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ABSTRACT for performance evaluations, see e.g. [7], [5]. Indeed, standard
In this work we show that the optimal digital communication strat- OFDM can be intepreted as a special case of our chirped-OFDM,
egy for transmissions over time-varying channels with spread func-corresponding to channels whose spread function is concentrated
tion maximally concentrated along a line of the delay-Doppler do- along a line with slope equal to zero. The capability of accommo-
main consists in multiplexing the input symbol block with an IFFT, dating linear distributions o (v, 7) with any slope is what gives
as in OFDM, and modulating the IFFT output with a chirp signal to our chirped-OFDM the ability of avoiding distortions even using
whose sweep rate is matched to the channel. We show how to alsymbols durations much greater than the channel coherence time.
locate the transmit power optimally across the chirped subcarriers)n this paper we derive the new limits for the maximum symbol
derive the limits of applicability of the proposed chirped-OFDM duration allowing distortionless transmissions and show the BER
scheme and compute the resulting BER curves. curves of the proposed scheme.

1. MOTIVATION 2. EIGENFUNCTIONSOF LTV CHANNELSWITH
LINEAR DELAY-DOPPLER SPREADING

Orthogonal frequency division multiplexing (OFDM) is by now
a well established technology and OFDM combined with proper A linear time-varying (LTV) channel is fully characterized by its
precoding of the information symbols can be shown to achieve op-impulse responsk(¢, 7) which allows us to write the input/output
timal performance for communications over linear time- invariant (1/O) relationship
(LTI) channels. OFDM can be extended to linear time-varying oo
(LTV) channels only as far as the OFDM symbol duration is kept y(t) = / h(t,7)x(t — 7)dT. 1)
much smaller than the channel coherence tifhei.e., roughly —°
speaking, the time interval over which the channel is approxi- Equivalently, the channel can be described by its delay-Doppler
mately constant. Although this does not represent a serious limita-spread functiorf(v, 7), defined as [2]
tion in most current applications, the trend towards broader band-

width services for users with possibly higher mobility pushes the S(v,T) = /oo h(t,7)e 7> dt. 2)
research towards the extension of OFDM to time-varying chan- —o0
nels.

) ) We say that a channel has a linear delay-Doppler spreg@-ifr)
Standard OFDM can be extended to slowly time-varying systems;g ~oncentrated along a straight line.

only at the expense of efficiency. In fact, let us consider an OFDM |, geveral applications, and primarily in digital communications,
system where /T is the input data ratey is the number of sym- j; ;o important to know the channel eigenfunctions or, more pre-
bols multiplexed in each OFDM block, ardr” is the duration of  (igely talking about time-varying channels, the channel left and

the cyclic prefix, withLT > A,, whereA, is the delay spread. (gt singular functions (see, e.g. [3]). Specifically, if the system
To prevent severe distortion in the transit through a time-varying impulse response is square-integrable ti.e.

channel, NT must be a fraction of:, let us sayNT = oT.,
with @ < 1. This imposes an upper bound on the OFDM effi- <[ 2

ciencye, defined as the ratio between the duration of the idgut [oo [m IRt 7 dbdT < oo, @)
symbols block and the duration of the final OFDM symbol, equal
to aT,/(aTe + As).

In this work we show that if the time-varying channel is character-
ized by a spread functiof (v, 7) maximally concentrated along

a line in the delay-Doppler plane, we may extend the duration

then there exists a countable setsyigular values A, and two
classes of orthonormal functiong(t) andu; (¢), namedight and
left singular functions, such that the following system of integral
equations holds true [3]

of the OFDM symbol well beyond the channel coherence time, >
without sufferingany distortion, provided that we send a chirped- Aiui(t) = /700 h(t,t — m)vi(r)dr, “)
OFDM signal, i.e. an OFDM signal modulated by a chirp whose )
sweep rate is equal to the slope of the line wh&te, 7) is maxi- Aivi(T) = / R (t,t — T)ui(t)de. (5)

mally concentrated. Important special cases of channels with lin-
ear delay-Doppler distributions, besides LTI channels, are multi- 1), principle, (3) is not satisfied for many ideal models. However (3)

plicative channels and two-ray multipath channels, often encoun-is certainly satisfied for observations (transmissions) within finite time and
tered in HF links, satellite communications and extensively used frequency intervals, and this encompasses all practical situations.




