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ABSTRACT

This paperdescribeswo enhancement® our languageden-
tification system.Compositebackground CBG) modelingallows
usto identify targetlanguagespeectin anervironmentwherela-
beledbackgroundraining datais unavailableor limited. Instead
of separatanodelsfor eachof the backgroundanguagesa sin-
gle compositebackgroundnodelis createdrom all thenon-taget
training speech.Generally the CBG systemperformedaboutas
well asa baselinesystemcontaininga separatanodel per back-
groundlanguage.The averageequalerror ratefor 12 CBG tests
was13.6%versusl 3.4%for thebaseline We have alsodeveloped
andtesteda standardizeaonfidencescoringfunction basedon a
single-layemperceptrorwhich hasprovento be capableof robust
modelingof scoredistributions.

1. INTRODUCTION

As speectrecognitionsystemgroliferateat locationsfrequented
by speakrs of mary languagege.g. hotel lobbies,international
airports), languageidentification (LID) systemswill be usedas
preprocessott® determinénow to routeutterance$or speechiecog-
nition. We have reportedpreviously that our PhonemeRecogni-
tionfollowedby L anguagé/ odelingperformedn Parallel(PRLM-
P) systemprovidesstate-of-the-artanguagedentificationperfor
manceon cornversationaltelephonespeecH1]. In this paperwe
describea compositebackground CBG) modelthat canbe used
effectively in placeof multiple single-languagéackgroundan-
guagemodels.We alsodiscusswvaysof producinga standardized
confidencescore.

Therestof the paperis organizedasfollows: Sections2 and3
review the PRLM-PalgorithmandCALLFRIEND speectcorpus,
respectrely. Section4 introducescompositebackgroundnodels
andreportsontheir performance&omparedo conventionalsingle-
languagemodels. The standardizeadonfidencescorefunction is
describedn Section5. Finally, we drav someconclusionsn Sec-
tion 6.

2. LANGUAGE ID ALGORITHM

Becausedhe basicPRLM-P LID algorithmhasbeendescribedn
detailelsavhere([1],[2]), we only provide aquick summaryhere.

2.1. Basic Algorithm

Figure1 shavs a block diagramof the PRLM-P system.HMM-
basedphonerecognizersaretrainedusinga phoneticallylabeled
subsetof the OGI training speech3] in eachof six languages:
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English,German Hindi, Japaneseéylandarin,and Spanish.Each
phonerecognizetakesasinput a streamof mel-weighteccepstra
and delta cepstracomputedfrom the incoming digitized speech
and producesa streamof phonesymbolsasoutput. Interpolated
n-gramlanguagemodels(LMs) designedo capturethe phonotac-
tic statisticsof eachlanguageare createdby passingthe training

speechfor eachof the languagego be recognizedhrougheach
of the six front-end(FE) phonerecognizerandrecordingthe un-

igram and bigram counts. Thoughwe canonly build FE phone
recognizerdn languagedor which we have orthographicallyor

phoneticallytranscribedspeechwe canusethe PRLM-P system
to performLID evenon languagegor which no orthographically
or phoneticallytranscribedspeechis available.

2.2. Combining Scores

The final likelihood scoresfor eachlanguagefor eachutterance
canbe calculatedarny numberof ways. The simplestapproacthis
to setthelog likelihoodthatthe utterances spolenin languagel
equalto thearithmeticsumof thelog likelihoodsemanatingrom
eachof thesix n-grammodelsfor languagel.. Theunderlyingas-
sumptionof this simpletechniquefor combiningthe scoress that
thevariousphonerecognizerg&ndcorrespondinéganguagenodels
operateindependentlffrom one another Summingthe log like-
lihoodsis equivalentto multiplying linear lik elihoods,and multi-
plying the linear likelihoodsis appropriatef eventsareindepen-
dent.Althoughthiswasourapproachhrough1995,we have since
adoptedhestratgy usedby Yan[4], wherebywe consideithelin-
earlikelihoodsoutputby the variouslanguagenodelsaselements
of afeaturevector If thereare Nr FE phonerecognizer&and Nt
languagedo recognizethenthereare Ny x N elementsn the
featurevector During developmenttraining andtesting,we train
N1 Gaussiarmodelswith the multi-dimensionaimeanand vari-
anceof theselik elihoodfeaturevectors.During final (evaluation)
testing,we computethe likelihoodgiveneachlanguageandselect
asour languagenhypothesighat languagevhoseGaussiarmodel
yields the highestlikelihood. We usually usea diagonal,grand
covariancematrix, meaninghatall modelssharethe samecovari-
ancematrix that hasnon-zeroelementsonly alongits diagonal.
Presumablywe would obtain betterperformancewith language-
dependentfull-covariancematrices,but we rarely have enough
developmentdatato estimatesomary parametersccurately

