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ABSTRACT

In the hands-free communications, the identification
of long impulse response in acoustic echo cancellation
requires very important load calculation. One way to
reduce the complexity of the classical Normalized Least
Mean Square (NLMS) adaptive algorithm, is to use the
Mmaz NLMS algorithm [1]. It is shown that this algo-
rithm is a very promising one, that maintains a closest
performance to the full update NMLS filter in spite of
the updating of a small number of coefficients. Howewver,
due to its complexity, the mean square analysis uses un-
realistic hypothesis. It was then not possible to consider
practical context such as high input correlation or high
step size.

In this paper, we present an exact performances analy-
sis inspired from [2], when the input signal remains in
a finite alphabet set. With this realistic hypothesis, dedi-
cated to the digital context, we can describe accurately
the Mmax NLMS’behavior without any unrealistic as-
sumption. In particular, we evaluate the exact value of
critical and optimal step size and we provide the exact
Mean Square Error (MSE) for all step size and input
correlation. The influence of high order statistics can be
enhanced.
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1 TaHE MwmAX NLMS PERFOR-
MANCES FOR LONG IMPULSE RE-
SPONSES IDENTIFICATION

In the hands-free communications, acoustic echo can-
cellation is usually realized by adaptive filtering. The
adaptive finite-impulse-response (FIR) filter may require
thousands of coefficients to accurately model the echo
return path. The huge calculation load is beyond the

capabilities of current digital signal processing (DSP)
chips. To reduce the processing requirements, different
algorithms were proposed (see for example[3], [4]). Such
algorithms include the Mmax NLMS [1] analyzed in this
paper. The Mmax NLMS updates a portion of his coeffi-
cients at each sample time; those selected coeflicients are
the ones with large magnitude gradient components on
the error surface. The Mmax NLMS algorithm update
equation is given by:

Hi (i) + 55 -€k-T(k—i+1) if i corresponds
k vk
to one of the first M maxima
of |x(k_i+1) 5 1= ]., ...,L.
Hy (%) otherwise

Hy1(i) =

(1)

e is defined by ex = yr, — X,Z’.Hk and yy, is defined by
is the coefficient vector of the adaptive filter at time k,
Xi = [Tk, The1, .., Th_r+1]” is the input signal vector,
Yk is the desired response signal, ey is the error signal,
F' is the L-length optimal weight vector and by, is a zero
mean independent disturbance signal.

First, to illustrate the importance of the Mmax NLMS,
this algorithm has been simulated in the mobile-radio
and videoconference contexts for a highly correlated
input signal generated by passing a zero mean white
Gaussian signal with unity variance through the filter
H(2) = —zs:=rro515—=" A white noise of 0.0001 vari-
ance is added to the desired signal. In the first one
(L=300), for v = 0.8 we obtain good results with a small
number of updates at each iteration (M=30). However,
with very long impulse response (L=1500) encountered
in the second context, a small number gives unsatisfac-
tory results for all step size. In order to improve these
results, we apply the Mmax NLMS algorithm on a deci-
mate/interpolate structure[3].

We notice from figure 1 that, for the long im-
pulse response considered, the proposed algorithm result
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Figure 1 — MSE variation for the Mmax and dec/int
Mmax

(M=30) is better than the Mmax NLMS one (M=30) and
that it is very close to the Mmax NLMS result (M=60).
In [1], the theoretical analysis of the mean square er-
ror (MSE) convergence and steady-state performance is
made for i.i.d signal and is provided for the extreme case
of one update/iteration (M=1). Moreover, it uses the
common independence hypothesis between successive co-
efficient vectors. They prove in this context [1] that to
ensure the Mmax NLMS algorithm convergence, the step
size p should be bounded by :

2Lo2
o7 (2)
n+(L—1).0%

where n = E(z}) and 02 =E(22). When the MSE
convergence is guaranteed, the steady-state excess MSE
€ex(00) is:

O<pu<

H-Emin
9 _ pnt(L-1).03) (3)
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Eexs M=1(c0) =

where emin = E(b2). These results were obtained for
the simple case M=1. Moreover, they use unrealistic cal-
culatory hypothesis, so, they don’t permit an exact study
of the convergence performances especially for correlated
inputs as speech and small step size. To overcome these
problems, we propose, as in [2] to use a discrete Markov
chain in order to model the input data. This approach
is dedicated to the digital context.