Unfortunately, there is no analytic expression for the singular func-

tions of a general time-varying channel. However, there are ap-

proximate formulas valid for slowly-varying operators [6] and for

wherew(t) is additive noise. Hence, the transmitted symbols can
be estimated by simply taking the scalar productg(@j with the
left singular functions, i.e.

underspread channels, i.e. channels whose spread function is max-

imally concentrated within a rectangle in the delay-Doppler do-
main whose areBT < 1 [4], [1]>. Now we show that if the

1
T A @

8[m] y(H)um (t)dt = s[m] +wlm],  (13)

L.

channel spread function is maximally concentrated along a straight

line, the channel singular functions are known exactly, whichever
is the extension of the spread function support.
Theorem: The left and right singular functions of a channel whose

wherew[m] := [%_w(t)uy, (t)dt/\, B, If the additive noise
is white and Gaussian, the random variahi¢s:] are iid Gaussian
random variables. In this way, the initial LTV channel has been

Spread function is concentrated a|0ng a line in the de|ay-D0pp|erC0nVerted into a set of paraIIeI independent subchannels and the

plane, i.e.

S(V7 T) = g(T)J(V - fo - )U‘T)a (6)
arechirp signals with sweep rate, i.e.
vi(t) = 6j"“t2 gl 2mfit 7
’U/l(t) ejﬂutzejQTrfitejQTrfot _ ’Ui(t)@jzﬂfot. (8)
Proof: The impulse response corresponding to (6) is
ht,) = g(r)e” ™70t )
and, substituting (9) and (7) in (4) we get
Noui () =TT G () = Gu(fi)e 0 ui(h),

so that (4) is proved with\; = G.(fi), whereG,(f) is the
Fourier transform (FT) ofi, () := g(t)e’™**. We can also check

immediately that (5) is also satisfied and that the two classes of

functionsw; (t) andu;(t) are orthogonal [QED].

Important particular cases of channels with linear delay-Doppler
spreading are LTI channels, corresponding:te= 0, multiplica-

tive channels, wherg = oo, and two-ray multipath channels. In
fact, two-ray channels have a spread function

S, 7) = hod(T — 10)d(v — fo) + hid(T — 10)d(v — f1) (10)

symbol-by-symbol detector is also the maximum likelihood detec-
tor. If we specialize (11) to channels with spread function as in
(6), using (7), we obtain

z(t) = eI mut? Z By, s[k]e? > x!,
3

This expression shows that the optimal transmission strategy for
channels with linear delay-Doppler spread, consists in multiplex-
ing the symbols as in OFDM and then modulating the OFDM sig-
nal with a chirp whose sweep rate is the slope of the line where
S(v, ) is maximally concentrated. Equation (11) presupposes the
parallel transmission of an infinite set of data, which is not practi-
cal. Now, we show how to specialize (14) to the finite block case.
Given thei-th block of N symbols(s;[0], ... , si[N — 1]), with

si[n] := s[iN + n], we multiplex them in order to form the con-
tinuous timewaveform

N-1
. . 2 I :
xl(t) _ 6]7M(t—l(N+L)T) 2 : @i(n)si[n]6]27rn(t—z(N+L)T)/NT7

n=0

(14)

witht € iNT —LT, (i+1)NT] so as to include a prefix of length

LT in each block. This multiplexing strategy is what we term
chirped-OFDM. To grasp better physical insight into the channel
output, we consider the spread function expressed as a series of
delta functionsS(v, 7) = >°, hqd(T —74)d(v — fo — p7g), With-

out making any assumption about the number of paths. We only

and, since there is always a straight line passing through two pointsagssume, as in OFDM, that our guard interval is longer than the

we havey = (f1 — fo)/(m1 — o).

