

BLIND EQUALIZATION OF MIMO CHANNELS USING DETERMINISTIC PRECODING

Harold Artés and Franz Hlawatsch

Institute of Communications and Radio-Frequency Engineering, Vienna University of Technology
 Gussaussstrasse 25/389, A-1040 Vienna, Austria
 phone: +43 1 58801 38923, fax: +43 1 58801 38999, email: hartes@aurora.nt.tuwien.ac.at
 web: <http://www.nt.tuwien.ac.at/dspgroup/time.html>

ABSTRACT

We present a novel precoding or modulation scheme (*matrix modulation*) that allows parallel transmission of several data signals over an unknown multiple-input multiple-output (MIMO) channel. We first present a theorem on unique signal demodulation and an efficient iterative demodulation algorithm for transmission over an unknown instantaneous-mixture channel. We then generalize our results to an unknown MIMO channel with memory.

1. INTRODUCTION

Using multiple antennas at transmitter and receiver allows a significant increase of data rates. Most transmission schemes (e.g., [1–4]) require the receiver to know the multiple-input multiple-output (MIMO) channel; unfortunately, training symbol based channel estimation significantly reduces the effective data rates. Other methods (e.g., [5–8]) do not require knowledge of the channel.

In this paper, we propose a scheme for transmission over an *unknown* MIMO channel whereby K parallel data streams $d_k[n]$ ($k = 1, \dots, K$) are “precoded” into M_T antenna input signals $s_k[n]$ ($k = 1, \dots, M_T$) using a novel matrix modulation technique. The receiver demodulates M_R antenna output signals $x_k[n]$ ($k = 1, \dots, M_R$) into data estimates $\hat{d}_k[n]$ (see Fig. 1).

This paper is organized as follows. Section 2 presents a theorem on unique demodulation and an efficient iterative demodulation algorithm for the special case of memoryless MIMO channels (instantaneous mixture channels). Section 3 extends the demodulation method to general MIMO channels. Section 4 presents an improved iterative equalization method for general MIMO channels. Finally, simulation results are provided in Section 5.

2. INSTANTANEOUS MIXTURE CHANNEL

We first consider an instantaneous mixture channel (i.e., a memoryless MIMO channel). The channel’s input-output relation is¹

$$\mathbf{x}[n] = \mathbf{H}\mathbf{s}[n], \quad (1)$$

with the transmit vector $\mathbf{s}[n] \triangleq [s_1[n] \dots s_{M_T}[n]]^T$, the received vector $\mathbf{x}[n] \triangleq [x_1[n] \dots x_{M_R}[n]]^T$, and the (unknown) $M_R \times M_T$ channel matrix \mathbf{H} .

The matrix modulation precoding forces a “modulation structure” on the $M_T \times N$ transmit signal matrix $\mathbf{S} \triangleq [\mathbf{s}[0] \dots \mathbf{s}[N-1]]$ (with some block length N) according to

$$\mathbf{S} = \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k, \quad (2)$$

with the K diagonal $N \times N$ data matrices $\mathbf{D}_k \triangleq \text{diag}\{d_k[0], \dots, d_k[N-1]\}$ and K “modulation matrices” \mathbf{M}_k of size $M_T \times N$.

Combining N successive received vectors into the matrix $\mathbf{X} \triangleq [\mathbf{x}[0] \dots \mathbf{x}[N-1]]$ and inserting (2) into (1), we obtain

Funding by FWF grant P12228-TEC.

¹We consider noiseless transmission; the effect of noise will be studied in Section 5.

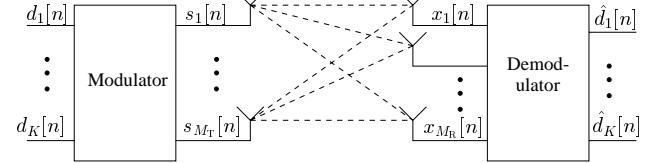


Fig. 1: Multi-input, multi-antenna transmission setup.

$$\mathbf{X} = \mathbf{H}\mathbf{S} = \mathbf{H} \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k. \quad (3)$$

Under certain conditions, the structure of \mathbf{S} defined by (2) is strong enough to allow unique reconstruction (up to a constant factor) of the data sequences $d_k[n]$ from \mathbf{X} . That is, the received matrix $\mathbf{X} = \mathbf{H} \sum_{k=1}^{K'} \mathbf{M}_k \mathbf{D}_k$ (where $K' \leq K$ is the number of active data streams, i.e., we allow some data streams to be zero) does not permit a different representation $\tilde{\mathbf{H}} \sum_{k=1}^K \mathbf{M}_k \tilde{\mathbf{D}}_k$.

