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Università degli Studi del Sannio,
Palazzo dell’Aquila Bosco Lucarelli,

Corso Garibaldi 107, 82100 Benevento, Italy.�
Dip. di Ingegneria dell’Innovazione
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ABSTRACT

Adaptive detection of multidimensional signals in the presence
of interference with unknown covariance matrix is an expanding
topic in a variety of scenarios ranging from radar/sonar to digi-
tal communication systems. In this paper we attack the problem
of detecting a multidimensional radar signal, modeled as an un-
known ����� matrix, embedded in Gaussian noise with unknown
covariance matrix, with the ambition of devising receivers which
yield the Constant False Alarm Rate (CFAR) property. We show
that this aim can be achieved resorting to the principle of invari-
ance, namely restricting our attention to hypothesis testing prob-
lems which remain unaltered under a proper group of transforma-
tions. Several detectors based on the maximal invariant statistic
are studied and, in particular, the Generalized Likelihood Ratio
Test (GLRT) is shown to belong to the class of invariant tests.

1. INTRODUCTION

Adaptive detection of a signal array in a background of interfer-
ence is a major point in the design of radar/sonar and digital com-
munication systems. A specific problem of primary concern is the
detection of a signature known up to a multiplicative constant, in
the presence of zero-mean, Gaussian noise with unknown covari-
ance matrix. It has been addressed by several investigators and
a considerable bulk of work is available, as for instance Kelly’s
GLRT [1], and the Adaptive Matched Filter [2].

hypothesis testing problems concerning the presence of multi-
dimensional signals, i.e. signals known to be confined to a given
vector subspace, have also been widely studied. Among statis-
ticians such hypothesis tests for a structured mean in multivariate
Gaussian noise with unknown covariance are usually referred to as
Generalized Multivariate Analysis of Variance (GMANOVA) [3].
More recently, the GMANOVA has also been introduced in the sig-
nal processing literature by Kelly and Forsythe [4][and references
therein]. In [4] the authors model the useful signal to be detected
as the product of three matrices, namely as �	��
 , where � and

 are fixed arrays accounting for the structure of the useful sig-

nal, while � is an array of unknown signal amplitude parameters.
The above model is quite general and encompasses the detection
of either coherent and incoherent point-like or range-spread targets
as viewed through an array of sensors of some kind; in addition,

it allows to include among data additional returns free of signal
components and with the same unknown covariance matrix of the
cells under test.

A desirable feature of an adaptive detection scheme is the
CFAR property, meaning that the threshold value, necessary to set
the desired false alarm Probability ( ��
�� ), is independent of the
unknown covariance matrix of the disturbance. It is possible to
impose the CFAR constraint resorting to the principle of invari-
ance [5, 6]. The core of the procedure is to define a class of tests
which are invariant with respect to a group of transformations that
leave the hypothesis testing problem unaltered. It is worth pointing
out that any invariant decision rule can be expressed in terms of a
vector valued function of the data, the so-called maximal invari-
ant. Thus, knowledge of the maximal invariant greatly reduces the
overall class of detectors to be considered. It is also possible that
a Uniformly Most Powerful (UMP) test exists within the class of
invariant tests, when no general UMP test may exist.

Several researchers resorted to the principle of invariance to
address adaptive CFAR detection. For instance, the detection of a
subspace signal in subspace interference plus broadband noise is
addressed in [7]. The problem of detecting a known (within a com-
plex scale factor) vector in structured interference with unknown
correlation properties is considered, instead, in [8]. Moreover, the
application of the invariance to GMANOVA problems can also be
found in [9] and in [10]. The former refers to the detection of a
completely unknown � -dimensional vector, whereas the latter ad-
dresses the case of a signal confined to a given vector subspace.
Both of them assume to estimate the correlation properties of the
disturbance from a set of secondary data. Finally, in [11] the in-
variance principle is exploited to develop a framework for adaptive
array detection of uncertain rank-one waveforms.