3. CHIRPED OFDM

Recalling the pioneering work of Gallager on time-varying chan-
nels [3], we know that the optimal strategy for transmitting a se-
quence of symbols[k], k = ... ,—1,0,1,... through an LTV
channel consists in sending the signal

z(t)= > Pps[klve(t)

k=—o0

(11)

wherewy (t) is the k-th right singular function associated to the
k-th singular value ané@;, are coefficients used to allocate power

channel duration, i.eLT > max,(74). The channel output cor-
responding to (14), after discarding the initial guard interval and
settingd :=t — (N + L)T, is

N—-1
yi(9) — ejw(u92+2f0(0+(N+L)iT)) Z q)i(n)si[n]/\i(n)€j27rn9/NT,

n=0

where
A (n) — Z hq 6]'7r;1,7'q (Tq+2i(N+L)T)efj27rn7'q/NT.

q

(15)

The recovery of the symbols[n] proceeds then as in OFDM, ex-

across the transmitted symbols, see e.g. [3], [1]. Using (4), theCept for an initial dechirping operation. Specifically, the decoding

received signal is

y(t) = i i A s[k]ur (t) + w(t),

k=—o0

(12)

steps are:

i) dechirpy; (8), = 2 (6) := yi (theta)e 7™ 0> +2fo(@+(V+L)iT)),

ii) samplez;(theta) at ratel /T and discard the guard interval;

iif) compute theN-point FFTZ;[k] of z;[n] := z;(nT);

iv) equalize and detect the symbols. Using zero-forcing equaliza-

2The underspread property indeed holds true for most communicationtion, for example;[k] := Z;[k]/®; (k) ;i (k).

channels.

The last operation is critical iX; (k) is zero (small). This situation
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may be circumvented by resorting to MMSE decoding or avoiding
transmissions over the most faded subcarriers, as shown in Section
4. Itis important to remark that, in the presence of additive Gaus-
sian noise, the dechirping operation does not alter the statistics of
the noise. The initial dechirping operation in continuous time, fol-
lowed by sampling, is analoguous to the scheme implemented in £ 10k
the radar altimeter onboard the satellite ERS-1 currently orbiting
around the Earth, and it is useful because it reduces the bandwidth
and then allows us to sample at the minimum rate. 107

107

4. OPTIMAL POWER ALLOCATION ® onr ey’

In this section we show how to choose the amplitu@g3:) in Fig. 1. BER vs. SNR for i) chirped-OFDM (solid line) over LTV
(14) according to different optimization criteria, when the chan- channel; ii) standard OFDM (dotted line) over LTV channel; iii)
nel is known at the tranmitter side. Dealing with time-varying standard OFDM over equivalent LTI channel (dashed line).
channel, optimal coding requires in general the prediction of the
channel evolution, at least within the time interval assigned to the
next block to be transmitted. Assuming a multipath model, we y,,r where S(v, 7) is maximally concentrated. Considering the
only have to estimate the channel parameters, using for exampl@ormalized spread functidi(v, 7) := S(v,7)/ [ [ |S(v, T)|dvdr,
the method of [1] and update the estimate with a period dependinghe parameterg,, andy., are solution of
on the time interval over which we presume that the channel pa-
rameters are constant (this interval may be much longer than the(f fim) = argmin /°° /°° 1S, )| (v — f — pr)2dvdr
channel coherence time). Assuming the channel perfectly known *™ ™" VTN SN N ’ ’
at the transmitter side, in [1] we showed that the optimal precoding
matrix has always the following structu®(n) = V' (n)®(n),
where the columns oV (n) are the right singular vectors of the  Introducing the momentsy. ; := [ [ |S(v, )|kt dvdr,
chann_el maitrix descrlblr_lg the transit _of theth block, Whereas we obtainf,, = (mi.omo.s — moim11)/(mos — m2,) and
®(n)isa dlagonal matrix whose entrn@(n) are a fun(_:tlon of m = (mia — moimio)/(mo2 — m2,). Then we measure
the channel singular values only, according to a law which dependspe spread 0B (v, 7) around the maximum concentration line=
on the optimality criterion. Here we report some of the results, de- Fon + fmT S
rived under the assumption of white Gaussian noise, for different
criteria. 9 oo 2
1. Minimum mean square error between transmitted and received ~ © = / / [S@W, DIV — fm — pm) dvdr.  (18)
symbols, subject to a given average transmit power (MMSE/AP): e
) We state that the spread function distribution is approximately lin-
<I>‘(n)2 — ma ( K Oy 0) (16) ear, within a time interval of duratioWT', if B < 1/NT, i.e. if
‘ Ai(m)]  [Ai(n)]?’ the spread around the maximum concentration line is smaller than

the bandwidth of the FFT filter operating on symbols of duration
NT. Equivalently, the new upper bound for the duration of the
chirped-OFDM symbol guaranteeing (almost) distortionless trans-

2. Maximal mutual information between, subject to a given aver-
age transmit power (MIR/AP):

) o2 mission isNT < 1/B, with B given by (18). This limit may
®;(n)” = max (K2 - Wﬁ) (a7) be well beyond the standard OFDM limit which, because of its

inability of accommodating linear distributions different from the
The constantd(; and K- in (16) and (17) are chosen in order to linev = 0, corresponds to a spredy given by (18) withf,, =0
enforce the prescribed average transmit powerddrid the noise ~ andu, = 0 and thus itis certainly greater thdh

variance.