Theorem 1. Let \mathbf{D}_k and $\tilde{\mathbf{D}}_k$ be K' resp. K diagonal matrices of size $N \times N$, with \mathbf{D}_k nonsingular, and let \mathbf{H} and $\tilde{\mathbf{H}}$ be matrices of size $M_R \times M_T$ and with full rank. Let $K' \leq K < M_T$ and $M_R \geq M_T$. Then there exist some N with $\left\lceil \frac{M_T^2 - 1}{M_T - K} \right\rceil \leq N \leq M_T^2 - 1$ and K matrices \mathbf{M}_k ($k = 1, \dots, K$) of size $M_T \times N$ such that

$$\tilde{\mathbf{H}} \sum_{k=1}^K \mathbf{M}_k \tilde{\mathbf{D}}_k = \mathbf{H} \sum_{k=1}^{K'} \mathbf{M}_k \mathbf{D}_k \quad (4)$$

(for one given set of data matrices \mathbf{D}_k) implies² $\mathbf{H}^\# \mathbf{H} = c \mathbf{I}$ and

$$\tilde{\mathbf{D}}_k = \begin{cases} c \mathbf{D}_k, & k \leq K' \\ \mathbf{0}, & K' < k \leq K, \end{cases} \quad (5)$$

where $c \in \mathbb{C}$ is an unknown factor.

A sketch of the proof, including one specific construction of the modulation matrices \mathbf{M}_k , is given in the Appendix.

Demodulation can be performed similarly to [9]. From (3),

$$\mathbf{x}[n] = \mathbf{H} \sum_{k=1}^K d_k[n] \mathbf{m}_k[n], \quad n = 0, \dots, N-1, \quad (6)$$

where $\mathbf{m}_k[n]$ is the n th column of \mathbf{M}_k . Multiplying (6) by $\mathbf{H}^\#$ from the left and using $\mathbf{H}^\# \mathbf{H} = \mathbf{I}$, the N linear equations in (6) can be rewritten as $\mathbf{Q}\mathbf{y} = \mathbf{0}$, where \mathbf{Q} is an $M_T N \times (M_T M_R + KN)$ matrix that contains the known quantities $\mathbf{x}[n]$ and $\mathbf{m}_k[n]$, and \mathbf{y} is an $(M_T M_R + KN) \times 1$ vector that contains the unknowns $(\mathbf{H}^\#)_{k,n}$.

²Here, \mathbf{I} is the identity matrix and $\tilde{\mathbf{H}}^\#$ is the pseudo-inverse of $\tilde{\mathbf{H}}$.

and $d_k[n]$. The least-squares solution, $\mathbf{y}_{\text{LS}} = \text{argmin}_{\|\mathbf{y}\|=1} \|\mathbf{Q}\mathbf{y}\|$, is given by the right singular vector of \mathbf{Q} corresponding to the smallest singular value. This method is however computationally intensive because of the large size of \mathbf{Q} .

POCS demodulation algorithm. As an alternative, we now present an efficient iterative demodulation algorithm that is inspired by [10]. Given a received matrix $\mathbf{X} = \mathbf{HS}$ and modulation matrices \mathbf{M}_k , it follows from Theorem 1 that the matrix $\mathbf{S} = \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k$ and, thus, the K data matrices \mathbf{D}_k are uniquely determined (up to a scalar factor) by the following two properties:

1. $\mathbf{S} = \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k$ with \mathbf{D}_k diagonal;
2. the row span of \mathbf{S} equals the row span of \mathbf{X} .

(The second property follows from $\mathbf{X} = \mathbf{HS}$ with \mathbf{H} full rank). Thus, $\mathbf{S} \in \mathcal{A} \cap \mathcal{B}$ where \mathcal{A} denotes the linear subspace of all matrices $\sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k$ with \mathbf{M}_k given and \mathbf{D}_k diagonal, and \mathcal{B} denotes the linear subspace of all matrices whose row span lies in the row span of \mathbf{X} , i.e., of all matrices of the form \mathbf{BX} with some $M_{\text{T}} \times M_{\text{R}}$ matrix \mathbf{B} . Since both \mathcal{A} and \mathcal{B} are linear subspaces and thus convex, the formulation $\mathbf{S} \in \mathcal{A} \cap \mathcal{B}$ suggests a POCS (projections onto convex sets) algorithm [11] for calculating and demodulating \mathbf{S} . This algorithm is iterative and consists in alternately projecting the iterated version of \mathbf{S} onto \mathcal{A} and \mathcal{B} .

