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ABSTRACT

Thispaperdescribestwo enhancementsto our languageiden-
tificationsystem.Compositebackground(CBG) modelingallows
usto identify target languagespeechin anenvironmentwherela-
beledbackgroundtrainingdatais unavailableor limited. Instead
of separatemodelsfor eachof the backgroundlanguages,a sin-
glecompositebackgroundmodelis createdfrom all thenon-target
training speech.Generally, the CBG systemperformedaboutas
well asa baselinesystemcontaininga separatemodelper back-
groundlanguage.The averageequalerror ratefor 12 CBG tests
was13.6%versus13.4%for thebaseline.Wehavealsodeveloped
andtesteda standardizedconfidencescoringfunctionbasedon a
single-layerperceptronwhich hasproven to becapableof robust
modelingof scoredistributions.

1. INTRODUCTION

As speechrecognitionsystemsproliferateat locationsfrequented
by speakers of many languages(e.g.hotel lobbies,international
airports), languageidentification(LID) systemswill be usedas
preprocessorstodeterminehow to routeutterancesfor speechrecog-
nition. We have reportedpreviously that our PhonemeRecogni-
tion followedbyLanguageModelingperformedin Parallel(PRLM-
P) systemprovidesstate-of-the-artlanguageidentificationperfor-
manceon conversational,telephonespeech[1]. In this paper, we
describea compositebackground(CBG) modelthat canbe used
effectively in placeof multiple single-languagebackgroundlan-
guagemodels.We alsodiscusswaysof producinga standardized
confidencescore.

Therestof thepaperis organizedasfollows: Sections2 and3
review thePRLM-PalgorithmandCALLFRIEND speechcorpus,
respectively. Section4 introducescompositebackgroundmodels
andreportsontheirperformancecomparedto conventionalsingle-
languagemodels. The standardizedconfidencescorefunction is
describedin Section5. Finally, wedraw someconclusionsin Sec-
tion 6.

2. LANGUAGE ID ALGORITHM

Becausethe basicPRLM-PLID algorithmhasbeendescribedin
detailelsewhere([1],[2]), weonly provideaquicksummaryhere.

2.1. Basic Algorithm

Figure1 shows a block diagramof the PRLM-P system.HMM-
basedphonerecognizersaretrainedusinga phoneticallylabeled
subsetof the OGI training speech[3] in eachof six languages:
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English,German,Hindi, Japanese,Mandarin,andSpanish.Each
phonerecognizertakesasinput a streamof mel-weightedcepstra
and delta cepstracomputedfrom the incoming digitized speech
andproducesa streamof phonesymbolsasoutput. Interpolated
n-gramlanguagemodels(LMs) designedto capturethephonotac-
tic statisticsof eachlanguagearecreatedby passingthe training
speechfor eachof the languagesto be recognizedthrougheach
of thesix front-end(FE) phonerecognizersandrecordingtheun-
igram andbigramcounts. Thoughwe canonly build FE phone
recognizersin languagesfor which we have orthographicallyor
phoneticallytranscribedspeech,we canusethe PRLM-Psystem
to performLID evenon languagesfor which no orthographically
or phoneticallytranscribedspeechis available.

2.2. Combining Scores

The final likelihoodscoresfor eachlanguagefor eachutterance
canbecalculatedany numberof ways. Thesimplestapproachis
to setthelog likelihoodthattheutteranceis spokenin language

�
equalto thearithmeticsumof thelog likelihoodsemanatingfrom
eachof thesix n-grammodelsfor language