Interestingly, both solutions (16) and (17) prevent the transmis- 6. PERFORMANCE

sions through the most faded subchannels. The important property

for channels with linear delay-Doppler spreading is that we do not |, this section we show the bit error rate (BER) obtained using our
need to compute any SVD to evaluate the optimal precoder bechjrped-OFDM technique.

cause the columns d¥ (n) are chirp signals with sweep rate  Ex. 1 - Chirped-OFDM vs. OFDM: In Fig. 1 we show the

and the singular valuek (n) are given by (15). BER vs. SNR (dB) for a two-ray channel with parametgfs=
[0.1,0.5]/T, h = [1.3,2], 7 = [1.2,3.6]T. The symbols are
5. LIMITSOF APPLICABILITY QPSK and the number of symbols per blockNs= 128. Fig.

1 shows the BER for our chirped OFDM (solid line) and for a
In general, we cannot expect the channel spread function to be tostandard OFDM (dotted line). We also report (dashed line) the
tally concentrated along a line, except a few case, e.g. two-rayBER for a standard OFDM system operating on the equivalent LTI
channels. Therefore, it is important to establish the limits of ap- channel (dashed line), i.e. the channel having the same parameters
plicability of our chirped-OFDM. Given a spread functiSiv, ), as the LTV channel, except the Doppler shifts which are sét to
first of all we find the parametey$, andu,, of the linev = f,, + Comparing solid and dashed lines, we observe that the chirping
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Fig. 2. BER vs. SNR with MMSE/AP power loading (solid line)
and without loading (dashed line).
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Fig. 3. BER vs. SNR of chirped-OFDM over a three-ray chan-
nel, with different distances from the maximum concentration
line: Af = 0 (solid line), Af = .1/NT (dashed line), and
Af =1/NT (dotted line).

operation allows the chirped-OFDM system to perform as if the

channel is time-invariant, whereas standard OFDM on the same [4]

LTV channel performs very poorly (dotted line).

Ex. 2 - Loading: In Fig. 2 we report the BER obtained us-
ing our chirped OFDM with optimal power loading, according to
the MMSE/AP criterion (solid line), and without loading (dashed
line). The simulations are averaged over 100 independent channel

realizations, where each realization has the same parameters as irt5]

Fig. 1 except the amplitudes which are complex zero mean Gaus-
sian random variables. Fig. 2 shows how loading improves the
performance, especially at high SNR.

Ex. 3 - Nonlinear delay-Dopppler spread: In Fig. 3 we show the
BER vs. SNR of a chirped-OFDM over a three ray channel, whose
rays are not aligned. Specifically, the different curves in Fig. 3 re-
fer to increasing distances f between one ray and the maximum
concentration line. We can see that when the distance becomes
comparable withl /NT, the chirped-OFDM is no longer valid.

To overcome this furhter limit, we need to use nonlinear modula-
tion waveforms, as suggested in [1]. However, this generalization
is more difficult to implement because it is no longer possible to
single out a common (nonlinear) frequency modulation signal and
there is not an underlying OFDM structure.

Ex. 4 - Channel estimate: The main price to be paid for using the
chirped-OFDM strategy is essentially the need for channel estima-
tion and prediction. For multipath channels we can estimate the

10
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Fig. 4. BER vs. SNR of chirped-OFDM with known channel pa-
rameters (solid line) and channels estimated using chirp signals of
length512 (dashed line) and56 (dotted line).

channel parameters using, for example, the methods suggested in
[1], based on the periodic transmission of sounding chirp signals.
A numerical example comparing the case of known channel (solid
line) and channel estimated transmitting chirp signals of length
512 (dashed line) o256 (dotted line) is reported in Fig. 4.
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