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ABSTRACT

A new signal processing method is developed for solving the multi-
line fitting problem in a two dimensional image. We first reformu-
late the former problem in a special parameter estimation frame-
work such that a first order or a second order polynomial phase sig-
nal structure is obtained. Then, the recently developed algorithms
in that formalism (and particularly the downsampling technique for
high resolution frequency estimation) can be exploited to produce
accurate estimates for line parameters.

This method is able to estimate the parameters of parallel lines
with different offsets and handles the quantization noise effect which
can not be done by the sensor array processing technique introduced
by Aghajan et al. Simulation results are presented to demonstrate
the usefulness of the proposed method.

1. INTRODUCTION

A recurring problem in computer picture processing is the detection
of straight lines in digitized images. This problem arises in many
application areas such as road tracking in robotic vision, mask-
wafer alignment in semi-conductor manufacturing, text alignment
in document analysis, particle tracking in bubble chambers, etc. In
the simplest case, the digitized image may contain a number of dis-
crete, black figure points lying on a white background (i.e., discrete
‘1’ pixels lying on a ‘0’ background).

Our objective is to detect and estimate the parameters of straight
lines that fit groups of collinear or almost collinear ‘1’ pixels. Many
detection/estimation techniques have been proposed in the litera-
ture which include the total least squares methods [6], the Hough-
transform method [7, 8], and the maximum likelihood method [9].
These methods generally suffer from their high computational cost
or their poor resolution (accuracy) estimation.

More recently, a high resolution technique has been introduced
in [5]. However, a major drawback of the technique is that it deals
only with non-parallel straight lines case and does not take into
account the quantization noise. To overcome this drawback, we
present in this paper a new approach based on the introduction of
a perfect mathematical analogy between the multi-line fitting prob-
lem and the problem of estimating the phase parameters of multi-
components polynomial phase signal. A number of standard meth-
ods exist for solving the latter problem, e.g., [1, 3] for linear phase
(sinusoidal) signal and [4, 10] for quadratic phase (chirp) signal.

We present here a new technique to estimate the phase param-
eters of the signals. This technique is a two steps procedure that
estimates first the line angles then the line offsets. It uses the well
known ESPRIT method [1] applied to properly chosen 1-D signals
processed from the recorded 2-D image. Better than to the tech-
nique in [5], the proposed method can handle the case of parallel
straight lines. Moreover, to improve the resolution of the angle pa-
rameters estimation and simultaneously reduce the effect of quan-
tization noise, we use the downsampling technique introduced in
[2].

2. PROBLEM FORMULATION AND DATA MODEL

Let r(x; y) be the recorded image, defined on the Euclidean plane
(X;Y ). We model r(x; y) as an image composed of d striated pat-
terns corrupted by uniformly distributed additive noise.
We assume that the digitized image r(x; y) contains only ‘1’ and
‘0’-valued pixels. The ‘1’ pixels represent pixels either almost colli-
near with each other in a finite number of groups, or outlier pixels,
while the ‘0’ pixels correspond to background. The 2D image is
represented by an N �M matrix (N and M being the sizes of the
image in the Y-direction and X-direction, respectively) with ‘1’ or
‘0’-valued entries, where each entry corresponds to one pixel in the
image.

The line parameterization used in the sequel is depicted in Fig-
ure 1, where a line is characterized by its X-axis offset and the angle
it makes with the normal to the X-axis at the interception point (we
use the conventional trigonometric orientation for the angles). The
line equation (using continuous coordinates) is given by

x = y tan � + x0 (1)

However, in the digitized image x and y take integer values and thus
equation (1) becomes:

x = dy tan � + x0e

= y tan � + x0 + �(y) (2)

where dxe denotes the closest integer to x and �(y) is the quanti-
zation noise that can be modeled as a random variable uniformly
distributed in [�0:5; 0:5].
We focus here on the problem of estimating1 the line parameters
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Figure 1.