�
. Theunderlyingas-

sumptionof thissimpletechniquefor combiningthescoresis that
thevariousphonerecognizersandcorrespondinglanguagemodels
operateindependentlyfrom oneanother. Summingthe log like-
lihoodsis equivalentto multiplying linear likelihoods,andmulti-
plying the linear likelihoodsis appropriateif eventsareindepen-
dent.Althoughthiswasourapproachthrough1995,wehavesince
adoptedthestrategy usedby Yan[4], wherebyweconsiderthelin-
earlikelihoodsoutputby thevariouslanguagemodelsaselements
of a featurevector. If thereare ��� FEphonerecognizersand ���
languagesto recognize,thenthereare � ��� � � elementsin the
featurevector. During developmenttrainingandtesting,we train��� Gaussianmodelswith the multi-dimensionalmeanandvari-
anceof theselikelihoodfeaturevectors.During final (evaluation)
testing,wecomputethelikelihoodgiveneachlanguageandselect
asour languagehypothesisthat languagewhoseGaussianmodel
yields the highestlikelihood. We usually usea diagonal,grand
covariancematrix,meaningthatall modelssharethesamecovari-
ancematrix that hasnon-zeroelementsonly along its diagonal.
Presumablywe would obtainbetterperformancewith language-
dependent,full-covariancematrices,but we rarely have enough
developmentdatato estimatesomany parametersaccurately.

3. CALLFRIEND SPEECH CORPUS

The Linguistic Data Consortium(LDC) CALLFRIEND corpus
containsspeechfor 12languagescollectedfrom telephoneconver-
sationsbetweenfriends.Weusedthetrainingpartitionto build the
LMs, the developmentpartition to createGaussianbackend and
scorestandardizationmodels,and the 30-secsegmentsfrom the
evaluationpartition for testing. English,Mandarin,andSpanish
hadapproximately160testsegmentseach.Theother9 languages
hadapproximately80 testsegmentseach.
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Fig. 1. ThePRLM-Palgorithm.

4. COMPOSITE BACKGROUND LANGUAGE MODELS

In someLID applications,testutterancesmay be spoken in lan-
guagesfor whichadequatetrainingdatais notavailable.Thisleads
usfrom conventionalclosed-setforced-choicelanguageidentifica-
tion towardslanguageverification. For example,if a LID system
is usedasa front-endto a bankof speechrecognizers,the LID
outputshouldindicatewhetherthe speechutteranceis spoken in
oneof the“target” languages(i.e.,oneof thelanguagesfor which
we have a speechrecognizeravailable)or is spoken in a “back-
ground” language(i.e., a languagewhich is not oneof the target
languages).

In languageverificationapplications,it is clearthatweneeda
modelfor eachtargetlanguage.However, wehaveat leasttwo op-
tionsfor modelingthebackground.In theconventionalapproach,
we build a separateLM for eachbackgroundlanguage.This is
especiallyappropriatewhenwe have enoughdataandknowledge
to trainaseparateLM for eachpossiblebackgroundlanguagethat
couldoccurduringtesting.However, in caseswhenwe eitherdo
not have enoughtrainingdatafor individual backgroundLMs, or
whenwe do not have enoughknowledgeto identify all possible
backgroundlanguages,we proposea secondapproachthatusesa
compositebackground(CBG) model, i.e., a singlemodel that is
trainedfrom all the(unlabeled)backgrounddata.

4.1. CBG Versus Conventional Background Models

In our baselinesystem(Figure1), training datais usedto build
LMs for theindividual targetandbackgroundlanguagesexpected
in the test data. Our goal is to determineif one CBG model,
built from unlabeledbackgroundtraining data,can be as effec-
tive as a baselinesystemthat usesindividual backgroundLMs,
oneper backgroundlanguage.A CBG systemthatperformedas
well asthebaselinesystemwould offer severaladvantages.First,
lesseffort and expertisewould be requiredto label the training
databecauseonly the target speechwould needto be identified.
Any speechthat is not target is labeledasbackground.Secondly,
in caseswherebackgroundtraining speechis limited, additional
partitioningfor trainingseparatebackgroundLMs might resultin
undertrainedmodels,whereasoneCBG modelwould useall the
backgroundtrainingspeech.Finally, thesingleCBGmodelwould
save a modestamountof CPUrun time over usingmultiple back-
groundmodels. Thoughwe areinterestedin the generalcaseof
multiple targetsand multiple backgroundlanguages,the experi-
mentsrunsofarhaveusedonly asingletargetlanguagewith mul-
tiple backgroundlanguages.