In this paper we address adaptive detection for multidimen-
sional signals imposing the CFAR constraint. Again we resort to
the principle of invariance. More precisely, we assume that the
data set consists of � vectors, which may contain returns from
possible target or targets, plus � additional vectors, free of signal
components and with the same unknown covariance matrix of the
cells under test. The signatures of the possible useful signals are
not known at the receiver; it follows that the above model applies
to the detection of incoherent, range-spread targets as well as to
multispectral or multipolarization images collected by a synthetic



aperture radar. In the latter case the columns of the matrix of pri-
mary data correspond to target returns at different frequency bands
(multispectral images) or at different polarizations (multipolariza-
tion images) while the rows correspond to different spatial loca-
tions (pixels) [12]. In addition, we provide the set of parameters
which rule the performance of all the invariant detectors (induced
maximal invariant). It is shown that no UMP Invariant (UMPI) test
for the given detection problem exists. Subsequently, we introduce
and assess several maximal invariant based decision rules. In par-
ticular, we show that the Kelly-Forsythe GLRT is a member of the
class of invariant tests.

The outline of the paper is the following: Section 2 is devoted
to the problem formulation and to the derivation of the maximal in-
variant; Section 3 addresses the design of maximal invariant based
detectors. The performance assessment is reported in Section 4
while concluding remarks are presented in Section 5.

2. PROBLEM FORMULATION AND DESIGN ISSUES

We assume that data are collected from � sensors and deal with
the problem of detecting the presence of a signal within � data
vectors, ��� , �����	��
�
�
�� � , referred to, in the sequel, as primary
data. We also suppose that a secondary data set, �
� , ��� ����	��
�
�
�� ��� � , free of useful signal components and which exhibits
the same covariance matrix as the primary data, is available.

The detection problem to be solved can be formulated in terms
of the following binary hypothesis test:��� �� ����� ��� ��� � �������	��
�
�
�� � � �

�"!#�
$ ��� �&% � � � � �������	��
�
�
�� ���� ��� � � ��� � � �	��
�
�
�� �'� � (1)

where the
% � ’s,
�(�)�	��
�
�
�� � , are unknown vectors, and the

� � ’s�(�*�	��
�
�
�� � � � , are independent, zero-mean Gaussian vectors
with covariance matrices given by+�, � � �.-�0/ �21'�3�����	��
�
�
�� �'� � 
 (2)

As to
+�, 4 / it denotes statistical expectation and

-
is the conjugate

transpose. Moreover, we suppose that the
� � ’s possess the cir-

cular property usually associated with I and Q pairs of a Wide-
Sense Stationary process. The vectors �
� , �5�6�	��
�
�
�� ����� ,
can be organized into the matrices 7�8 � , � ! ��
�
�
�� �
9 / and7;: � , �
9(< ! ��
�
�
�� ��9(<
= / , referred to, in the sequel, as primary
and secondary data matrices, respectively.

We preliminary notice that the hypothesis testing problem (1)
is invariant [5, 6] under the group of transformations > defined as:>?�@7 � , 7�8 � 7;: /�ACB 7ED (3)

where B denotes a nonsingular ����� , possibly complex matrix.
In fact > maps independent and identically distributed (iid) Gaus-
sian vectors with unknown covariance matrix into iid Gaussian
vectors with unknown, but different, covariance matrix. More-
over, if a data vector is zero-mean the transformed one will remain
zero-mean.

In the sequel we focus on test statistics which are invariant un-
der > , namely, if we apply the decision rules to the transformed
data matrices we obtain the same answer as if the tests had been
applied to the original data. As a consequence the class of deci-
sion rules we consider ensures CFARness with respect to the co-
variance matrix of the disturbance. In fact, it can be easily proved

that, under ��� , the distribution of any > -invariant test statistic is
independent of

1
.

It is a remarkable result [5, 6] that all invariant tests can be
expressed as a function of a maximal invariant statistic which acts
on the measurements organizing them into orbits or equivalence
classes. For reader’s ease we remind that a statistic F is said to
be a maximal invariant for the group of transformations > if and
only ifG F5H�7JI � F5H B 7�I � K BML > ;G F5H�7;NOI � F5H�7JN NOI �
P 7;N � B 7JN N for some B&L > .

The following proposition specifies a maximal invariant statistic
for the problem at hand.

Proposition 1. Assume �RQ � , then a maximal invari-
ant statistic for the group of transformations (3) is given by theS �UTWVYX H � � �ZI non-zero eigenvalues, [\! ��
�
�
�� [^] say, of the
Hermitian matrix _a`cbdJe _a`#bd �

(4)

whereG _ � 7J:(7 -: is � times the sample covariance matrix of
the secondary data;G e � 7�8�7 -8 is � times the sample covariance matrix of
the primary data.

