNSUPERVISED ON-LINE LEARNING

A set of experiments were performed to verify the possi-
bility of using the posteriors of the Consensus Hypothesis
to improve the performance of a system in an unsupervised
way.

For this experiment we used the following databases
from the How May How Help You? task [3]:

o Tr (HMIHY '95, 7844 sentences): speech and tran-
scription corpus used to train the acoustic and lan-
guage models; this corpus is a collection of speech
transcriptions from human-human interactions.

e Tr' (HMIHY ’97, 6896 sentences): speech corpus
used to adapt the language models; this corpusis a

collection of speech transcriptionsfrom human-machine

interactions. The corpora T'r and Tr! have signifi-
cantly different language distributions[3].

e Test: (HMIHY '97, 899 sentences): test corpusfrom
the same collection asthe set Tr'.

The goal here is that of using only the speech data of
Tr!, without transcriptions, to modify the language mod-
els of the baseline, trying to improve the word accuracy on

true transcription sequence

to Paul Barlett
collect to Kayme
-irectly to the number I’'m calling from thank you

after <UNKNOWN> replacing

to <KUNKNOWN> <UNKNOWN>
collect to <UNKNOWN>
<UNKNOWN> to the number I’'m calling from thank you

Table 3. Upperbound: the label <UNKNOWN> replaces
the words outside the initial lexicon

Test. The set of sentences on which the language model
(trigrams) will be trained is the sole part of the system that
will change during the experiments: lexicon, acoustic mod-
els and other parameters (language model weight, insertion
penalties, etc.) will be kept fixed.

Thebaseline, an upperbound, and afirst experiment (best
path) for this data have been obtained by training the lan-
guage model on the following data:

e basdine: thetraining setisonly T'r;

e best path: the training set is the concatenation of 7'r
and the output of the recognizer (baseline) on 7' L;

e upperbound: the training set is composed by 7'» and
Tr!: thisis the unique experiment in which the man-
ual transcriptions of Tr! have been used. Note that,
in order to keep the lexicon fixed, words not in the
original lexicon (that of T'r) were replaced by the la-
bel <UNKNOWN> in the training data, as shown in
Table 3. Then, after trigram estimation, all the paths
using the label <UNKNOWN> were removed from

the grammar.
perpl WA | INS DEL SUB
baseline 17.60 | 58.5% | 12.6% 5.7% 23.3%
best path | 14.73 | 58.6% | 13.2%5.1% 23.1%
upperbound | 14.01 | 60.7% | 12.1% 5.4% 21.8%

Table 4. Results for the baseline

Table 4 reports results obtained in these experiments, ex-
pressed both in terms of perplexity on the test set and in
Word Accuracy (WA). Note that, while in both cases (best
path and upperbound) there is a significant decrease in per-
plexity with respect to the baseline, recognition performance
improves only for the upperbound: adding the output of
the recognizer to the initial training set does not give ben-
efits with respect to the baseline. In the next experiment



consensus hypothesiswith posteriors
dial (0.46) the(0.29) call(0.96) calling(0.95) card(0.94)
call(0.91) my(0.84) phone(0.76) bill(0.58)
yes(0.66) calling(1) card(1) six(0.99) six(0.52) oh(0.71)
corresponding training set
<UNUSED> <UNUSED> cdll calling card
call my phone <UNUSED>
<UNUSED>> calling card six <UNUSED> oh

Table 5. Posterior thresholding: the label <UNUSED> re-
places the words with alow posterior (<0.7)

we used the posteriorsfor the Consensus Hypothesis, mark-
ing as <UNUSED> all the words of T'r! having a posterior
below a given threshold. This is shown in the sample of
Table 5. By varying the threshold, the percentage of words
of Tr' marked as <UNUSED> changes, modifying there-
fore the training set. The probability estimate P gqp (w) is
computed from the count C g gqpt (w):

Cadapt (w) = CTT(IU> + Cppr (w, tsh) 2

where Cr,.(w) isthe number of occurrenceof word w inthe
corpus T'r, and C'r,1 (w, tsh) isthe number of occurrences
of word w with error probability less than tsh. The count
Cladapt(w) is used in the back-off probability estimate for-
mulafor n-gramsin a straightforward manner. This allows
to obtain different perplexities and performances, as shown
in Table 6. In particular, while the perplexity monotonically
increases with the percentage of unused words, the word ac-
curacy has a maximum when about half of the words of T !
are used to train the language model .

INS DEL SUB
13.0% 5.5% 22.7%
12.7% 5.7% 22.6%
12.6% 5.7% 23.0%
12.3% 5.8% 22.8%
12.2% 5.8% 22.9%
12.3% 5.9% 22.8%
12.3% 6.0% 23.0%
12.2% 5.8% 23.1%

thr | unused | perpl | WA
0.50 | 7.38% | 14.69 | 58.8%
0.70 | 20.25% | 14.71 | 58.9%
0.90 | 35.68% | 14.76 | 58.7%
0.95 | 42.39% | 14.85 | 59.1%
0.98 | 50.00% | 15.13 | 59.1%
0.99 | 55.16% | 15.33 | 59.0%
999 | 73.33% | 15.73 | 58.7%
1.0 | 8290% | 15.91 | 58.8%

Table 6. Posterior thresholding: results for different values
of the threshold.

Thelast experiment was performed by using the posteri-
orsdirectly inthetrigram computation, i.e. by incrementing
the counters for the trigram estimation by the posteriorsin-
stead of 1. The estimate for the word countsis then:

CTT(’IU) + Z (]- - Perror(w)) (3)

weTr!

= CTr(w) + Cppr (w) - Z Perror(w>

weTr!

Cadapt (’LU) =

In this way al the words of the consensus hypotheses
were used during training, but weighted by their confidence
scores. To be more precise, the training set in this case was
composed by the transcriptions of 7'r and the consensus
hypothesis computed on T'+!; the words of T (for which
we used the true transcriptions) incremented the counters
by 1, while the words of Tr! incremented the counters by
their posterior. This leads (see Table 7) to alow perplexity
(14.67) and good WA (59.0%).

INS DEL SUB
12.9% 5.5% 22.6%

perpl WA
14.67 | 59.0%

counters

Table 7. Results using posteriors as countersin trigram es-
timation.

5. CONCLUSIONS

On-line learning of language modelsis crucial for creating
adaptive spoken dialog systems. In this paper we have pro-
posed an agorithm to adapt to variations in the language
model distributions based on the speech input. The on-
line probability estimate is defined as a function of the prior
and word error distributions. We have shown the effective-
ness of word-lattice based error probability distributionsin
terms of Receiver Operating Characteristics (ROC) curves
and word accuracy. We haveinvestigated two update schemes
for the on-line probability estimates. We have applied the
new estimates to the task of adapting on-linean initial large
vocabulary trigram language model and shown improve-
ment in word accuracy with respect to the baseline speech
recogni zer.
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