Projection onto \mathcal{A} : The projection onto \mathcal{A} amounts to forming $\mathbf{S}^{(i)} = \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k^{(i)}$, where the nonzero (diagonal) elements of $\mathbf{D}_k^{(i)}$ can be shown to be given by

$$(\mathbf{D}_k^{(i)})_{n,n} = \frac{1}{M_{\text{T}}} \sum_{l=1}^{M_{\text{T}}} (\mathbf{S}^{(i-1)})_{l,n} (\mathbf{M}_k^+)^{l,n}. \quad (7)$$

Here, $\mathbf{S}^{(i-1)}$ is the result of the previous iteration (i.e., the projection onto \mathcal{B} , see below) and the $M_{\text{T}} \times N$ matrices \mathbf{M}_k^+ are defined such that $(\mathbf{m}_k^+[n])^T$, the transpose of the n th column of \mathbf{M}_k^+ , equals the k th row of the $K \times M_{\text{T}}$ matrix $[\mathbf{m}_1[n] \cdots \mathbf{m}_K[n]]^\#$. If the vectors $\mathbf{m}_1[n], \dots, \mathbf{m}_K[n]$ are orthonormal, then there is simply $\mathbf{M}_k^+ = \mathbf{M}_k^*$ where \mathbf{M}_k^* is the complex conjugate of \mathbf{M}_k .

Projection onto \mathcal{B} : The projection onto \mathcal{B} amounts to forming $\mathbf{S}^{(i)} = \mathbf{B}^{(i)} \mathbf{X}$, where it can be shown that $\mathbf{B}^{(i)} = \mathbf{S}^{(i-1)} \mathbf{X}^\#$. Here, $\mathbf{S}^{(i-1)}$ is the result of the previous iteration (i.e., the projection onto \mathcal{A} , see above) and $\mathbf{X}^\#$ is the pseudo-inverse of \mathbf{X} , which can be pre-calculated before starting the iteration.

The POCS algorithm is guaranteed to converge to an intersection point, i.e., $\mathbf{S}^{(\infty)} \in \mathcal{A} \cap \mathcal{B}$ [11]. Thus, $\mathbf{S}^{(\infty)} = c \mathbf{S}$ and $\mathbf{D}_k^{(\infty)} = c \mathbf{D}_k$ where the \mathbf{D}_k are the true data matrices and $c \in \mathbb{C}$. The convergence speed depends on the initialization, $\mathbf{S}^{(0)}$. In the semiblind case, some known input symbols can be used to calculate a good initialization. Another way to speed up convergence is to use *relaxation* [11] and/or knowledge of the data symbol alphabet. (cf. [12]). The latter approach, however, introduces a nonconvex set and thus convergence to the desired solution is no longer guaranteed. For large N , the POCS method typically is much more efficient than the demodulation method discussed previously.

3. GENERAL MIMO CHANNEL

We will now extend our method to a MIMO channel with memory (intersymbol interference). Here, the input-output relation is

$$\mathbf{x}[n] = \sum_{m=0}^{L-1} \mathbf{H}[m] \mathbf{s}[n-m], \quad (8)$$

where the $M_{\text{R}} \times M_{\text{T}}$ matrices $\mathbf{H}[m]$ constitute the channel's impulse response and $L-1$ is the channel's maximum time delay.

The matrix modulation precoding is still given by (2), however with the $M_{\text{T}} \times (N+L-1)$ transmit signal matrix $\mathbf{S} \triangleq [\mathbf{s}[-L+$

$1] \cdots \mathbf{s}[N-1]]$ and the $(N+L-1) \times (N+L-1)$ diagonal data matrices $\mathbf{D}_k \triangleq \text{diag}\{d_k[-L+1], \dots, d_k[N-1]\}$.