The results of the above proposition require some comments. First
of all we point out that the maximal invariant statistic has a pre-
cise geometrical interpretation; in fact, its elements represent the
lengths of the semi-axes of the hyperhellipsoid f defined asf �hg _a` bd e _a` bdji � k i k#���ml
where, in turn,

k i k
denotes the Euclidean norm of a complex vec-

tor [13][pp. 72]. Moreover, we explicitly note that the maximal
invariant statistic for the problem at hand is S -dimensional. Thus,
if S5n � , no UMPI test exists [6]. On the contrary, when � �'� ,
the rank of the matrix

_ ` bd e _ ` bd reduces to one and, as a con-
sequence, the maximal invariant turns out to be the non-zero eigen-
value [
! �E� S H _ ` bdJe _ ` bd I � � - ! _ ` ! � ! �
where

� S H 4 I denotes the trace of a square matrix. In this specific
case, the statistic coincides with the one proposed in [9] which has
also been shown to be UMPI.

As to the statistical characterization of the maximal invariant,
we note that it is possible to determine the joint probability den-
sity function of the ordered [\! ��
�
�
�� [^] , either under ��� and �"! .
Moreover, it can be shown that the distribution under �W! depends
only upon the reduced set of parameters o � H pq! ��
�
�
�� p�rcI (in-
duced maximal invariant), where p�s , V"�t�	��
�
�
�� � , denote the
roots of the determinantal equation u�vwv -yx p 1 u �{z , andv � , % ! ��
�
�
���% 9(/ .

Finally, we observe that the amount of work required for the
evaluation of the maximal invariant is |�H � �~}�I��W|�H � �Z}�I float-
ing point operations (flops) ! .! Herein we use the usual Landau notation �a� ��� ; hence, an algorithm
is �a� ��� if its implementation requires a number of flops proportional to �
[13].



3. MAXIMAL INVARIANT BASED DECISION RULES

The lack of an UMPI test for the most general case of S�n �
suggests to investigate invariant decision rules based upon several
criteria. First we focus on two different GLRT-based design proce-
dures since they often lead to invariant detectors. More precisely,
we consider one-step and two-step GLRT strategies. The former,
proposed by Kelly and Forsythe [4], is tantamount to replace the
unknown parameters in the conditional likelihood ratio with their
maximum likelihood estimates, under each hypothesis, based upon
the entirety of data [14]. The latter, instead, first assumes that the
covariance matrix

1
is known and derive the GLRT maximizing

the Likelihood Ratio over the unknown signatures of the signal
(step 1). Then, after the GLRT is derived, the sample covariance
matrix based upon secondary data is inserted, in place of the true
covariance matrix, into the test (step 2). We highlight that this pro-
cedure leads, in general, to simpler decision rules, which, as shown
in [2] (for point-like target and coherent detection) and in [15] (for
the case of distributed targets and coherent detection), may achieve
higher detection probabilities than the one-step GLRT. It can be
shown that the plain GLRT and the two-step GLRT-based design
procedure lead to ]���� ! H � � [ � I �"!n���� � (5)

and ]� ��� ! [ � �"!n���� � � (6)

respectively, and, hence, they turn out to be invariant.
We also deal with another two maximal invariant detectors,

known in the statistical literature as the spectral norm test and the
Pillai-Bartlett trace test [6], i.e.���
	��� !�� 
 
 
 � ] [ � �"!n�

��� � (7)

and ]� ��� ! [ �� � [ � �"!n���� � � (8)

respectively. It can be shown that the latter can be derived resorting
to a modified two-step GLRT design procedure where the step 1
coincides with that of the conventional two-step procedure. The
second step, instead, relies upon the estimation of the covariance
matrix M based upon the entirety of data and assuming that the
hypothesis ��� is in force.

Finally, we observe that, if a UMP invariant test exists, i.e.
� ��� , all of the above > -invariant decision rules collapse into
the same test, namely the one based on the non-zero eigenvalue of_ `cbd e _ `cbd , which, as mentioned before, is UMP invariant.