�1; � � � ; �d and x1; � � � ; xd given the noisy image r(x; y).

3. REFORMULATION OF LINE FITTING PROBLEM

3.1. Polynomial phase transform

In this section we introduce a perfect mathematical analogy be-
tween the multi-line fitting problem and the problem of estimating

1That includes implicitly the estimation of the number of straight lines.



the phase parameters of multi-components polynomial phase sig-
nal. From the N �M matrix (2D problem) we construct a N � 1
vector z = [z(0); � � � ; z(N � 1)]T (1D problem) according to the
following transformation: If there are L nonzero pixels on the kth
row of the image matrix located on columns q1(k); � � � ; qL(k) re-
spectively, then the kth entry of vector z is given by

z(k) =

LX
i=1

e
jP (qi(k)) (3)

which is equivalent to

z(k) =

MX
x=1

r(x; k)ejP (x) (4)

where P (x) is a properly chosen polynomial function of x. Now,
consider the noiseless case of d lines with angles f�ig1�i�d and
offsets fxig1�i�d (see Figure 1). Provided that the line width is
such that the line gives rise to only one nonzero pixel per row, the
kth entry of z will be

z(k) =

dX
i=1

e
jP (k tan �i+xi) (5)

which is a polynomial phase signal. In the following, we only use
polynomials of degree one or two, i.e., P1(x) = �1x and P2(x) =
�2x

2 (�1 and �2 are properly chosen constant parameters). Let z1
and z2 be the N � 1 vectors given by (5) for P = P1 and P = P2,
respectively. We have:

z1(k) =

dX
i=1

A1ie
ja1ik (6)

z2(k) =

dX
i=1

A2ie
j(a2ik+b2ik

2) (7)

where the amplitude parameters A1i; A2i and the phase parameters
a1i; a2i; b2i are given by

A1i = e
j�1xi

a1i = �1 tan �i

A2i = e
j�2x

2

i

a2i = 2�2xi tan �i

b2i = �2 tan
2
�i

In the presence of outlier pixels in the image, the signal will be

w(k) = z(k) + n(k) (8)

where n(k) represents the noise effect in the kth row. It is shown
in [5] that for P = P1 and if the noise pixels are uniformly dis-
tributed on the image plane, n(k) can be approximated by a Gaus-
sian noise2.

3.2. Multiplicative noise effect

Now, let consider the effect of quantization noise. After polynomial
phase transform, the latter becomes a multiplicative noise according

2The proof in [5] can easily be extended to show that for P = P2

and with uniformly distributed noise, n(k) is approximately gaussian
distributed.

to:

z(k) =

dX
i=1

e
jP (k tan �i+xi+�(k))

=

dX
i=1

Ai(k)e
jP (k tan �i+xi)

In other word, z(k) is a multicomponent polynomial phase sig-
nal with random amplitudes. In particular, for P1(x) = �1x and
P2(x) = �2x

2, we obtain

z1(k) =

dX
i=1

A1i(k)e
ja1ik

z2(k) =

dX
i=1

A2i(k)e
j(a2ik+b2ik

2)

where

A1i(k) = A1ie
j�1�i(k)

A2i(k) = A2ie
j�2[�(k)

2+2(k tan �i+xi)�(k)]

Several methods exist for estimating the parameters of the multi-
component random amplitude polynomial phase signal, e.g., [13,
10]). However, in our context, the multiplicative noise effect can be
desastrous on the estimation accuracy of the line parameters.
A solution consists in reducing as much as possible the variation of
the signal components amplitudes. This can be done by chosing �1
and �2 ’small’. In fact, the smaller �1 and �2 are, the larger are
the mean values of the random amplitudes A1l(k) and A2l(k). For
example, the mean and variance of A1l(k) are given by

m1l
def
= E(A1l(k)) = e

jxl
sin(�1=2)

�1=2
;

�
2
1l

def
= var(A1l(k)) = 1�

�
sin(�1=2)

