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ABSTRACT

This paper introduces an iterative algorithm for designing IR dig-
ital filters that minimize a complex approximation error in an L,
sense. The algorithm combines ideas that have proven successful
in the similar problem of L, FIR filter design. We use iterative
prefiltering techniques common in applications such as parame-
ter estimation together with an Iterative Reweighted Least Squares
(IRLS) method. The result is a double iterative approach that gen-
erates IR filters of arbitrary magnitude and phase response and
arbitrary numerator and denominator orders. Such filters can be
used in a variety of applications in which the typical L or L
error criteria might not be suitable.

1. INTRODUCTION

Infinite Impulse Response (1IR) filters constitute an important anal-
ysis tool in different areas of signal processing. The problem of
designing optimal IIR filters has been studied extensively. In prac-
tice it is common to design IR digital filters using techniques such
as frequency transformations [1]. Alternatively, one could approx-
imate a frequency response with respect to a specific error norm.
In the FIR case one can efficiently design L, (least squares) FIR
filters by sampling a frequency response and solving a system of
normal equations [2]. Furthermore, one can design L; or L., FIR
filters by posing the design problems as linear programs and using
standard techniques such as the Remez exchange algorithm or in-
terior point methods. This flexibility in the design of FIR filtersis a
consequence of the polynomial approximation problem associated
with these filters.

To design an L, IIR filter given a complex frequency response,
one must solve the problem

; _||Bw) _
gﬁne(w)n—H i)~ @) M
where
Bw) = Y b(n)e "
n=0

Alw) = 1+Za(n)efj“".

This research was partially supported by funds from the Maxfield and
Oshman Professorship in Engineering and by the Alliances for Graduate
Education and the Professoriate at Rice, NSF grant HRD-9817555.

Instead of solving the nonlinear problem (1), one could linearize it
as follows

min [|e(w)[| = ||B(w) — D(w)Aw)]l- @

The notion that (1) and (2) are equivalent is inaccurate. By solving
(2), one actually finds the solution to a weighted version of (1),
that is
e(w) = W(w)e(w).

Problem (2) is typically referred as an equation error problem, as
opposed to the solution error problem from (1) in which one is re-
ally interested. In the case of least squares approximation, (2) is
a weighted least squares problem that is linear in the filter coeffi-
cients. This problem is a strictly convex one, and one can solve
it by merely equating the gradient of the error to zero and solving
for the filter coefficients. This approach was proposed by origi-
nally Levy in [3]. Sanathanan and Koerner [4] extended Levy’s
method into an iterative algorithm to solve the solution error least
squares IIR problem (1) given a frequency response. Later, Stei-
glitz and McBride [5, 6] proposed the same idea for the problem
of parameter identification of a system from samples of its impulse
response. Although their algorithm was proposed after [4], the
Steiglitz-McBride method is far more widely known in the signal
processing community. Both algorithms belong to a class com-
monly referred to as iterative prefiltering [7] methods. Alterna-
tively one could also solve (1) using Newton-based methods [8], as
would typically be done by an applied mathematician. However,
problem (1) is a nonconvex one, and any optimization algorithm
aspires to finding at most a local minimizer. Furthermore the prob-
lem of finding the Hessian matrix (needed for Newton’s method)
of the L, IIR approximation problem in question might not be a
realistic goal.

In spite of the discussion above, the problem of designing L,
IIR filters given a frequency response has not been addressed prop-
erly. There is no analytical way to minimize the L, IIR rational
approximation error; therefore one must approach this problem it-
eratively. We propose the use of an Iterative Reweighted Least
Squares (IRLS) method to solve (1) in the p-th sense. An IRLS al-
gorithm is one that, at iteration k, solves the weighted least squares
problem
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IRLS methods have been used in geophysics when applied to
linear inverse theory problems [9, 10, 11]. The use of IRLS meth-
ods in FIR filter design has been introduced in [12, 13]. In [14]
an IRLS method was succesfully implemented in the design of L,,
FIR filters. In this article we extend the ideas from L, FIR filters
and combine them with iterative prefiltering techniques to propose



a two-phase cascaded iterative algorithm to design complex L,, IR
filters. The proposed algorithm has proven to converge efficiently
in practice.

2. Lp IIRFILTER DESIGN

In this paper we consider the problem of approximating L arbitrary
samples of a complex frequency response function D(w) by the
IIR filter with M zeros and IV poles
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The optimization criterion considered is the more general p-norm,

with 1 < p < oo (for these values the p-norm is a strict norm,

i.e. its unit ball is strictly convex [15]). Therefore the resulting

problem is
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where the p-norm is defined as
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In order to solve (3) one must sample D(w) and approximate it
numerically over the set of sampled frequencies —7 < w; < 7.
This leads to the following problem

min e = [|E(w)l], ®)
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Note that (6) involves the p-th root of the error E(w), which com-
plicates significantly the optimization problem. Instead, one can
consider the equivalent problem min e = e? = | E(w)||5 defined
as

where
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since the p-norm of z is a positive monotonic function (both prob-
lems are equivalent in the sense that min ||z|l, = min ||z|}).
Therefore a solution of (5) is a set of coefficients a,b (for a €
RN b e RM*1) that minimizes £ in (7). However, we use the fact
that problem (7) has better computational properties than problem
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3. Lp IIRALGORITHM

In the previous section we introduced the problem
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and showed that solving (8) for &, b is equivalent to solving (4)
given a sufficient number of samples of the frequency response

function D(w;). In this section we illustrate our approach to (8).
Consider
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Note that (8) is a nonlinear nonconvex problem in the filter coef-
ficients (to see the nonconvexity, consider a filter with one pole).
To solve it we proceed with an iterative approach as follows: at
the k-th iteration, given coefficient vectors ay, ISk one can form an
iteration by setting
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and solving for ax+1, 8k+1 in (9). One can iterate again by using
these vectors in (10) and solving (9) until reaching convergence.
This iterative approach has been investigated in [12, 13] and im-
plemented successfully in [14] to the design of linear phase L, FIR
filters.