Next, we will write the input-output relation (8) in block matrix form. Setting $\mathbf{H}' \triangleq [\mathbf{H}[0] \cdots \mathbf{H}[L-1]]$, we define the following channel block matrix of size $M_{\text{R}}p \times M_{\text{T}}(L+p-1)$, in which \mathbf{H}' is stacked p times with shifts to the left by M_{T} positions each (the stacking parameter p is called *smoothing factor* [13, 14]),

$$\mathcal{H} \triangleq \begin{bmatrix} 0 & \mathbf{H}' \\ & \mathbf{H}' \\ & \ddots \\ \mathbf{H}' & 0 \end{bmatrix}.$$

We also form the following transmit block matrix of size $M_{\text{T}}(L+p-1) \times (N-p+1)$,

$$\mathbf{S} \triangleq \begin{bmatrix} \mathbf{s}[p-1] & \mathbf{s}[p] & \cdots & \mathbf{s}[N-1] \\ \mathbf{s}[p-2] & \mathbf{s}[p-1] & \cdots & \mathbf{s}[N-2] \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{s}[-L+1] & \mathbf{s}[-L+2] & \cdots & \mathbf{s}[N-L-p+1] \end{bmatrix}.$$

This is a block-Toeplitz matrix that is “generated” by the columns of $\mathbf{S} = [\mathbf{s}[-L+1] \cdots \mathbf{s}[N-1]]$. Thus, we shall call \mathbf{S} the *generating matrix* of \mathbf{S} . Finally, we form the following received block-Hankel matrix of size $M_{\text{R}}p \times (N-p+1)$,

$$\mathbf{x} \triangleq \begin{bmatrix} \mathbf{x}[0] & \mathbf{x}[1] & \cdots & \mathbf{x}[N-p-1] & \mathbf{x}[N-p] \\ \mathbf{x}[1] & \mathbf{x}[2] & \cdots & \mathbf{x}[N-p] & \mathbf{x}[N-p+1] \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{x}[p-1] & \mathbf{x}[p] & \cdots & \mathbf{x}[N-2] & \mathbf{x}[N-1] \end{bmatrix}.$$

Now (8) can be written as (cf. [13, 14])

$$\mathbf{x} = \mathcal{H}\mathbf{S}. \quad (9)$$

Blind equalization of the unknown channel (described by \mathcal{H}) corresponds to calculation of the transmit matrix \mathbf{S} (or, equivalently, its generating matrix \mathbf{S}) from the known received matrix \mathbf{x} . For this to be possible, \mathbf{S} must be a wide matrix and the row span of \mathbf{x} must be equal to the row span of \mathbf{S} [13, 14]. This, in turn, requires that \mathcal{H} is a square or tall matrix and has full rank. These requirements lead to the necessary conditions [13] $p \geq \frac{M_{\text{T}}(L-1)}{M_{\text{R}}-M_{\text{T}}}$, with $M_{\text{R}} > M_{\text{T}}$, and $N > M_{\text{T}}L + (M_{\text{T}}+1)(p-1)$. Blind equalization can then be done as follows:

Step 1: Using a singular value decomposition (SVD), the row span of \mathbf{S} is calculated from \mathbf{x} [13, 14].

Step 2: Another SVD is used to construct an $M_{\text{T}}(L+p-1) \times (N-p+1)$ block-Toeplitz matrix \mathbf{S}_A whose row span equals that of \mathbf{S} [13, 14]. It can be shown [13] that the $M_{\text{T}} \times (N+L-1)$ generating matrix of \mathbf{S}_A can be written as $\mathbf{S}_A = \mathbf{AS}$, where \mathbf{A} is an unknown invertible matrix of size $K \times K$. Due to the SVD construction, the rows of \mathbf{S}_A are orthonormal.

Step 3: The unknown instantaneous mixture defined by $\mathbf{S}_A = \mathbf{AS}$ is analogous to the instantaneous mixture $\mathbf{X} = \mathbf{HS}$ in (3). Thus, it can be resolved using the demodulation methods of Section 2, whereby \mathbf{S} and, in turn, the data sequences $d_k[-L+1], d_k[-L+2], \dots, d_k[N-1]$ are obtained up to a common constant factor.

We next present an alternative POCS method that is computationally more efficient and allows to incorporate *a-priori* knowledge such as the symbol alphabet.