4.2. Experiments and Results

In orderto determinehow effective andhow robustCBGLMs are
comparedto separatebackgroundLMs, a setof experimentswas
run wherewe variedthelanguages,thenumberof languages,and
the amountof training for the backgroundlanguages.In all our

�
Target-BG1-BG2

�
Target-BG1-BG2

1 Ara-Fre-Jap 11 Far-Ara-Tam
2 Ara-Fre-Tam 12 Far-Eng-Spa
3 Ara-Ger-Man 13 Far-Eng-Vie
4 Ara-Kor-Spa 14 Far-Fre-Ger
5 Ara-Man-Vie 15 Far-Ger-Jap
6 Eng-Ara-Far 16 Hin-Ara-Jap
7 Eng-Ara-Spa 17 Hin-Far-Fre
8 Eng-Hin-Jap 18 Hin-Fre-Vie
9 Eng-Hin-Vie 19 Hin-Ger-Man
10 Eng-Tam-Vie 20 Hin-Jap-Tam

Table 1. Initial 20 “Target-BG1-BG2”testsuite indices. Target
languages:Arabic, English,Farsi, Hindi. BG languages:all 12
CALLFRIEND languages.

CBGexperimentsweusedfour targetlanguages(Arabic,English,
Farsi, andHindi), testingeachtarget languageseparatelyagainst
a varietyof randomlyselectedbackgroundlanguagesets.Table1
lists the 20 testsuitesusedin our initial CBG experiment. Each
targetlanguagewascombinedfivetimeswith twobackgroundlan-
guagesto makeup the20 testsuites.Thisallowedusto determine
if performancewasdependentonthespecifictargetor background
languages.

To evaluateCBG LMs, we comparedthe performanceof the
CBG systemwith its corresponding“baseline”systemin which
eachbackgroundlanguagewasmodeledexplicitly. Performance
wasmeasuredby computingthe equalerror rate(EER), i.e., the
point in thereceiver operatingcurve wherethefractionof misses
is equalto thefractionof falsealarms.Whenwechecktheperfor-
manceof theCBG or baselinesystemwe only measureits ability
to distinguishtargetfrombackgroundspeech,i.e.,wearenotinter-
estedin discriminatingamongthevariousbackgroundlanguages.

4.2.1. Initial 20TestSuites

Figure2 comparesbaselineandCBG EERsfor the20 testsuites.
Generally, theCBG systemperformedaboutaswell asthebase-
line. The averageEER for the 12 CBG testswas13.6%versus
13.4%for thebaseline.As thechartshows,performanceis highly
dependenton the target language.For example,the five results
with Englishasa target language(indices6-10) wereamongthe
bestscores,whereasthe five Hindi target results(indices16-20)
were all amongthe worst scores. This target-dependentperfor-
mancewasobservedfor boththebaselineandCBGresults.
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4.2.2. IncreasingtheNumberof BackgroundLanguages

Using the samefour target languages,we ran five more experi-
mentspertargetlanguagewhereweincreasedthenumberof back-
groundlanguagesfrom 3 to 7. Again,wefoundresultsto becom-
parablebetweenthebaselineandCBGsystemsandmostlydepen-
denton thetargetlanguage.Also therewasaslightdegradationin
performanceasmoreBG languageswereadded.Overall, theav-
erageEERwas15.8%for theCBGversus15.3%for thebaseline.

8 Language CBG Model Vs Test BG Set
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Fig. 3. CBG modelswith extraneoustraining.

4.2.3. CBGLMsWith ExtraneousTraining

WealsotrainedoneCBGwith all eightbackgroundlanguagesand
thenvariedthe backgroundtestsetto include1 to 7 of theback-
groundlanguagesin the CBG model. We wantedto seeif per-
formancewasaffectedwhenBG trainingdataincludedextraneous
languagesnot encounteredin testing.Figure3 shows thatperfor-
mancefor threeof thefour target languagesis unaffectedaslong
asthetestlanguagesetcomprisesat least4 (50%)of thelanguages
usedto train theCBG.

