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ABSTRACT
In this work we show that the optimal digital communication strat-
egy for transmissions over time-varying channels with spread func-
tion maximally concentrated along a line of the delay-Doppler do-
main consists in multiplexing the input symbol block with an IFFT,
as in OFDM, and modulating the IFFT output with a chirp signal
whose sweep rate is matched to the channel. We show how to al-
locate the transmit power optimally across the chirped subcarriers,
derive the limits of applicability of the proposed chirped-OFDM
scheme and compute the resulting BER curves.

1. MOTIVATION

Orthogonal frequency division multiplexing (OFDM) is by now
a well established technology and OFDM combined with proper
precoding of the information symbols can be shown to achieve op-
timal performance for communications over linear time- invariant
(LTI) channels. OFDM can be extended to linear time-varying
(LTV) channels only as far as the OFDM symbol duration is kept
much smaller than the channel coherence timeTc, i.e., roughly
speaking, the time interval over which the channel is approxi-
mately constant. Although this does not represent a serious limita-
tion in most current applications, the trend towards broader band-
width services for users with possibly higher mobility pushes the
research towards the extension of OFDM to time-varying chan-
nels.
Standard OFDM can be extended to slowly time-varying systems
only at the expense of efficiency. In fact, let us consider an OFDM
system where1=T is the input data rate,N is the number of sym-
bols multiplexed in each OFDM block, andLT is the duration of
the cyclic prefix, withLT � �s, where�s is the delay spread.
To prevent severe distortion in the transit through a time-varying
channel,NT must be a fraction ofTc, let us sayNT = �Tc,
with � < 1. This imposes an upper bound on the OFDM effi-
ciency�, defined as the ratio between the duration of the inputN -
symbols block and the duration of the final OFDM symbol, equal
to �Tc=(�Tc +�s).
In this work we show that if the time-varying channel is character-
ized by a spread functionS(�; �) maximally concentrated along
a line in the delay-Doppler plane, we may extend the duration
of the OFDM symbol well beyond the channel coherence time,
without sufferingany distortion, provided that we send a chirped-
OFDM signal, i.e. an OFDM signal modulated by a chirp whose
sweep rate is equal to the slope of the line whereS(�; �) is maxi-
mally concentrated. Important special cases of channels with lin-
ear delay-Doppler distributions, besides LTI channels, are multi-
plicative channels and two-ray multipath channels, often encoun-
tered in HF links, satellite communications and extensively used

for performance evaluations, see e.g. [7], [5]. Indeed, standard
OFDM can be intepreted as a special case of our chirped-OFDM,
corresponding to channels whose spread function is concentrated
along a line with slope equal to zero. The capability of accommo-
dating linear distributions ofS(�; �) with any slope is what gives
to our chirped-OFDM the ability of avoiding distortions even using
symbols durations much greater than the channel coherence time.
In this paper we derive the new limits for the maximum symbol
duration allowing distortionless transmissions and show the BER
curves of the proposed scheme.

2. EIGENFUNCTIONS OF LTV CHANNELS WITH
LINEAR DELAY-DOPPLER SPREADING

A linear time-varying (LTV) channel is fully characterized by its
impulse responseh(t; �) which allows us to write the input/output
(I/O) relationship

y(t) =

Z
1

�1

h(t; �)x(t� � )d�: (1)

Equivalently, the channel can be described by its delay-Doppler
spread functionS(�; � ), defined as [2]

S(�; �) :=

Z
1

�1

h(t; � )e
�j2��t

dt: (2)

We say that a channel has a linear delay-Doppler spread ifS(�; �)
is concentrated along a straight line.
In several applications, and primarily in digital communications,
it is important to know the channel eigenfunctions or, more pre-
cisely, talking about time-varying channels, the channel left and
right singular functions (see, e.g. [3]). Specifically, if the system
impulse response is square-integrable, i.e.1

Z
1

�1

Z
1

�1

jh(t; �)j
2
dtd� <1; (3)

then there exists a countable set ofsingular values �i and two
classes of orthonormal functionsvi(t) andui(t), namedright and
left singular functions, such that the following system of integral
equations holds true [3]

�iui(t) =

Z
1

�1

h(t; t� � )vi(�)d� ; (4)

�ivi(�) =

Z
1

�1

h�(t; t� � )ui(t)dt: (5)

1In principle, (3) is not satisfied for many ideal models. However (3)
is certainly satisfied for observations (transmissions) within finite time and
frequency intervals, and this encompasses all practical situations.



