
FILTER TRANSITIONS IN ADAPTIVE IIR APPROXIMATE FILTERING

Rajiv Adhikary and S. Hamid Nawab

ECE Department, Boston University
Boston, MA 02215

email: hamid@bu.edu

ABSTRACT

The effects associated with the switching of filter orders in
an incrementally adaptive IIR approximate filtering tech-
nique are evaluated in the context of speech signals.
Through listening experiments, we have found that the per-
ceptual quality of the speech at the filter output is sensitive
to the initial conditions used in initiating a transition to a
higher filter order. If zero initial conditions are used there
is a significant crackling sound due to error bursts at points
where switches to higher order filters take place. If out-
put samples from the pre-transition filter are used as initial
conditions for the post-transition filter, the amplitude of the
error bursts are found to decrease significantly. An analysis
is presented to account for these observations.

1. BACKGROUND

Reduction of power consumption in digital integrated cir-
cuits is a prime consideration in various digital signal pro-
cessing implementations. Approximate processing as
a means to achieve these goals is presented in [1] and [2].
An approximate filter structureH is defined as a collection
of frequency selective digital filters each having a filter or-
der N in a given range Nmin � N � Nmax. The filters
inH possess similar frequency response characteristics and
higher order filters in the filter structure have higher average
stopband attenuation. A related issue is that of finding the
optimal constituent element in the filter structure H which
would guarantee a minimum tolerable SNR at the filter's
output. A low-cost adaptation strategy [1] for updating the
filter order is shown in Fig. 1. It involves calculation of
input and output signal power estimates from the current
block of L samples, which are given to the decision module
D, that chooses the best constituent element to be used. Un-
der certain assumptions, it is shown in [1] that an estimate
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Fig. 1. Concept of approximate filtering.

of output SNR for a order N filter is given by:
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where N0 is the filter order currently being used, x and y

represent the length L vectors of the current block of input
and output samples respectively. The decision module com-
pares this to a minimum tolerable output SNR (OSNRtol)
to determine the optimal constituent filter to be used for the
next block.

The strategy just described requires an expensive search
over the stored values in order to obtain an optimal mini-
mum filter order. An incremental approach has been sug-
gested in [2] to get around this issue. Suppose the current
block of L input samples x is being processed by an order
N0 filter. Based on the output block y of this filter and as-
suming the signal quality does not change very much, we
need to estimate the filter order to be used to process the
next block of input samples. If an N0 order filter is again
used to process the next block, the output SNR estimate is
given by,
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The decision rule for updating the filter order for next block
of samples is then as follows,

N =

8<
:

N0 � 1 if OcSNRest > OSNRtol + �

N0 + 1 if OcSNRest < OSNRtol � �

N0 else

with the constraint that the order determined must be in the
range Nmin � N � Nmax. It is to be noted that the incre-
mental approach involves an extra application specific pa-
rameter �.

Incremental adaptation of filter order becomes particu-
larly suitable for truncation filter structures [2]. A truncation
filter structure is defined as an approximate filter structure
where the set of pole/zero pairs for each filter is constrained
to be a subset of the pole/zero pairs defining any higher or-
der filter. Truncation structures can be implemented as cas-
cade interconnections of second-order sections. The later
second-order sections can be powered down in order to af-
fect a decrease in stopband attenuation and consequent
power savings.

2. SPEECH EXPERIMENTS

Experiments were performed to measure the influence of
initial state conditions on the error encountered when the
filter order is switched.. Two speech signals sampled at
44100 Hz and bandlimited to 0 � ! � 3�

8
in the digital

frequency domain were considered. The two speech sam-
ples were “I know that I have” and “long as we got some
time”. The second one was single sideband amplitude mod-
ulated to 5�

8
� ! � �, and they were mixed to construct the

input signal. These frequency bands correspond to the pass-
band and the stopband for the Butterworth IIR truncation
structure being used. Truncations of a 20

th order Butter-
worth IIR filter with half power frequency at �

2
were used

to construct the filter structure. The ordered sequence of
second-order sections used is as defined in [3]. The in-
cremental adaptation strategy for approximate filtering dis-
cussed in section 1 was used to determine the number of
second-order sections to be used for processing each block
of L = 60 samples. The output SNR tolerance was set to
OSNRtol = 2000 and � = 100. In one case the initial con-
ditions of added filter sections were set to zero at transition
instances and in the other case the initial conditions were set
equal to past outputs of the pre-transition filter. The speech
quality of output signals under the two different sets of ini-
tial conditions was compared aurally. The output obtained
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Fig. 2. Top plot shows time evolution of number of second-
order sections used in the adaptive system. The second plot
shows the difference between the output signals for the zero
initial conditions case and the case where the outputs of the
pre-transition filter are used as initial conditions. The hori-
zontal axis in each plot represents the time index for signal
samples.

while using zeroed out initial state had significantly more
crackling sound present than compared to the case when
past outputs were used for initial state.

The top-half of Fig. 2 shows a portion of the time evo-
lution of the number of second-order sections used from the
approximate filter structure. The lower-half shows the out-
put of adaptive system when transitions are initiated with
zeroed out states and when they are with past outputs. Since
the same filters are being used to process the input signal,
the outputs are expected to be the same except for the tran-
sient errors at each transition. From Fig. 2 we observe that
large difference signal values occur only at transitions in-
volving a switch to a higher number of second-order sec-
tions. In light of our listening experiments and the analy-
sis presented in the next section, the fluctuating and rapidly
decaying difference signal at such transitions may be at-
tributed to the larger error present in the output for zero
initial conditions. Also, the largest transition errors were
observed when a second-order section comprising the pole
pair closest to the unit circle was added, such as transition
3! 4 in Fig. 2.

3. ANALYSIS

The corruptive error at transition can be modeled as an addi-
tive noise term in the adaptive filter output signal by relating
the output of the adaptive filter to the output of a fixed digi-
tal filter. The additive corruption is termed State Transition
Error (STE). Suppose N1 order filter is being used to pro-



cess the current block of L samples, and at time n = 0,
the decision module D determines N2 to be the order used
to process the next block. The output of this filter can be
viewed as,

yN1N2
[n] = yN2N2

[n]| {z }
Desired output

+ ytr [n]| {z }
STE

for n � 0

where yN2N2
[n] is the output of the order N2 fixed digital

filter. Quantifying the corruption due to state transition error
is an important step in characterizing the performance of the
filter structure being used.

3.1. STE Bounds

Added post-transition second-order sections (SOS) can be
started with different sets of initial state conditions lead-
ing to differing state transition errors. It is to be noted that
when a single or multiple sections are removed from the fil-
ter structure at transition instances, the STE remains at zero
provided the values at state nodes of the remaining SOS are
not altered.

We briefly define the notations used in our analysis be-
low,

1. aisj— ith coefficient of polynomial corresponding to
the poles of the Sth

j
SOS.

2. bisj— ith coefficient of polynomial corresponding to
the zeros of the Sth

j
SOS.

3. ysisj [n] — Output of Sth
j

SOS when pre-transition
filter used Si SOSs.

4. wsisj [n] — State information in the S th
j

SOS when
pre-transition filter used Si SOSs.

Assuming a transitionS1 ! S2 = S1+1 at time n = 0,
two different sets of initial state conditions will be consid-
ered,

� A. Using Zero initial conditions

wS1S2 [�2]; wS1S2 [�1] = 0; 0

� B. Using the past output values

wS1S2 [�2]; wS1S2 [�1] = yS1S1 [�2]; yS1S1 [�1]

The difference in the state of the Sth
2

SOS on a transition
S1 ! S2 as compared to the case when S2 sections are
used for all time is given by,

wtr[n] = wS1S2 [n]�wS2S2 [n]

=

2X
k=1

akS2
�
wS1S2 [n� k]� wS2S2 [n� k]