4.2.4. CBGLMsWith DisproportionateTraining

We measuredhow critical the proportionsof training speechare
for two backgroundlanguages.Using four testsuites,eachcon-
sistingof one target and two backgroundlanguages,we trained
usingall of thefirst background( ����� ) trainingdatawhile vary-
ing theproportionof thesecondbackground( ����� ) trainingdata
for the CBG model. Figure4 shows that performancedegraded
for all four target testsuiteswhen the ����� proportionof train-
ing was lessthan about30% of the total training. Note that as
we decreasedtheamountof ����� training,we alsodecreasedthe
amountof overall trainingfor theCBGLM, andit is notclearwhat
effect thatalonewouldhavehad.

4.2.5. CBGLM With Target Speech Training

Giventhatperformancewasfairly robustevenwhentheCBGtrain-
ing mix did notmatchthebackgroundtestmix, we triedonemore
mismatchexperimentwherewe includedtargettrainingspeechin
the CBG LM. We usedour original 20 test suites(Table1) and
comparedtheEERfor eachtestsuitewith andwithouttargettrain-
ing. Eventhoughthetargettrainingmadeup33%of thetotalCBG
training,it did notdegradeperformance:13.7%EERfor theCBG
with targettrainingvs. 13.6%for theCBGwithout targettraining.

4.2.6. CBGPlusGaussianBackend

All ourexperimentsto thispointcomparedbaselineandCBGsys-
temswithout a GaussianBackend(GBE). Becausethe PRLM-P

EER Vs Proportion BG2 Training

0%

5%

10%

15%

20%

25%

30%

0% 10% 20% 30% 40% 50%

BG2 Proportion of Training

E
E

R

AraGerMan
EngHinVie
FarEngSpa
HinFarFre
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Baseline CBG
Without GBE 15.3% 15.8%
With GBE 13.2% 15.3%

Table 2. GBE PerformanceImprovement:BaselineversusCBG.
Averageof 20 testswith 3 to 7 backgroundlanguages.

GBE usesall theFEphonerecognizerLM scoresasinputs[1], we
werecuriousto seeif the reductionof inputs to the GBE in the
CBG systemwould affect its performance.TheGBE in our CBG
test systemswould alwaysonly have 12 inputs: two LM scores
(targetandCBG) from eachof thesix FEs.However, with six FE
phonerecognizersand ��� LMs (target � background)the GBE
in the baselinewould have � � � � inputs. Using the same20
testsuiteswherewe increasedthe backgroundlanguagesfrom 3
to 7 for our four targetlanguages(Section4.2.2),we rescoredthe
baselineandCBG systemswith our GBE.TheGBEsin theCBG
systemshad12 inputs,whereasthe baselineGBEshad24 to 48
inputs.

As Table2 shows, with the GBE, the CBG systemonly im-
provedits overall EERto 15.3%from 15.8%withouta GBE.The
baselinesystem,saw a bigger improvement: 13.2%with a GBE
comparedto 15.3%without a GBE. Theresult is consistentwith
our experiencethatadditionalLM scoresusuallyhelptheGBE.

5. STANDARDIZED SCORES: GAUSSIAN VERSUS A
SINGLE-LAYER PERCEPTRON MODEL

In many languageverificationproblems,we would like the LID
systemto outputa confidencescoreassociatedwith a particular
hypothesis.The rangeof this scoreshouldbe between0 and1,
andit shouldreflectthesystem's estimateof thelikelihoodthatits
hypothesisis correct.Experiencehasshown thatLM likelihoods,
LM likelihoodratios,GBE likelihoodsandGBE likelihoodratios
cannotprovide,in their raw form, thisconfidenceinformation.We
describebelow two approachesto producingconfidencescores:
Gaussianmodelingandsingle-layerperceptronmodeling.Bothof
theseapproachesrequiretraining.

5.1. Gaussian Models

Standardizedscorescanbe obtainedby modelingthe log likeli-
hoodratios(LLRs) usingGaussianprobabilitydensities���������! 
for target( " ) andbackground( ��� ) scores:

# � �$�&%('  �)*�+��� ' ��� '  (1)



# � �$�&%-,/.  &)0����� ,1. ��� ,/.  (2)

Estimatesof thedensityparametersareobtainedby usinga setof
developmenttargetandbackgroundmessages.