Unfortunately, there is no analytic expression for the singular func-
tions of a general time-varying channel. However, there are ap-
proximate formulas valid for slowly-varying operators [6] and for
underspread channels, i.e. channels whose spread function is max-
imally concentrated within a rectangle in the delay-Doppler do-
main whose areaBT � 1 [4], [1]2. Now we show that if the
channel spread function is maximally concentrated along a straight
line, the channel singular functions are known exactly, whichever
is the extension of the spread function support.
Theorem: The left and right singular functions of a channel whose
spread function is concentrated along a line in the delay-Doppler
plane, i.e.

S(�; �) = g(�)�(� � f0 � ��); (6)

arechirp signals with sweep rate�, i.e.

vi(t) = e
j��t

2

e
j2�fit (7)

ui(t) = e
j��t

2

e
j2�fite

j2�f0t = vi(t)e
j2�f0t: (8)

Proof: The impulse response corresponding to (6) is

h(t; �) = g(�)e
j2���t

e
j2�f0t (9)

and, substituting (9) and (7) in (4) we get

�iui(t)=e
j2�f0te

j2�fite
j��t

2

G�(fi) = G�(fi)e
j2�f0tvi(t);

so that (4) is proved with�i = G�(fi), whereG�(f) is the

Fourier transform (FT) ofg�(t) := g(t)ej��t
2

. We can also check
immediately that (5) is also satisfied and that the two classes of
functionsvi(t) andui(t) are orthogonal [QED].
Important particular cases of channels with linear delay-Doppler
spreading are LTI channels, corresponding to� = 0, multiplica-
tive channels, where� = 1, and two-ray multipath channels. In
fact, two-ray channels have a spread function

S(�; �) = h0�(� � �0)�(� � f0) + h1�(� � �0)�(� � f1) (10)

and, since there is always a straight line passing through two points,
we have� = (f1 � f0)=(�1 � �0).

3. CHIRPED OFDM

Recalling the pioneering work of Gallager on time-varying chan-
nels [3], we know that the optimal strategy for transmitting a se-
quence of symbolss[k], k = : : : ;�1; 0; 1; : : : through an LTV
channel consists in sending the signal

x(t) =

1X
k=�1

�ks[k]vk(t) (11)

wherevk(t) is thek-th right singular function associated to the
k-th singular value and�k are coefficients used to allocate power
across the transmitted symbols, see e.g. [3], [1]. Using (4), the
received signal is

y(t) =

1X
k=�1

�k�ks[k]uk(t) + w(t); (12)

2The underspread property indeed holds true for most communication
channels.

wherew(t) is additive noise. Hence, the transmitted symbols can
be estimated by simply taking the scalar products ofy(t) with the
left singular functions, i.e.

ŝ[m] =
1

�m�m

Z
1

�1

y(t)u
�

m(t)dt = s[m] +w[m]; (13)

wherew[m] :=
R
1

�1
w(t)u�m(t)dt=�m�m. If the additive noise

is white and Gaussian, the random variablesw[m] are iid Gaussian
random variables. In this way, the initial LTV channel has been
converted into a set of parallel independent subchannels and the
symbol-by-symbol detector is also the maximum likelihood detec-
tor. If we specialize (11) to channels with spread function as in
(6), using (7), we obtain

x(t) = e
j��t

2X
k

�ks[k]e
j2�fkt:

This expression shows that the optimal transmission strategy for
channels with linear delay-Doppler spread, consists in multiplex-
ing the symbols as in OFDM and then modulating the OFDM sig-
nal with a chirp whose sweep rate is the slope of the line where
S(�; � ) is maximally concentrated. Equation (11) presupposes the
parallel transmission of an infinite set of data, which is not practi-
cal. Now, we show how to specialize (14) to the finite block case.
Given thei-th block ofN symbols(si[0]; : : : ; si[N � 1]), with
si[n] := s[iN + n], we multiplex them in order to form the con-
tinuous timewaveform

xi(t) = e
j��(t�i(N+L)T )2

N�1X
n=0

�i(n)si[n]e
j2�n(t�i(N+L)T )=NT

;

(14)

with t 2 [iNT�LT; (i+1)NT ] so as to include a prefix of length
LT in each block. This multiplexing strategy is what we term
chirped-OFDM. To grasp better physical insight into the channel
output, we consider the spread function expressed as a series of
delta functions,S(�; � ) =