3. CALLFRIEND SPEECH CORPUS

The Linguistic Data Consortium(LDC) CALLFRIEND corpus
containsspeechor 12languagesollectedfrom telephoneonver-
sationsbetweerfriends.We usedthetrainingpartitionto build the
LMs, the developmentpartition to createGaussiarbaclend and
scorestandardizatioimmodels,and the 30-secsegmentsfrom the
evaluationpartition for testing. English, Mandarin,and Spanish
hadapproximatelyl 60testsegmentseach.The other9 languages
hadapproximatel\80 testsggmentseach.
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Fig. 1. ThePRLM-Palgorithm.

4. COMPOSITE BACKGROUND LANGUAGE MODELS

In someLID applicationstestutterancesnay be spolen in lan-
guagesor whichadequaté¢rainingdatais notavailable. Thisleads
usfrom corventionalclosed-setorced-choicdanguagédentifica-
tion towardslanguageverification. For example,if aLID system
is usedasa front-endto a bankof speechrecognizersthe LID
outputshouldindicatewhetherthe speechutterances spolenin
oneof the“target” languagesi.e., oneof thelanguage$or which
we have a speechrecognizeravailable) or is spolenin a “back-
ground”languagg(i.e., a languagewhich is not oneof the target
languages).

In languageverificationapplicationsit is clearthatwe needa
modelfor eachtargetlanguageHowever, we have atleasttwo op-
tionsfor modelingthe backgroundln the conventionalapproach,
we build a separatdM for eachbackgroundanguage. This is
especiallyappropriatevhenwe have enoughdataandknowledge
to trainaseparatéM for eachpossiblebackgroundanguagehat
could occurduringtesting. However, in casesvhenwe eitherdo
not have enoughtraining datafor individual background_Ms, or
whenwe do not have enoughknowledgeto identify all possible
backgroundanguageswe proposea secondapproactthatusesa
compositebackground CBG) model, i.e., a singlemodelthatis
trainedfrom all the (unlabeledbackgroundiata.

4.1. CBG Versus Conventional Background Models

In our baselinesystem(Figure 1), training datais usedto build

LMs for theindividual targetandbackgroundanguagexpected
in the testdata. Our goal is to determineif one CBG model,
built from unlabeledbackgroundtraining data, can be as effec-
tive as a baselinesystemthat usesindividual backgroundLMs,

oneper backgroundanguage.A CBG systemthat performedas
well asthe baselinesystemwould offer several advantagesFirst,

lesseffort and expertisewould be requiredto label the training
databecausennly the tamget speechwould needto be identified.
Any speechthatis nottamgetis labeledasbackground.Secondly
in caseswherebackgroundraining speechis limited, additional
partitioningfor training separatdackground-Ms might resultin

undertrainednodels,whereasone CBG modelwould useall the
backgroundrainingspeechFinally, thesingleCBG modelwould

sare amodestamountof CPU runtime over usingmultiple back-
groundmodels. Thoughwe areinterestedn the generalcaseof

multiple targetsand multiple backgroundanguagesthe experi-
mentsrun sofar have usedonly a singletargetlanguagewvith mul-

tiple backgroundanguages.