2 EXACT ANALYSIS OF THE MMAX
NLMS ALGORITHM

In the acoustic echo cancellation, the input sequence g
remains in a finite alphabet set {a1,as,...,aq}. Con-

sequently, the observation vector X remains also in a
finite alphabet {W;, Wa, ..., Wn} with cardinality N =
dL. Since the input sequence is stationary, it can be mod-
eled by a discrete time chain {0(k) : k € Z1} with finite
state {1,2,..., N} [2] such that Xz = Wy). The dis-
crete time Markov chain is characterized by its probabil-
ity transition matrix P = [P;;].

2.1 THE FINITE ALPHABET APPROACH
The equation (1) can be written in this way :

Hyi = Hp + u.f(Xk).ek (4)
where f(Xk) = (O< ) z)z-’r”)gl ) 1;(711§t1 ) 70) ;

(Th—i;+1)1<j<mr are the first M maxima of |zg_iy1],
i=1,2,..., N. The behavior of the algorithm can be de-
scribed by the evolution of deviation vector Vi, = Hp—F.
The recursion of Vj, is given by:

Vk+1 = (I — uf(Xk)Xg)Vk + ﬂ.f(Xk).bk (5)

The performance analysis are made through the evo-
lution of E(Vi) and E(V; V). The main idea is, since
there is N possibilities of Wg(k), to split the vector

E(V}) and the matrix E(V,,V;I) in N components defined
respectively by g;(k) = E(V. 1(9(k) —j) and Q;(k) =

E(WV, VT 1(o(k)=j))- Where 1¢) is the Dirac indicator.
Since the matrix (I — p.f(Xy).XF') remains in a finite
alphabet {A;, As,..., AN}, b is zero mean independent
of the input sequence and according to (5), we obtain

gi(k+1) Z E(A; Vi 1g(kt1)=j-1o(k)=i). Since A; are

constant matrlces the difficulties to analyze the algo-
rithm are avoided, and we can deduce the recursive for-
mulae between g¢;(k+1) and g¢;(k) without any indepen-
dence assumption by:

N
1) =) Ai.P;j.q;(k) (6)
i=1

In order to write the last recursion in linear form,
7. (k))
we introduce the useful notations G(k) = €

an (k)
RNL We have then

g(k+1) =T.q(k) (7)
where T' = (PT ® Ir).diag(A;). In similar way, we
prove that :

=1

Qj(k + 1)



where

N
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these notations  Q(k) =
vee(z1(k))
€ RNFand Z(k) = : ,

vee(zn (k)

By introducing
vee(Q1(k))

vee(@n (k)

we obtain :

Q(k +1) = A.Q(k) + Z (k) (9)

where A = (PT ® I;2).diag(A; ® A;). The equations
(7) and (9) contain all relevant informations about the
Mmax NLMS algorithm performances. Since matrix I’
and A are constants and depend only on the step size
and statistical properties of the input signal, algorithm
performances depend only on eigenvalues of these ma-
trix.

2.2 NECESSARY CONDITION FOR CONVER-
GENCE

We prove in this paragraph that a necessary condition
for the convergence of the Mmax NLMS algorithm
is that the finite alphabet {f(Wh1), f(W2),..., f(Wn)}
generates the space RL. In fact, if this condition is
not assumed, there exists a vector Y # 0 € R which
verifies f(W;)T.Y =0,V i € {1,2,..., N} . We have then
YT A, =YT Vie{l,2,..,N}. Since P is a transition
N

matrix, we have ) P;; = 1, and consequently the
j=1

vector u = [1,...,1] is an eigenvector of P. We deduce
that (u7 ® YT).T = (uT ® YT). Due to the fact that
1 is an eigenvalue of I', the algorithm diverges for all
step size. To illustrate the necessity of the condition
aforesaid, let’s consider a particular identification
scheme with L = 5 (F = [0.1,0.3,0.95,0.5,0.8]" )and
M = 1(number of coefficients updated at each
iteration). The input is periodic and verifies
T = sin(’“T:T + %). Then =z belongs to the finite
alphabet {+sin(%), £sin(F), £sin(5), £sin(35)} .
In this case, X; belongs to the alphabet
{EWh, £Wo, W3, £W4}  and  f(Xg) belongs to
{££(W1), £f(Wa), £f(Wa), £f(Wy)}  which don’t
generate 5. Figure 2 represents the evolution of the
deviation vector components for a step size equal to 0.5.
As expected, the Mmax NLMS diverges.

