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ABSTRACT

In this paper, we extend the single microphone signal sub-
space approach for speech enhancement, to a multi-micro-
phone design. In the single microphone case, the trade-
off between speech quality and intelligibility is an handicap
which limits its performance. This is because it is based on
a linear speech model which does not usually offer enough
degrees of freedom for noise reduction. In our method, we
show how we can easily, and with comparable computa-
tional complexity, get more degrees of freedom by using
signals from more than one microphone. Experimental re-
sults show that this leads to improvements in the noise re-
duction performance.

1. INTRODUCTION

Single microphone techniques for noise reduction are widely
used in most of today’s telecommunication systems. They
owe their popularity to their simplicity and ease of imple-
mentation. In general, in these methods, the noisy signal
is transformed to an appropriate domain and filtered by a
usually data dependent filter. This filter uses noise statistics
gathered during non-speech activity periods to improve the
speech quality while trying to minimize the signal distor-
tion. Finally, an inverse transform is applied to recover the
enhanced signal in the time domain.

In the spectral subtraction method [1], noise reduction
is performed in the frequency domain using a data inde-
pendent transform, namely, the Discrete Fourier Transform
(DFT). In the subspace decomposition method [2][3][4], on
the other hand, a data dependent transform, called the Karhu-
nen Loeve Transform (KLT) is used. The major drawback
of these methods is that they introduce a residual noise which
has an annoying noticeable tonal characteristic. This pro-
cessing artifact is usually referred to as musical noise.

The multi-microphone approach is another promising
class for noise reduction. In this approach, the methods

developed improve the speech quality by rejecting interfer-
ing signals coming from directions different from a desired
look direction [5]. However, to achieve an acceptable per-
formance, we need a large number of microphones. Unfor-
tunately, this is not practical in general in terms of spatial
placement and the total cost of the whole system.

To cope with the drawbacks of both classes, combina-
tions of the single and multi-microphone techniques have
been proposed recently in which a beamformer is followed
by a post-filter. The Post-filter can take the form of Wiener
filtering [6] or spectral subtraction [7]. In a similar manner,
we show in this paper how to design a multi-microphone
system with a post-filter derived from the signal subspace
decomposition. The covariance matrices required to design
the eigenfilter of [2] is approximated from data gathered
from different microphones. Our approach provides more
degrees of freedom for noise reduction than the single mi-
crophone case, hence a better speech quality while main-
taining the signal distortion minimum. These improvements
are supported by experimental results

2. NOTATION AND SIGNAL MODEL

Let X = [x1,%2,...,2p]T be the noisy signal vector of P
samples. Here x; denote z(n — i + 1) for some discrete
time index n which is omitted for simplicity of notation.
We assume that the noise is additive and uncorrelated with
the speech signal, so that the vector x can be written

X=s+w (1

where s is the clean speech vector and w is the noise vector.
The noise covariance matrix R,, is considered to be known
since it can be approximated during non speech activity.
The white noise assumption is considered in this paper, that
is R,, = 01, since prewhitening can always be used other-
wise. The data covariance matrix is then R, = R + 021,
where R; is the clean speech covariance matrix. Therefore,



R, would be a full rank matrix with rank(R,) = P. How-
ever, R is assumed to be rank deficient with rank(R,) =
K < P because s is described by a linear model of order K
[2].

Therefore both R and R, have the same eigenvectors
and their eigenvalues are related as follows:

o /\3,i+0'2 i1=1,..., K.
)\“_{02 i=K+1,....P. 2

Soif A is a K x K diagonal matrix with the eigenvalues
of R on the diagonal then
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] +o’I (3
where the columns of U; span the signal subspace and those
of U, span the noise subspace. Note that because the covari-
ance matrices involved are real symmetric, all the quantities
in (3) are real.

3. THE SIGNAL SUBSPACE EIGENFILTER

In this section we briefly describe the signal subspace ap-
proach for speech enhancement presented in [2]. In this ap-
proach a linear estimator of the clean signal from the noisy
observations is designed so as to minimize the signal dis-
tortion subject to forcing the residual noise to be below a
desired threshold. The time domain constraint solution to
this problem is given by

H = R (R, + po*I)~! 4)

The parameter ;1 (Lagrange multiplier) controls the trade-
off between the residual noise and the signal distortion lev-
els desired. Using (3), H can then be written as

H=U0,G, Ul %)
where the gain function G, is given by
Gu = As(As + NUzI)_l (6)

The matrix U{' is called the KLT transform and its effect on
the noisy signal vector x is to calculate the coefficients of its
projection onto the signal subspace. These coefficients are
modified using the gain function and finally the enhanced
signal is reconstructed in the signal subspace using the in-
verse KLT, i.e. U;. When we set = 0 in (6) we obtain the
Least Squares (LS) estimator H = U; U] which is just the
projector of the noisy signal onto the signal subspace. This
estimator does not result in any signal distortion but has the
highest possible residual noise.

For better results using this filter, the dimension of the
signal subspace, K (i.e the rank of R,) should be accurately
estimated. This process can be complex and it increases the

computation cost of the whole filter. So usually K is set
to some fixed value. Choosing K smaller than the actual
subspace dimension results in a loss of some of the signal
information like the formants, which can seriously affect the
signal perception. In the case of consonants for example, K
should be chosen very close to P for least signal distortion.
Even trying to estimate K from the given observations can
be neither easy nor accurate because it is hard to detect any
gap in the eigenvalues of R,.

4. THE MULTI-MICROPHONE APPROACH

The difference P-K represents the degrees of freedom for
noise reduction offered by the signal model. So it would be
desirable to get more degrees of freedom without introduc-
ing much distortion to the signal. In this section, we show
how this can be done using a multi-microphone approach
without much increasing the computational load.