4. POCS EQUALIZATION ALGORITHM

A computationally intensive part of the three-step method of Section 3 is the SVD in Step 2 that is used to construct the generat-

ing matrix \mathbf{S}_A . This SVD can be avoided by the following approach. As mentioned in Section 3, because of its block-Toeplitz structure \mathbf{S} can be reconstructed from the row span of \mathbf{X} up to an unknown instantaneous mixture. According to Section 2, this instantaneous mixture can be resolved based on the modulation structure $\mathbf{S} = \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k$. Consequently, \mathbf{S} is uniquely determined (up to a scalar factor) by the following two properties:

1. \mathbf{S} is block-Toeplitz and its generating matrix has modulation structure, i.e., $\mathbf{S} = \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k$ with \mathbf{D}_k diagonal;
2. the row span of \mathbf{S} equals the row span of \mathbf{X} .

(The second property follows from (9) with \mathcal{H} full rank). Thus, $\mathbf{S} \in \mathcal{A} \cap \mathcal{B}$ where \mathcal{A} is the linear subspace of all block-Toeplitz matrices with generating matrix $\mathbf{S} = \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k$, with \mathbf{M}_k given and \mathbf{D}_k diagonal, and \mathcal{B} is the linear subspace of all matrices whose row span lies in that of \mathbf{X} , i.e., of all matrices of the form $\mathbf{B}\mathbf{X}$ with some $M_T(L+p-1) \times Mp$ matrix \mathbf{B} . This again suggests a POCS algorithm for calculating \mathbf{S} that consists in alternately projecting the iterated version of \mathbf{S} onto \mathcal{A} and \mathcal{B} .

Projection onto \mathcal{A} : \mathbf{S} being a linear structured matrix [15], it can be shown that the projection onto \mathcal{A} can be performed by the following two steps:

Step 1: Enforce block-Toeplitz property. Let $\mathbf{S}^{(i-1)}$ be the result of the previous iteration (projection onto \mathcal{B} , see below). From $\mathbf{S}^{(i-1)}$, which is not block-Toeplitz, we calculate an $M_T \times (N+L-1)$ “pseudo generating matrix” $\tilde{\mathbf{S}}^{(i-1)}$ as follows. The first one of the M_T rows of $\tilde{\mathbf{S}}^{(i-1)}$ is obtained by averaging properly aligned and zero-padded versions of the first, (M_T+1) st, $(2M_T+1)$ st, etc. rows of $\mathbf{S}^{(i-1)}$. More precisely, the first row of $\mathbf{S}^{(i-1)}$ is shifted to the right by one position and added to the (M_T+1) st row of $\mathbf{S}^{(i-1)}$, with zeros appended where necessary. The result is again shifted to the right by one position and added to the $(2M_T+1)$ st row of $\mathbf{S}^{(i-1)}$, etc. Finally the j th element of the resulting row vector of length $N+L-1$ is divided by the j th element of $(1, 2, \dots, M_T, M_T, \dots, M_T, M_T-1, \dots, 1)$ to yield the first row of $\tilde{\mathbf{S}}^{(i-1)}$. The second row of $\tilde{\mathbf{S}}^{(i-1)}$ is obtained similarly by averaging properly aligned and zero-padded versions of the second, (M_T+2) nd, $(2M_T+2)$ nd, etc. rows of $\mathbf{S}^{(i-1)}$. In this manner, all M_T rows of $\tilde{\mathbf{S}}^{(i-1)}$ are obtained.

Step 2: Enforce modulation structure. Next, we form $\mathbf{S}^{(i)} = \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k^{(i)}$, where the nonzero (diagonal) elements of $\mathbf{D}_k^{(i)}$ can be shown to be given by (7) with $\mathbf{S}^{(i-1)}$ replaced by $\tilde{\mathbf{S}}^{(i-1)}$ and with \mathbf{M}_k^+ as defined in Section 2. We then form the block-Toeplitz matrix $\mathbf{S}^{(i)}$ generated by $\mathbf{S}^{(i)}$.

Projection onto \mathcal{B} : The projection onto \mathcal{B} amounts to forming $\mathbf{S}^{(i)} = \mathbf{B}^{(i)} \mathbf{X}$, where it can be shown that $\mathbf{B}^{(i)} = \mathbf{S}^{(i-1)} \mathbf{X}^\#$. Here, $\mathbf{S}^{(i-1)}$ is the result of the previous iteration (projection onto \mathcal{A} , see above). The pseudo-inverse $\mathbf{X}^\#$ can be pre-calculated.