4.2. Experimentsand Results

In orderto determinehow effective andhow robustCBG LMs are
comparedo separatdackground_Ms, a setof experimentsvas
run wherewe variedthelanguagesthe numberof languagesand
the amountof training for the backgroundanguages.In all our

| ¢ Target-BG1L-BG2 | ¢ Target-BG1-BG2 |

T Ara-Fre-Jap | IT Far-Ara- Tam
2 Ara-Fre-Tam | 12 Far - Eng- Spa
3 Ara-CGer-Man | 13 Far-Eng-Vie
4 Ara-Kor-Spa | 14 Far - Fre- Ger
5 Ara-Man-Vie | 15 Far-Ger-Jap
6  Eng- Ara- Far 16 Hin-Ara-Jap
7 Eng-Ara-Spa | 17 Hin-Far-Fre
8 Eng-Hn-Jap |18 Hin-Fre-Vie
9 Eng-Hn-Vie |19 Hin-Ger-Mn

10 Eng-TamVie |20 Hin-Jap-Tam

Table 1. Initial 20 “Tamget-BG1-BG2"testsuiteindices. Tamget
languages:Arabic, English, Farsi, Hindi. BG languagesall 12
CALLFRIEND languages.

CBG experimentsve usedfour targetlanguagegArabic, English,
Farsi, and Hindi), testingeachtamget languageseparatelyagainst
avariety of randomlyselectecdhackgroundanguagesets.Table1
lists the 20 testsuitesusedin our initial CBG experiment. Each
targetlanguagevascombinedive timeswith two backgroundan-
guagedo make up the20testsuites.This allowedusto determine
if performancevasdependenbnthespecifictargetor background
languages.

To evaluateCBG LMs, we comparedhe performanceof the
CBG systemwith its correspondindbaseline” systemin which
eachbackgroundanguagewas modeledexplicitly. Performance
was measuredy computingthe equalerror rate (EER), i.e., the
pointin therecever operatingcurve wherethe fraction of misses
Is equalto thefractionof falsealarms.Whenwe checkthe perfor
manceof the CBG or baselinesystemwe only measurats ability
to distinguishtargetfrom backgroundpeechi.e.,wearenotinter
estedn discriminatingamongthevariousbackgroundanguages.

4.2.1. Initial 20 TestSuites

Figure2 comparedaselineand CBG EERsfor the 20 testsuites.
Generally the CBG systemperformedaboutaswell asthe base-
line. The averageEER for the 12 CBG testswas 13.6%versus
13.4%for thebaseline As the chartshaws, performances highly

dependenbn the target language. For example, the five results
with Englishasatamgetlanguaggindices6-10) wereamongthe
bestscoreswhereaghe five Hindi tamget results(indices16-20)
were all amongthe worst scores. This target-dependenperfor

mancewasobseredfor boththebaselineandCBG results.
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Fig. 2. Twenty TestSuiteResults:BaselineVs. CBG



4.2.2. Increasingthe Numberof BadkgroundLanguaes

Using the samefour target languageswe ran five more experi-
mentspertargetlanguagavherewe increasedhe numberof back-
groundlanguage$rom 3 to 7. Again, we foundresultsto becom-
parablebetweerthebaselineandCBG systemsandmostlydepen-
dentonthetargetlanguageAlso therewasaslight degradationn
performanceasmore BG languagesvereadded.Overall, the av-
erageEERwas15.8%for the CBG versusl5.3%for thebaseline.

8 Language CBG Model Vs Test BG Set
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Fig. 3. CBG modelswith extraneousgraining.

4.2.3. CBGLMsWth Extraneouslraining

We alsotrainedoneCBG with all eightbackgroundanguagesnd
thenvariedthe backgroundestsetto include 1 to 7 of the back-
groundlanguagesn the CBG model. We wantedto seeif per
formancewasaffectedwhenBG trainingdataincludedextraneous
languagesiot encounteredh testing. Figure3 shaws that perfor
mancefor threeof the four tamgetlanguagess unafectedaslong
asthetestlanguagesetcomprisestleast4 (50%)of thelanguages
usedto trainthe CBG.