Givenanunknown messageandits targetLM LLR, thestan-
dardizedconfidencescoreis derived by the posteriorprobability
of thetargetlanguage:

2!3547678 )
#!' �:9; # 6 ��"� #!' �:9< # 6 ��"= ;� # ,1. �:9< # 6 �>���� (3)

where
# 6 ��"= and

# 6 �>���� aretheapriori probabilitiesfor thetar-
getandBG messages.

The Gaussianmodel works well when the backgroundand
targetscoredistributionsareGaussianandhave comparablevari-
ances. If, however, a distribution is skewed or the variancesare
not comparable,the Gaussianmodelcando a poor job mapping
the scores,especiallynearthe tails. In somecasesthe Gaussian
modelcreatesa non-monotonicmappingwith theundesirableef-
fect thathighLLR scoresmapto low standardscores.

5.2. Single-Layer Perceptron Model

We have developeda new model for computingposteriorscores
thatusesasingle-layerperceptron(SLP).Comparedto aGaussian
classifier, an SLP classifier[5] hastwo main advantages.First,
the SLP is modelingthe observed posteriorprobability directly
whereastheGaussianmethodusestwo modelsto derive thepos-
terior probability. Secondly, SLPs(no hiddenlayers)guaranteea
monotonicrelationshipbetweeninput (in our case,the likelihood
ratioscores)andoutput(thestandardscores).

5.3. CALLFRIEND Hindi Example

To illustratetheadvantagesof thenew SLPmodelover theGaus-
sian, considerthe caseof trying to detectCALLFRIEND Hindi
from asetof 11 backgroundlanguages.Figure5 shows how LLR
scoresfrom developmentdataareusedto createa Gaussianmap-
ping to thestandardconfidencescores.Thetwo jaggedcurvesare
theactualhistograms(percent)of Hindi LLRs showing thetarget
(diamonds)and background(triangles)scoredistributions. The
two smoothcurvesarethecomputedGaussianmodelsfor thedata.
In this example,prior probabilityof the targetwasapproximately
8% (1 of 12 languages).As canbe seen,the backgrounddistri-
bution is non-Gaussian,resultingin abackgroundGaussianmodel
tail thatexceedsthedatacurve it attemptsto model.
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Themeasuredtargetposteriorscore,computedfrom thetarget
andbackgroundhistograms,is shown asthecurvemarkedwith di-
amondsin Figure6 . TheGaussianposteriorscore,computedus-
ing equation3 andtheGaussiansof Figure5 is shown in Figure6
by the curve marked with squares.We canseethat the Gaussian
posteriormodeldoesa poor job of modelingthe actualposterior
datadueto theill-effectsof thebackgroundGaussianmodel.
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Using the sameinput scores,an SLPmodelwasalsotrained
for Hindi. As seenin Figure6 theSLPmodel(shown asthecurve
with triangles)is both monotonicand mapsthe tail LLR scores
well. Althoughnotshown here,theSLPmodelworkedwell across
all theCALLFRIEND languages.

6. CONCLUSIONS

CBG LMs areeffective androbust. Without GaussianBEs, they
performedcomparablyto a baselinesystemwith individual back-
groundmodelsover a varietyof languages.Performancewasnot
affectedbysmallmismatchesin trainingversustestlanguagemixes.
Evenincludingtargetspeechin theCBG trainingdid not degrade
performance. Adding GaussianBEs improved performancefor
bothsystems,but thebaselinesystemsaw a biggerimprovement,
likely dueto its richersetof inputs.CBGLID systemscanbeuse-
ful whenbackgroundtraining datais unlabeledor whenthereis
insufficientdatato build separatebackgroundLMs.

Our experimentsshowed that the SLP standardizationmodel
is morerobustthanGaussianstandardization.In addition,it guar-
anteesthedesiredmonotonicmappingof LLR scoresto thestan-
dardizedconfidencescores.
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