Suppose we have M microphones for signal acquisition
followed by a time delay compensation module to ensure
that all microphone signals are correctly synchronized. Un-
der these conditions, we have

yi=s+w; t=1...M. (7)

Now as in [6], we assume that the noise and reverbera-
tion form a diffuse acoustic field. Therefore these perturba-
tions, in addition to being uncorrelated with the direct path
signal, are considered to be incoherent at different micro-
phones. These assumptions coincide with real life applica-
tions when the microphones are close to the speaker relative
to the interfering sources like a car engine or air condition-
ing noise inside a room. Hence the covariance matrix of the
input signal at two particular microphones with index ¢ and
J is given by

Rij = E{yiy] } = Rs + 0*8(i — j)I ®)

Now, define a combined vector Y of length N = M P,

by stacking the individual input vectors of every microphone
in the following way
Y =[yl,.yil"

Then the overall covariance matrix R = E{Y' YT} can be
written as

Rll R12 RIM

R21 R22 R2M
R = . :

RS Rs

R, R

where Iy isan N x N identity matrix.



Proposition 4.1. Suppose thatU = [uf ... ul]T, where
w;’s (i = 1,...M) are P-dimensional vectors, is a unit
norm eigenvector of R with corresponding eigenvalue ),
where A > o2, i.e. it is one of the first P eigenvalues of
R. Then we have

U =us =...=uy (10)

and u = v Muy, is a unit norm eigenvector of R with
2

corresponding eigenvalue A;j .

Proof. Since U is an eigenvector of R we have that RU =
AU, so

R, wi=A-o"u; j=1,...,M. (1)

The left-hand side of (11) is constant for all j, and since
A # o2, then we have (10). Using this fact we have

(A —0?)

Rsu; = Vi

u; (12)
So u; and (A — 0%)/M are an eigenvector and the corre-
sponding eigenvalue of Ry, respectively. Now we need to
find the unit norm eigenvector. We have

M
UTU = uflu; = Mufu =1 (13)
i=1
So u = v/ Mu; is a unit norm eigenvector of Rj. O

To simplify the notation , let us define the P x N matrix

C as 4
C= M[Ipam,fp] (14)

where Ip is a P x P identity matrix. For example the effect
of Con U aboveis CU = L SV u;.

So if the eigen-decomposition of R is given by Ry =
USASUST and that of R by

T
r-wwl| s o[ a9

where Ay and U; are Px P and N x P matrices respectively.
Then we can get an approximation for A, as

" 1
Ay = M(Al —o*Ip) (16)

and for U, .
Us=vMCU;. a7

where in practice, A1 and U; are obtained from the eigen-
decomposition of the estimated covariance matrix. These
quantities are then used in (6) to get a better approximation
of the signal subspace basis without the need to choose or
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Fig. 1. The clean (a) and the noisy signal (b) at one of
the microphones (SNR=10 dB) and their respective spec-
trograms.

approximate a subspace dimension. So for every new input
vector Y obtained from the M microphones, the enhanced
vector is obtained as
A AT
§=U,G,U; (CY). (18)
Note that that in effect, the term (C'Y") above is a beamform-
ing operation followed by the signal subspace post-filter.

5. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In this section we describe how the algorithm presented
above is implemented and and also discuss the evaluation of
its performance in comparison with the single microphone
version in [2]

To find the eigen-decomposition of the covariance ma-
trices, the singular value decomposition of a N x 2N data
matrix is used. The input vectors are speech frames of length
N and with an overlap of P/2. In the single microphone
approach P is chosen to be 80 and the signal model or-
der K = 40. In the multi-microphone approach, M = 4
microphones are used and P is chosen to be 20 so that
N = M P = 80. With these values the computation cost of
the two methods are close to each other, since the singular
value decomposition will be computed for matrices of the
same size. The Lagrange multiplier 4 = 2 was chosen for
both cases for least signal distortion.

In Figure 1, clean and noisy signal waveforms (and their
spectrograms) for a male spoken test sentence (”Post no



bills on this office wall”), are shown. The noise is a com-
puter generated white noise at 10 dB average SNR. Three
methods for speech enhancement are tested; the conven-
tional delay-and-sum beamformer (BF), the single micro-
phone signal subspace method (SMSS) and the proposed
multi-microphone signal subspace method (MMSS). Their
time domain signal and spectrograms are shown in Figure 2.
It can be seen that the BF and SMSS have slightly enhanced
the signal quality. It can also be seen from the correspond-
ing spectrogram that the SMSS method has introduced the
musical noise artifact to the signal. In the bottom two plots
of Figure 2, the time domain and correspondent spectro-
gram of the MMSS method are shown. It can easily be seen
that the SNR improvement is significant and that not much
residual noise is left. Listening tests support these results;
listeners generally find that the MMSS enhanced speech sig-
nal has a better quality than with the other methods, and that
no musical noise is perceived. (Demo files are available in
our web site.)
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Fig. 2. Enhanced signals and their spectrograms using
three different methods: (a) delay-and-sum beamformer, (b)
the single microphone approach, (¢) the proposed multi-
microphone approach.

6. CONCLUSION

In this paper we presented a multi-microphone signal sub-
space approach for noise reduction. In this method, we use
the data obtained from more than one microphone to esti-
mate the clean signal subspace without relying on any signal
model. Listening tests showed that, under comparable com-
putational complexity, our method outperforms the original
single microphone method. The musical noise artifact, from
which the latter suffers, is significantly diminished while
maintaining good intelligibility.
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