4.2.4. CBGLMsWith DisproportionateTraining

We measurechow critical the proportionsof training speechare
for two backgroundanguages.Using four testsuites,eachcon-
sisting of one tamget and two backgroundanguagesyve trained
usingall of thefirst background BG1) training datawhile vary-
ing the proportionof the seconcbackground BG2) training data
for the CBG model. Figure4 shavs that performancedegraded
for all four tamget test suiteswhenthe BG2 proportionof train-
ing was lessthan about30% of the total training. Note that as
we decreasethe amountof BG2 training, we alsodecreasethe
amountbf overalltrainingfor theCBG LM, andit is notclearwhat
effectthatalonewould have had.

4.2.5. CBGLM With Target Speeh Training

Giventhatperformancevasfairly robustevenwhentheCBGtrain-
ing mix did not matchthe backgroundestmix, we tried onemore
mismatchexperimentwherewe includedtargettraining speechn
the CBG LM. We usedour original 20 test suites(Table 1) and
comparedheEERfor eachtestsuitewith andwithouttamettrain-
ing. Eventhoughthetargettrainingmadeup 33%of thetotal CBG
training, it did notdegradeperformancel13.7%EERfor the CBG
with targettrainingvs. 13.6%for the CBG withouttargettraining.

4.2.6. CBGPlusGaussiarBadkend

All ourexperimentgo this pointcomparedaselineandCBG sys-
temswithout a GaussiarBackend (GBE). Becausé¢he PRLM-P

EER Vs Proportion BG2 Training
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Fig. 4. CBG modeltrainingmix.
| || Baseline | CBG |
Without GBE 15.3% | 15. 8%
With GBE 13.2% | 15. 3%

Table 2. GBE Performancémprovement:BaselineversusCBG.
Averageof 20testswith 3 to 7 backgroundanguages.

GBE usesall the FE phonerecognizel.M scoresasinputs[]], we
were curiousto seelf the reductionof inputsto the GBE in the
CBG systemwould affectits performanceThe GBE in our CBG
testsystemswould always only have 12 inputs: two LM scores
(targetandCBG) from eachof the six FEs. However, with six FE
phonerecognizersand N, LMs (tamget+ backgroundthe GBE
in the baselinewould have 6 x N inputs. Using the same20
testsuiteswherewe increasedhe backgroundanguagegrom 3
to 7 for our four targetlanguageg¢Section4.2.2),we rescoredhe
baselineandCBG systemawith our GBE. The GBEsin the CBG
systemshad 12 inputs, whereaghe baselineGBEshad 24 to 48
inputs.

As Table 2 shaws, with the GBE, the CBG systemonly im-
provedits overall EERto 15.3%from 15.8%withouta GBE. The
baselinesystem,sav a biggerimprovement: 13.2%with a GBE
comparedo 15.3%without a GBE. Theresultis consistentvith
our experiencethatadditionalLM scoresusuallyhelpthe GBE.

5. STANDARDIZED SCORES: GAUSSIAN VERSUS A
SINGLE-LAYER PERCEPTRON MODEL

In mary languageverification problems,we would like the LID
systemto outputa confidencescoreassociatedvith a particular
hypothesis. The rangeof this scoreshouldbe between0 and 1,
andit shouldreflectthe systems estimateof thelik elihoodthatits
hypothesiss correct. Experiencehasshavn thatLM likelihoods,
LM likelihoodratios,GBE likelihoodsandGBE likelihoodratios
cannotprovide, in theirraw form, this confidencenformation.We
describebelov two approacheso producingconfidencescores:
Gaussiammodelingandsingle-layemperceptrormodeling.Both of
theseapproachesequiretraining.

5.1. Gaussian Models
Standardizedcorescan be obtainedby modelingthe log likeli-

hoodratios(LLRs) usingGaussiarprobability densitiesV (u, o)
for target(t) andbackground BG) scores:

P(LLRt) = N(Ht,(ﬂ) (1)



P(LLRBg) = N(uBag,0BG) (2

Estimatef the densityparameterareobtainedby usinga setof
developmentargetandbackgroundnessages.