If the stability condition is respected, V), will converge
to the origin since the channel has the same length as
the adaptive filter.
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Figure 2 — The divergence of the deviation vector

2.3 EXACT DETERMINATION OF THE ALGO-
RITHM PERFORMANCES

e The critical step size is defined as the step from
which the algorithm diverges. It can be defined for

the mean and the mean square convergence. For the
mean convergence, it is found when I" has an eigen-
value higher than 1. So u¢,, = arg(AL . (u) =1). In
similar way, the critical step size for the mean square
convergence is defined by ug,,. = arg(A2,. (1) = 1).

e The optimal step size is defined as the step that
gives the maximal speed convergence. It can be
found for the mean and the mean square conver-

gence : port — arg(min(A,, (1)) and pZpl, —
arg(min(\ (1))).

o After algorithm convergence, the mean square error
(MSE) is defined by:

MSE = E(e}) = E(Vif X1, + bi))? (10)

It is easy to prove that
N

vec( BV X1)?) =3 WI & W vec(Qi(k)).

=1
If we note Q =lim Q(k) and Z =lim Z(k), then
T—00 T—00
according to (12), we have Q = (I — A)~'.Z. We have
then :

N
EQM = pb+ Z W @ Wl vee(Q;) (11)
=1

We note that the performances analysis is performed
from the matrix I and A. So, it may lead to a significant
calculation when the filter order or the alphabet num-
ber is high. To illustrate the exactness of the proposed
approach and the inaccuracy of the classical approach



which uses the common independence hypothesis, let’s

consider a particular identification scheme with L = 2

and where z;, belongs to the finite alphabet set {1,—3}
1

1 1
1201
with a transition matrix E (i g (l) . Referring to
1 32 1
1
0 0 5 3

the equation (11), we can determine the M SE calculated
by the new approach. To determine the MSE we run
a Monte-Carlo simulations over 50 realizations. Figure
3 represents the evolution of the M SFE versus the step
size.
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Figure 3 — MSE variation with the step size

The main contribution of the new approach is its ex-
actness. This is illustrated by the complete agreement
between simulations and theoretical results. Figure 3
shows also that the result of the classic approach is cor-
rect for the small step sizes and that it differs from the
exact result for large ones.

This exact analysis allows to study the influence
of the input statistics on the algorithm performances
through the input transition matrix. To show for ex-
ample that the critical step size depends on the cor-
relation of the input, let us consider this particular
example : the filter length is L = 2 and the input
sequence zjp belongs to the alphabet {+1,4+3} with
a particular transition matrix which has the following

[e3 (7 (o7
l—a 3 3 3
a 1—a & a
form | 3 3 3 . The correla-
o o 1-3a «
« « o 13«

tion depends on the factor o. The variations of uf ..
versus the correlation is depicted in Figure 4.

Figure 4 shows, in this precise case of alphabet, that
the step size of adaptation does not have to exceed the
value 2 to ensure the convergence of the algorithm what-
ever is the correlation. Indeed, this value can be reached
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Figure 4 — p. .. variation with the input correlation

for high correlations.

3 CONCLUSION

The Mmax NLMS is a way to identify long impulse re-
sponses encountered in acoustic echo cancelation. In
this paper, performances of the Mmax NLMS algorithm
are analyzed in the real context of the digital transmis-
sion where the input signal belongs to a finite alphabet.
This exact analysis was easily done without any unreal-
istic hypothesis. Instead of the classical approaches, we
calculate the exact values of critical and optimum step
size and provide at the algorithm convergence, the exact
Mean Square Error for all step size and input correla-
tion. Moreover, it is then possible to study the influence
of the input statistics on the algorithm convergence.
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