�1=2

�2

which means in particular, that for small values of �1, the sinu-
soidal signal z1 can be modeled as a sum of constant amplitude
sinusoids plus additive noise that is due to the fluctuations of the
amplitude functions around their mean values (e.g., for �1 = 0:1
we have jm1lj = 0:9996 and �

2
1l � �30dB). In our experiments,

we observed that �1 is better to be chosen to have a value around
0:1 while �2 is chosen with much smaller values around 1=M , M
being the image dimension in the X-direction.
Note that reducing �1 and �2 leads to closely spaced sinusoidal
frequencies since

ai1 � aj1 = �1(tan �i � tan �j)

a2i � a2j = 2�2(xi tan �i � xj tan �j):

In that case, to increase the resolution (and thus the accuracy) of the
estimation, we use the interleaving technique presented in [2].

3.3. Discussion

We present below several comments to obtain more insight into the
proposed multi-line fitting method:

1) The transform (3) can be applied in general to estimate the
parameters of a large class of patterns other than straight lines, e.g.,
hyperbolic curves, parabolic curves, elliptic curves, etc. For ex-
ample, given a parabolic curve described by the equation y(x) =



ax
2 + bx+ c, we can use the transform z(k) = e

j�y(k) that leads
to a second order polynomial phase signal.

2) From (6), we can see that two parallel lines correspond to si-
nusoidal signals with the same frequency and different amplitudes.
In this case, using degree one polynomial (i.e., z1) is not sufficient
to correctly estimate the number of straight lines and their parame-
ters. On the other hand, we can see from (7) that two parallel lines
correspond to chirp signals which have the same second order phase
parameter but different first order phase parameters. Therefore, it is
possible to correctly estimate from z2 the number of straight lines
and their parameters using techniques such as the quadratic phase
transform [4] (see also [10] for an alternative method).

3) To avoid phase ambiguity problem, the values of �1 and �2

must satisfy, for all l = 1; � � � ; d: ja1lj < �, ja2lj < �, and jb2lj <
�. This is equivalent to

�1 <
�

maxi j tan �ij
; and �2 <

�

maxi 2jxi tan �ij

4) We have chosen in this paper to integrate the image along
the X-axis. Other integration directions can be chosen as well. In
particular, using an a priori knowledge on the image, we can opti-
mize the direction of integration in such a way to increase the spac-
ing of the sinusoidal frequencies. We can see it from the fact that
j tan(� + ��) � tan(�)j (�� being the angle spacing between two
lines) depends on the angle � which depends on the integration di-
rection. This issue will be further investigated in the future.

5) The signal representation employed in this formulation can
be generalized to handle both problems of line fitting (in which a set
of binary valued discrete pixels is given) and straight edge detection
(in which one starts with a grey scale image). The generalization to
the problem of straight edge detection in grey-scale images can be
done for example by assigning an amplitude to the propagated sig-
nal from each pixel proportional to the gray-scale value of the pixel.
Also, a first step of edge enhancement may be used to attenuate
background contributions.

3.4. A two step estimation method

First step: Estimation of the line angles: To estimate the line an-
gles, we apply the ESPRIT method [1] with a downsampling factor
K � 1 to the noisy signal

w1(k) = z1(k) + n1(k)

where n1(k) is the noise due to outliers pixels and z1(k) is the sig-
nal given in (6). Let �̂1; � � � ; �̂d0 denote the estimated angles (d0

being the number of sinusoids: d0 < d in the case of parallel lines).
The number of sinusoids d0 can be estimated by using the MDL cri-
terion [11] or the LS detection method [12].