The POCS algorithm is guaranteed to converge to an intersection point, i.e., $\mathbf{S}^{(\infty)} \in \mathcal{A} \cap \mathcal{B}$ [11]. Thus, $\mathbf{S}^{(\infty)} = c\mathbf{S}$ and $\mathbf{D}_k^{(\infty)} = c\mathbf{D}_k$ with $c \in \mathbb{C}$. In the semiblind case, some known consecutive input symbols $d_k[n_1], \dots, d_k[n_2]$ can be used to calculate a good initialization $\mathbf{S}^{(0)}$ with generating matrix $\mathbf{S}^{(0)} = \sum_{k=1}^K \mathbf{M}_k \mathbf{D}_k^{(0)}$ where $\mathbf{D}_k^{(0)} = \text{diag}\{0, \dots, 0, d_k[n_1], \dots, d_k[n_2], 0, \dots, 0\}$ [16]. Convergence can again be accelerated as outlined on Section 2.

5. SIMULATION RESULTS

We studied the performance of the proposed methods for $M_T = 4$ transmit antennas and $K = 3$ uncoded QPSK data signals $d_k[n]$. The modulation matrices were constructed with $N = 200$ by taking realizations of iid Gaussian variables as matrix entries and then orthonormalizing the corresponding columns of all \mathbf{M}_k (this always worked in our simulations). The channel impulse responses were

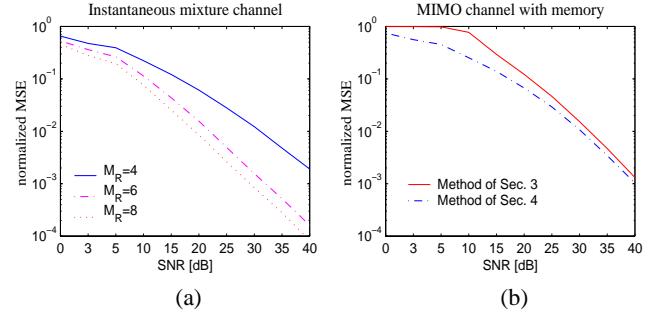


Fig. 2: Normalized MSE vs. SNR for (a) an instantaneous mixture channel, using the method of Section 2, and (b) a MIMO channel with memory, using the methods of Section 3 and Section 4.

randomly generated for each simulation run. The channel output signals were corrupted by white Gaussian noise with variance σ^2 and observed over an interval of length $N = 200$.

First, we considered three instantaneous mixture channels with $M_R = 4, 6$ and 8 receive antennas. Fig. 2(a) shows the normalized mean-square error (MSE) vs. the SNR³ obtained with the POCS method of Section 2. It is seen that use of more receive antennas results in better signal estimation.

Next, we considered a MIMO channel with memory ($M_R = 6$ receive antennas, channel impulse response length $L = 3$). Fig. 2(b) shows the normalized MSE vs. the SNR obtained with the methods of Section 3 and Section 4 (smoothing factor $p = 5$). It is seen that for low SNR, the method of Section 4 performs significantly better. This may be due to the fact that in Step 2 of the method of Section 3, a signal subspace/noise subspace allocation of certain singular vectors is required (cf. [13, 14]).

APPENDIX: SKETCH OF PROOF OF THEOREM 1

Setting $\mathbf{G} \triangleq \tilde{\mathbf{H}}^\# \mathbf{H}$, we can rewrite (4) as

$$\tilde{\mathbf{v}}_n = \mathbf{G} \mathbf{v}_n, \quad n = 0, \dots, N-1, \quad (10)$$

with

$$\mathbf{v}_n \triangleq \sum_{k=1}^{K'} d_k[n] \mathbf{m}_k[n], \quad \tilde{\mathbf{v}}_n \triangleq \sum_{k=1}^K \tilde{d}_k[n] \mathbf{m}_k[n] \quad (11)$$

where $\mathbf{m}_k[n]$ denotes the n th column of \mathbf{M}_k . We have to show that there exist vectors $\mathbf{m}_1[n], \dots, \mathbf{m}_K[n]$ such that (10) with (11) implies $\mathbf{G} = c\mathbf{I}$ with some $c \in \mathbb{C}$. Assuming that the vectors $\mathbf{m}_1[n], \dots, \mathbf{m}_K[n]$ are linearly independent for n fixed, $\mathbf{G} = c\mathbf{I}$ together with (10) and (11) will imply the desired result in (5), viz., $\tilde{d}_k[n] = cd_k[n]$ for $1 \leq k \leq K'$ and $d_k[n] = 0$ for $K' < k \leq K$.