P
q
hq�(� ��q)�(��f0���q), with-

out making any assumption about the number of paths. We only
assume, as in OFDM, that our guard interval is longer than the
channel duration, i.e.LT � maxq(�q). The channel output cor-
responding to (14), after discarding the initial guard interval and
setting� := t� i(N + L)T , is

yi(�) = e
j�(��2+2f0(�+(N+L)iT ))

N�1X
n=0

�i(n)si[n]�i(n)e
j2�n�=NT

;

where

�i(n) :=
X
q

hqe
j���q(�q+2i(N+L)T )

e
�j2�n�q=NT

: (15)

The recovery of the symbolssi[n] proceeds then as in OFDM, ex-
cept for an initial dechirping operation. Specifically, the decoding
steps are:
i) dechirpyi(�),) zi(�) := yi(theta)e

�j�(��2+2f0(�+(N+L)iT ));
ii) samplezi(theta) at rate1=T and discard the guard interval;
iii) compute theN -point FFTZi[k] of zi[n] := zi(nT );
iv) equalize and detect the symbols. Using zero-forcing equaliza-
tion, for example,̂si[k] := Zi[k]=�i(k)�i(k).
The last operation is critical if�i(k) is zero (small). This situation



may be circumvented by resorting to MMSE decoding or avoiding
transmissions over the most faded subcarriers, as shown in Section
4. It is important to remark that, in the presence of additive Gaus-
sian noise, the dechirping operation does not alter the statistics of
the noise. The initial dechirping operation in continuous time, fol-
lowed by sampling, is analoguous to the scheme implemented in
the radar altimeter onboard the satellite ERS-1 currently orbiting
around the Earth, and it is useful because it reduces the bandwidth
and then allows us to sample at the minimum rate.

4. OPTIMAL POWER ALLOCATION

In this section we show how to choose the amplitudes�i(n) in
(14) according to different optimization criteria, when the chan-
nel is known at the tranmitter side. Dealing with time-varying
channel, optimal coding requires in general the prediction of the
channel evolution, at least within the time interval assigned to the
next block to be transmitted. Assuming a multipath model, we
only have to estimate the channel parameters, using for example
the method of [1] and update the estimate with a period depending
on the time interval over which we presume that the channel pa-
rameters are constant (this interval may be much longer than the
channel coherence time). Assuming the channel perfectly known
at the transmitter side, in [1] we showed that the optimal precoding
matrix has always the following structureF (n) = V (n)�(n),
where the columns ofV (n) are the right singular vectors of the
channel matrix describing the transit of then-th block, whereas
�(n) is a diagonal matrix whose entries�i(n) are a function of
the channel singular values only, according to a law which depends
on the optimality criterion. Here we report some of the results, de-
rived under the assumption of white Gaussian noise, for different
criteria.
1. Minimum mean square error between transmitted and received
symbols, subject to a given average transmit power (MMSE/AP):

�i(n)
2
= max

�
K1

j�i(n)j
�

�2v
j�i(n)j2

; 0

�
: (16)

2. Maximal mutual information between, subject to a given aver-
age transmit power (MIR/AP):

�i(n)
2
= max

�
K2 �

�2v
j�i(n)j2

; 0

�
: (17)

The constantsK1 andK2 in (16) and (17) are chosen in order to
enforce the prescribed average transmit power and�2v is the noise
variance.
Interestingly, both solutions (16) and (17) prevent the transmis-
sions through the most faded subchannels. The important property
for channels with linear delay-Doppler spreading is that we do not
need to compute any SVD to evaluate the optimal precoder be-
cause the columns ofV (n) are chirp signals with sweep rate�
and the singular values�i(n) are given by (15).

5. LIMITS OF APPLICABILITY

In general, we cannot expect the channel spread function to be to-
tally concentrated along a line, except a few case, e.g. two-ray
channels. Therefore, it is important to establish the limits of ap-
plicability of our chirped-OFDM. Given a spread functionS(�; � ),
first of all we find the parametersfm and�m of the line� = fm+
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Fig. 1. BER vs. SNR for i) chirped-OFDM (solid line) over LTV
channel; ii) standard OFDM (dotted line) over LTV channel; iii)
standard OFDM over equivalent LTI channel (dashed line).