The approach mentioned above requires the solution of the
nonlinear weighted least squares problem (9) at each iteration. To
solve it, one can Iinearize the system (9) by prefiltering it with a
filter corresponding to . Consider
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One can solve (11) for Gj41, 131+1 iteratively by letting
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at the [-th iteration. Therefore by fixing A;(w;) in (12) one can
write (11) as
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Since W, (ws) is fixed, problem (11) corresponds to a weighted lin-
ear least squares problem. An important property of such system
is that it is indeed strictly convex in the coefficients, with a unique
solution. Therefore it is only necessary to equate the gradient of
€ with respect to the filter coefficients to zero and solve for the
coefficients,

V&,gs =0. (13)
A detailed explanation of this step is discussed in [3], and is typi-
cally referred as Levy’s method [4].

From the discussion above it is clear that one can solve the L,
IIR problem (7) iteratively. One must also note that during each
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Fig. 1. Block diagram for the iterative algorithm.

iteration of the L, problem, an internal simpler iterative method is
performed. This concatenation of iterative methods can be better
understood by referring to Figure 1.

Basically the algorithm proposed is: Given ao, bo,

1. Let

p—2

2. Find ﬁ,k+1 and I;k+1:

(a) Let
wi(w)
|A(w)[?

w(w) =

(b) Find ag1 and by from

L-1
min z B(w;)|B(ws) — D(wi) A(ws)|>.
=0
(c) Check for convergence (D).

3. Check for convergence (E).
Step 2.b is the weighted linear least squares problem from (11).

4. RESULTS

The proposed algorithm was implemented to design L, IIR fil-
ters given a specified frequency response. Figure 2 shows the fre-
quency response of a filter with 3 zeros and two poles, as compared
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Fig. 2. Comparison of magnitude responses for L, and L3 IIR
filters.

to the Lo filter. The desired frequency response is a zero-phase
lowpass filter with passband frequency 0.2 and stopband frequency
0.25 (normalized frequency). The filter is optimal in the L3 sense.
To illustrate the comparison between both filters we found the fol-
lowing errors

[le2(w)||s = 5.129, [les(w)||s = 4.649.
Figure 3 shows the frequency response for a filter with 5 zeros and
two poles. Again, the desired frequency response was a zero-phase
lowpass filter with passband frequency 0.2 and stopband frequency
0.22. The approximation was done using the L4 norm. The results
obtained were

llez(w)ll4 = 4.565, llea(w)lls = 4.337.

The algorithm is split into two parts: on the outer iteration one
performs an IRLS update. Typically less than 5 to 10 iterations are
needed before convergence. At each outside iteration an internal
iterative procedure is performed. Convergence is usually achieved
after 5 to 20 iterations. The total algorithm usually converges in a
few seconds in a 450MHz Pentium 111 PC running Windows NT 4.

Unlike the Butterworth, Chebyshev and Cauer analytical meth-
ods, our approach allows using a small number of poles and a large
number of zeros in a filter. Typically we saw that an adequate rule
for the number of poles is to assign one pole per transition band
(i.e. 2 poles for a lowpass filter). Only a few poles are needed for
a narrow transition band; as many zeros as needed for small ripple
can be used.

5. CONCLUSIONS

In this paper we presented a new algorithm to solve the problem
of minimizing the p-norm of the L, approximation error for IR
filters given a complex frequency response. The proposed algo-
rithm is a double iterative procedure. The outside part performs
an Iterative Reweighted Least Squares method to solve a nonlinear
weighted least squares problem. At each iteration of this process,
an internal iterative procedure (based on iterative prefiltering) is
used to solve a linear weighted least squares problem.



5 T

N L4 filter
- _ L filter
0 _ o 2

-10F

[H(®I (dB)

I I I
0 0.05 0.1 0.15 0.2

Fig. 3. Comparison of magnitude responses for L, and L4 IIR
filters.

We presented results on filters that are locally optimal in the
L, sense. Starting from an equation error solution, our algorithm
moves through the nonconvex error surface to find a local mini-
mizer. Further work must be done to combine this algorithm with
other optimization techniques for global minimization. Our exper-
iments show that for an adequate order selection, our algorithm
converges rather rapidly. Further analysis of convergence prop-
erties are still to be done. However the methods used to derive
our algorithm have been shown to adequately converge in practice
[14]. This suggests the adequate convergence properties of our
approach.

In the past, the problem of designing L, IIR filters has not
been addressed as it should. We proposed an algorithm that can
further be modified to accomodate different error criteria in differ-
ent frequency bands. This idea could prove useful as an alternative
to designing constrained least squares filters.
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