Givenanunknavn messagandits tagetLM LLR, the stan-
dardizedconfidencescoreis derived by the posteriorprobability
of thetamgetlanguage:

Pi(z)Pr(t)
Pi(z)Pr(t) + Psc(z)Pr(BG)

Score =

®)

wherePr(t) andPr(BG@) aretheapriori probabilitiesfor thetar
getandBG messages.

The Gaussianmodel works well when the backgroundand
targetscoredistributionsare Gaussiarandhave comparablevari-
ances. If, however, a distribution is skewed or the variancesare
not comparablethe Gaussiarmodelcando a poor job mapping
the scores especiallynearthe tails. In somecaseghe Gaussian
modelcreatesa non-monotonianappingwith the undesirableef-
fectthathigh LLR scoresnapto low standardscores.

5.2. Single-Layer Perceptron Model

We have developeda newv modelfor computingposteriorscores
thatusesasingle-layemperceptror{(SLP).Comparedo a Gaussian
classifier an SLP classifier[5] hastwo main adwantages.First,
the SLP is modelingthe obsered posteriorprobability directly
whereaghe Gaussiairmethodusestwo modelsto derive the pos-
terior probability Secondly SLPs(no hiddenlayers)guarantea
monotonicrelationshipbetweernnput (in our case thelikelihood
ratio scoresjpndoutput(the standardscores).

5.3. CALLFRIEND Hindi Example

To illustratethe advantageof the nev SLP modelover the Gaus-
sian, considerthe caseof trying to detectCALLFRIEND Hindi
from asetof 11 backgroundanguagesFigure5 shavs how LLR
scoredrom developmentdataareusedto createa Gaussiarmap-
ping to the standarctonfidencescores Thetwo jaggedcurvesare
the actualhistogramgpercent)of Hindi LLRs shawving the tamet
(diamonds)and background(triangles)scoredistributions. The
two smoothcurvesarethecomputedsaussiaimodelsfor thedata.
In this example,prior probability of the targetwasapproximately
8% (1 of 12 languages).As canbe seen,the backgrounddistri-
butionis non-Gaussiangesultingin abackgroundsaussiaimodel
tail thatexceedshe datacurwe it attemptso model.

Gaussian Model For Hindi Scores
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Fig. 5. GaussiatModelingof Hindi PRLM-PLLR Scores.

Themeasuredargetposteriorscore computedrom thetarget
andbackgroundistogramsis shavn asthe curve markedwith di-
amondsn Figure6 . The Gaussiarposteriorscore,computedus-
ing equation 3 andthe Gaussiansf Figure5 is shawvn in Figure6
by the curve marked with squares.We canseethatthe Gaussian
posteriormodeldoesa poor job of modelingthe actualposterior
datadueto theill-effectsof thebackgroundsaussiamimodel.

Actual Vs Gaussian Vs SLP Scores
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Fig. 6. PosterioiScored~or Hindi.

Using the sameinput scores,an SLP modelwasalsotrained
for Hindi. As seenin Figure6 the SLPmodel(shavn asthecurve
with triangles)is both monotonicand mapsthe tail LLR scores
well. Althoughnotshavn here theSLPmodelworkedwell across
all the CALLFRIEND languages.

6. CONCLUSIONS

CBG LMs areeffective androhust. Without GaussiarBEs, they
performedcomparablyto a baselinesystemwith individual back-
groundmodelsover a variety of languagesPerformancevasnot
affectedby smallmismatche trainingversugestlanguagemixes.
Evenincludingtarmgetspeechin the CBG trainingdid notdegrade
performance. Adding GaussiarBEs improved performancefor
both systemshut the baselinesystemsav a biggerimprovement,
likely dueto its richersetof inputs.CBGLID systemganbeuse-
ful whenbackgroundraining datais unlabeledor whenthereis
insufficient datato build separatdackground_Ms.

Our experimentsshaved thatthe SLP standardizatiomodel
is morerobustthanGaussiarstandardizationln addition,it guar
anteeghe desiredmonotonicmappingof LLR scorego the stan-
dardizedconfidencescores.
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