�

=

2X
k=1

akS2wtr[n� k] for n � 0

with initial conditions for wS1S2
[n] as defined before. Thus

for n � 0, wtr[n] is a Zero Input Response running on the
initial difference in states and it decays over time. The STE
can be expressed as a linear combination of the values in
wtr[n],

ytr[n] =

2X
k=0

bkS2wtr[n� k] for n � 0

Using the triangular inequality the magnitude of STE can
be shown to have a bound as follows,

jytr[n]j � BI

2X
k=0

jbks2jBw[n� k] for n � 0

where

1. Bw [n] is a positive number dependent entirely on the
filter coefficients used,

Bw[n] =
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for n � 0 and equal to 1 for n = �2;�1. The zi are
the pole locations of Sth

2
SOS.

2. BI represents the effect of initial conditions at tran-
sition and includes the bound BX on the input signal
x[n].

� Using Zero initial conditions.

BI = BXBS1
BZ

� Using past output values.

BI = BXBS1
(BZ � 1)

where

BS1
=

1X
m=0

jhs1 [m]j

BZ =

1X
m=0

jhZ [m]j

hs1 [n] is the impulse response of S1 SOSs, and

hZ[n]$
1

1�
P

2

k=1
akS2z

�k

are z-transform pairs.



Table 1. Maximum of STE bounds for Incremental Butter-
worth Truncation Filter Structure

Transition Zero initial condition Using Past values
S1 ! S2 Theoretical Simulation Theoretical Simulation

1! 2 0.9726 0.7535 0.0385 0.0305

2! 3 0.8884 0.7216 0.0124 0.0098

3! 4 12.8262 0.9647 10.9600 0.7716

4! 5 1.8564 0.8409 0.0029 0.0014

5! 6 6.6246 1.0010 4.1170 0.6077

6! 7 2.9846 0.9943 0.4062 0.1376

7! 8 5.2274 1.0725 2.3338 0.4663

8! 9 4.7908 1.1319 1.5025 0.3858

9! 10 4.0430 1.1851 0.8592 0.2559

The bound on STE can be numerically evaluated based on
the filter coefficients used and the input signal bound for
different n, the maximum of these values gives an indi-
cation of the maximum value STE can assume. Table 1
shows the theoretical bounds for Butterworth truncation fil-
ter structure under the two initial conditions. An input sig-
nal bound of BX = 1 was used. The bounds are better if
pre-transition output values are used as starting state for the
SOS added and we expect the filter structure to give bet-
ter overall performance for this case. Moreover the factor
BZ(

P
2

k=0
jbkS2jBW [n� k]j) in the bound for jytr[n]j de-

pends only on the SOS added and increases as the pole pair
of the SOS added moves closer to the unit
circle. We also expect the error to grow if the SOS added
has poles closer to the unit circle.

4. SIMULATIONS

In order to gain more insight into the nature of the bound,
Matlab based simulations were performed. A random input
signal bounded by BX = 1 with independent and identi-
cally distributed samples according to a uniform probabil-
ity distribution is fed to a IIR Butterworth truncation filter
structure with pre-transition order S1. At time n = 0 a state
transitionS1 ! S2 occurs. The maximum value of the STE
is measured for all pairs of S1,S2 and for the two differ-
ent initial state conditions. The procedure was repeated for
10; 000 such random input signals. Table 1 lists the simula-
tion results. Even though the simulation bounds are lower
than the theoretical bounds derived using the triangular in-
equality, they are in proportion with the theoretical results.

5. CONCLUSION

In this paper we examined the effects of incrementally switch-
ing the filter order during adaptive IIR approximate filtering.
We found that every switch to a higher filter order causes a
transient error burst as the new filter is launched. The mag-
nitude of the error burst was found to be highly dependent
upon the initial condition used to launch the new second-
order section of the higher order filter. The error bursts were
perceptually significant in speech signals when zero initial
conditions were used. The error burst was found to diminish
significantly if past outputs from the lower order filter were
used as initial conditions. Accompanying analysis was used
to explain these experimantal observations.
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