�m� whereS(�; �) is maximally concentrated. Considering the
normalized spread function�S(�; � ) := S(�; � )=

R
1

�1

R
1

�1
jS(�; �)jd�d� ,

the parametersfm and�m are solution of

(fm; �m) := argmin
f;�

Z
1

�1

Z
1

�1

j �S(�; �)j(� � f � �� )
2
d�d�:

Introducing the momentsmk;l :=
R
1

�1

R
1

�1
j �S(�; � )j�k� ld�d� ,

we obtainfm = (m1;0m0;2 � m0;1m1;1)=(m0;2 � m2
0;1) and

�m = (m1;1 � m0;1m1;0)=(m0;2 � m2
0;1). Then we measure

the spread ofS(�; �) around the maximum concentration line� =

fm + �m� as

B2
:=

Z
1

�1

Z
1

�1

j �S(�; � )j(� � fm � �m� )
2d�d�: (18)

We state that the spread function distribution is approximately lin-
ear, within a time interval of durationNT , if B < 1=NT , i.e. if
the spread around the maximum concentration line is smaller than
the bandwidth of the FFT filter operating on symbols of duration
NT . Equivalently, the new upper bound for the duration of the
chirped-OFDM symbol guaranteeing (almost) distortionless trans-
mission isNT < 1=B, with B given by (18). This limit may
be well beyond the standard OFDM limit which, because of its
inability of accommodating linear distributions different from the
line � = 0, corresponds to a spreadB0 given by (18) withfm = 0
and�m = 0 and thus it is certainly greater thanB.

6. PERFORMANCE

In this section we show the bit error rate (BER) obtained using our
chirped-OFDM technique.
Ex. 1 - Chirped-OFDM vs. OFDM: In Fig. 1 we show the
BER vs. SNR (dB) for a two-ray channel with parametersf

d
=

[0:1; 0:5]=T , h = [1:3; 2], � = [1:2; 3:6]T . The symbols are
QPSK and the number of symbols per block isN = 128. Fig.
1 shows the BER for our chirped OFDM (solid line) and for a
standard OFDM (dotted line). We also report (dashed line) the
BER for a standard OFDM system operating on the equivalent LTI
channel (dashed line), i.e. the channel having the same parameters
as the LTV channel, except the Doppler shifts which are set to0.
Comparing solid and dashed lines, we observe that the chirping
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Fig. 2. BER vs. SNR with MMSE/AP power loading (solid line)
and without loading (dashed line).
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Fig. 3. BER vs. SNR of chirped-OFDM over a three-ray chan-
nel, with different distances from the maximum concentration
line: �f = 0 (solid line), �f = :1=NT (dashed line), and
�f = 1=NT (dotted line).

operation allows the chirped-OFDM system to perform as if the
channel is time-invariant, whereas standard OFDM on the same
LTV channel performs very poorly (dotted line).
Ex. 2 - Loading: In Fig. 2 we report the BER obtained us-
ing our chirped OFDM with optimal power loading, according to
the MMSE/AP criterion (solid line), and without loading (dashed
line). The simulations are averaged over 100 independent channel
realizations, where each realization has the same parameters as in
Fig. 1 except the amplitudes which are complex zero mean Gaus-
sian random variables. Fig. 2 shows how loading improves the
performance, especially at high SNR.
Ex. 3 - Nonlinear delay-Dopppler spread: In Fig. 3 we show the
BER vs. SNR of a chirped-OFDM over a three ray channel, whose
rays are not aligned. Specifically, the different curves in Fig. 3 re-
fer to increasing distances�f between one ray and the maximum
concentration line. We can see that when the distance becomes
comparable with1=NT , the chirped-OFDM is no longer valid.
To overcome this furhter limit, we need to use nonlinear modula-
tion waveforms, as suggested in [1]. However, this generalization
is more difficult to implement because it is no longer possible to
single out a common (nonlinear) frequency modulation signal and
there is not an underlying OFDM structure.
Ex. 4 - Channel estimate: The main price to be paid for using the
chirped-OFDM strategy is essentially the need for channel estima-
tion and prediction. For multipath channels we can estimate the
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Fig. 4. BER vs. SNR of chirped-OFDM with known channel pa-
rameters (solid line) and channels estimated using chirp signals of
length512 (dashed line) and256 (dotted line).

channel parameters using, for example, the methods suggested in
[1], based on the periodic transmission of sounding chirp signals.
A numerical example comparing the case of known channel (solid
line) and channel estimated transmitting chirp signals of length
512 (dashed line) or256 (dotted line) is reported in Fig. 4.
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