Second step: Estimation of the line offsets: The estimation of the line
offsets depends on whether the image contains parallel lines or not.
In the latter case (i.e., no parallel lines), a simple estimation proce-
dure consists in using a least-squares fitting approach, i.e.

argmin
m

kz1 � ZLmk
2
()m = Z#

L z1

where ZL is the N � d Vandermonde matrix constructed from
e
jfi ; fi = �1 tan �̂i, i = 1; � � � ; d and m = [m11; � � � ;m1d]

T ,
m1i being the mean value of the amplitude given by

m1i = e
j�1xi

sin(�1=2)

�1=2
) xi = arg(m1i)=�1

Z
#

L denotes the pseudo-inverse of ZL.

Note that we can use a smaller value of �1 to estimate the line
offset than the one used for the line angles estimation to avoid the
phase ambiguity problem and to decrease the quantization noise ef-
fect.
Unfortunately, the condition of non-parallel straight lines is very
restrictive in practice (see for example [9]). Thus, we propose here
alternative methods that proceed as follows: For i = 1; � � � ; d0:

� Demodulate the noisy chirp signal w2(k) = z2(k) + n2(k)
using the previously estimated values of the i-th line angle
�̂i:

yi(k) = w2(k)e
�j�2k

2 tan2 �̂i

�

X
flj tan �l=tan �ig

Ble
jflk + noise terms

where Bl = e
j�2x

2

l and fl = 2�2 tan �ixl.

� Estimate the frequencies fl by applying the ESPRIT method
with a downsampling factor3 K

0
� 1 to yi(k). The line

offsets are then computed as

x̂l =
f̂l

2�2 tan �̂i

4. SIMULATION RESULTS

We present here some simulation results to illustrate the perfor-
mance of the proposed method.

In figure 2, we show a simulation example in the case of a
square image of dimension N = 250 containing two straight lines
at (�1; x1) = (15o; 30) and (�2; x2) = (30o; 10) corrupted by uni-
formly distributed additive noise. We chose the parameter �1 = 0:1
and a downsampling factor K = 10. The estimated line parame-
ters are (�̂1; x̂1) = (14:89o; 3:73) and (�̂2; x̂2) = (29:94o; 10:73).
Note that without downsampling (i.e. K = 1) the method fails to
estimate the line parameters.

Figure 3 shows another simulation example in the case of an
image containing parallel lines. The image size is N = 250. The
lines are located at (�1; x1) = (15o; 30), (�2; x2) = (15o; 50),
and (�3; x3) = (30o; 10). Parameters �1 and K are kept same as
in the first experiment and �2 = 0:01. The results given by the
proposed method are very accurate: the estimated line parameters
are (�̂1; x̂1) = (15:04o; 29:67), (�̂2; x̂2) = (15:04o; 49:70), and
(�̂3; x̂3) = (30:08o; 10:50).

In table 1, we give the bias and normalized mean square error
MSE (i.e. kx̂�xk

2
=kxk

2 where x is the parameter to be estimated
and x̂ its estimated value) of the line parameters evaluated over 100
Monte-Carlo runs.

5. CONCLUSION

In this paper, we have presented a new two-step procedure for multi-
line fitting and straight edge detection. This approach can be seen
as an extension of the array processing method in [5] to deal with
the case of parallel lines and to handle the quantization noise effect.

The new approach is based on an original problem reformu-
lation that casts the 2-D multi-line fitting problem into a 1-D pa-
rameter estimation problem of multi-component chirp signals. This
problem reformulation is shown to be a powerful technique that can

3In our simulation, we used K = K
0 = 10.



be used to estimate the parameters of various geometric patterns
such as parabolic, hyperbolic, or elliptic curves. Computer simula-
tion results have been presented to illustrate the performance of the
proposed method.
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Line 1 Line 2 Line 3
Angle Bias �0:13o �0:13o �0:08o

Angle MSE 0:003 0:003 0:0005
Offset bias 1.26 1.61 0.27
Offset MSE 0.03 0.01 0.03

Table 1: MSE and bias of the estimated line parameters.
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Figure 1: Original and estimated Image: No parallel lines case
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Figure 2: Original and estimated Image: parallel lines case