4. PERFORMANCE ASSESSMENT

In this section we discuss the performance of the maximal invari-
ant based receivers introduced in Section 3. First of all it can be
shown that the tests (5), (6), and (8) are asymptotically equiva-
lent when the number of secondary data � becomes increasingly
large. Moreover, the asymptotic ��
�� and Probability of detection
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Figure 1: ��� versus SNR of the detectors (5) (solid curve), (6)
(dotted curve), (7) (dashed curve), and (8) (dash-dot curve), for
� ��� , � ��� , � ����� , � �2zj
 � , ����� �2zj
 � , � 
�� �*��z `�� , and
signal model 1.

( ��� ) coincide with those of the GLRT for known covariance ma-
trix, and are given by

� 
�� ��� `�� d r 9 ` !�  � � �!�"$# � %'&
 �

(9)

and

��� �)( r 9+*,.-//0 9� ��� ! % -� 1 ` ! % � �21 �435 � (10)

where
( r 9 H 4 � 4 I denotes the Marcum 6 -function.

However, for finite � , the performance of the detectors (5),
(6), (7), and (8) depend upon the number of available secondary
data. It is thus of interest to study the behavior of ��
�� and ��� for
finite values of � . To this end we resort to numerical simulations
based upon the Monte Carlo counting technique. More precisely,
� 
�� and ��� are estimated using ! � �798;: and ! � �7�< independent trails

respectively, and in order to limit the computational burden we fix
� 
�� � ��z `�� . The disturbance covariance matrix, we consider, is
exponentially-shaped, i.e.1 ��k(T s��  k�� %
= } k �?> s `  > k � � n z
where

= } is the common variance of the noise quadrature compo-
nents and � is the one-lag correlation coefficient. As to the useful
signal, instead, we suppose that

% � ’s,
�c� �	��
�
�
�� � are indepen-

dent, zero-mean, complex Gaussian vectors with covariance ma-
trix
1 ��� �)@ � e ��� , where the

@ � ’s account for the distribution
of the signal energy among the primary data and the normalized
covariance

e ��� is exponentially-shaped with one-lag correlation
coefficient ����� . In Figure 1 the ��� of the proposed detectors is
reported versus the average A �CB , i.e.A �CB � +ED 9� ��� ! % -� 1 ` ! % ��F �E� S H e ��� 1 ` ! I 9� ��� ! @ � �



Signal
Model

Data Number

1 2 3 4
1 1/4 1/4 1/4 1/4
2 1 0 0 0

Table I: distribution of signal energy,
@ �

� 9��� ! @ � , �����	��
�
�
�� � .
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Figure 2: ��� versus SNR of the detectors (5) (solid curve), (6)
(dotted curve), (7) (dashed curve), and (8) (dash-dot curve), for
� ��� , � ��� , � ����� , � ��zj
 � , ����� ��zj
 � , � 
�� ����z `�� , and
signal model 2.

for � 
�� �)��z `�� , � ��� , � � � , � ����� , � �hzj
 � , ����� �hzj
 � ,
and signal model 1 (see Table I). The figure shows that, for the
parameters value chosen, detectors (5), (6), and (8) achieve almost
the same performance and outperform the receiver (7). Figure 2,
instead, refers to � 
�� ����z `�� , � � � , � ��� , � � ��� , � ��zj
 � ,����� �Mzj
 � , and signal model 2. In this case the spectral norm
test performs better than the other detectors. Moreover, inspection
of the figures and simulation results not reported here for the lack
of space, clearly highlight that the performance depends upon the
signal model being in force.

5. CONCLUSIONS

In this paper we have addressed the detection of a multidimen-
sional signal in a background of Gaussian noise with unknown
covariance. In order to come up with fully CFAR receivers we re-
sorted to the principle of invariance. Since no UMPI test exists, we
have introduced and assessed several maximal invariant based re-
ceivers. Simulation results have highlighted that the performances
depend upon the distribution of the signal energy among the pri-
mary data, but, for a given signal configuration, the loss between
the different detectors is no more than about 3 dB. From a pre-
liminary analysis of a wider class of results, collected for various

configurations of primary and secondary data, we observe that the
GLRT receiver performs better than the others in the case of uni-
form distribution of the signal energy. Conversely, in the case of
concentrated energy, the spectral norm test guarantees the high-
est performance. In conclusion, none of the receivers is uniformly
better than the others, but some knowledge about the distribution
of the signal energy allows a proper selection among the proposed
detectors.
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