The vectors \mathbf{v}_n and $\tilde{\mathbf{v}}_n$ in (11) are elements of, respectively, the K' -dimensional subspace $\mathcal{C}_n = \text{span}\{\mathbf{m}_1[n], \dots, \mathbf{m}_{K'}[n]\}$ and the K -dimensional subspace $\tilde{\mathcal{C}}_n = \text{span}\{\mathbf{m}_1[n], \dots, \mathbf{m}_K[n]\} \subset \mathbb{C}^{M_T}$. Since $K' \leq K < M_T$, there is $\mathcal{C}_n \subsetneq \tilde{\mathcal{C}}_n \subset \mathbb{C}^{M_T}$. Hence, (10) means that \mathbf{G} maps a specific vector $\mathbf{v}_n \in \mathcal{C}_n$ (defined by the specific transmitted data $d_k[n]$) to some vector $\tilde{\mathbf{v}}_n \in \tilde{\mathcal{C}}_n$. We have N such transformation relations. The question is, can vectors $\mathbf{m}_1[n], \dots, \mathbf{m}_K[n]$ ($n = 0, \dots, N-1$) be found such that these transformation relations imply $\mathbf{G} = c\mathbf{I}$ with some $c \in \mathbb{C}$, and how many such relations do we need (how large is N)?

Let us first study a different problem. Suppose we have I pairs of subspaces $\mathcal{C}_i = \text{span}\{\mathbf{c}_1[i], \dots, \mathbf{c}_{K'}[i]\}$ and $\tilde{\mathcal{C}}_i = \text{span}\{\tilde{\mathbf{c}}_1[i], \dots, \tilde{\mathbf{c}}_{K'}[i]\}$

³The normalized MSE is defined as $\sum_{k=1}^K \sum_n |d_k[n] - \hat{d}_k[n]|^2 / \sum_{k=1}^K \sum_n |d_k[n]|^2$ averaged over all simulation runs, where $\hat{d}_k[n]$ is the estimate of $d_k[n]$ obtained with the respective method and \hat{c} is the least-squares fit for the unknown factor c . The number of simulation runs was chosen between 200 and 10000, depending on the SNR. The SNR is defined as $\frac{1}{N M_R} \sum_{k=1}^{M_R} \sum_{n=0}^{N-1} |x_k[n]|^2 / \sigma^2$.

$\dots, \mathbf{c}_{K'}[i], \dots, \mathbf{c}_K[i]\}$ ($i = 1, \dots, I$), with $K' \leq K < M_T$ and $\mathcal{C}_i \subseteq \tilde{\mathcal{C}}_i \subset \mathbb{C}^{M_T}$, and we know that \mathbf{G} maps any $\mathbf{v} \in \mathcal{C}_i$ to some $\tilde{\mathbf{v}} \in \tilde{\mathcal{C}}_i$, i.e.,

$$\mathbf{G}\mathcal{C}_i \subseteq \tilde{\mathcal{C}}_i, \quad i = 1, \dots, I. \quad (12)$$

How should we construct the pairs of subspaces $\mathcal{C}_i, \tilde{\mathcal{C}}_i$ (or, equivalently, the basis $\{\mathbf{c}_1[i], \dots, \mathbf{c}_{K'}[i], \dots, \mathbf{c}_K[i]\}$), and how many such pairs do we need (i.e., how large must we choose I) such that (12) implies $\mathbf{G} = c\mathbf{I}$? Let $\tilde{\mathcal{C}}_i^\perp = \text{span}\{\mathbf{b}_1[i], \dots, \mathbf{b}_{M_T-K}[i]\} \subset \mathbb{C}^{M_T}$ denote the orthogonal complement space of $\tilde{\mathcal{C}}_i$. Since $\mathbf{c}_k[i] \in \tilde{\mathcal{C}}_i$ and $\mathbf{b}_k[i] \in \tilde{\mathcal{C}}_i^\perp$, there must be $\mathbf{c}_l[i] \perp \mathbf{b}_k[i]$, i.e.,

$$\mathbf{b}_k^H[i]\mathbf{c}_l[i] = 0, \quad k = 1, \dots, M_T - K, \quad l = 1, \dots, K, \quad (13)$$

for $i = 1, \dots, I$. Moreover, since according to (12) $\mathbf{G}\mathbf{c}_k[i] \in \tilde{\mathcal{C}}_i$ for all $\mathbf{c}_k[i]$ with $k = 1, \dots, K'$, we also have

$$\mathbf{b}_k^H[i]\mathbf{G}\mathbf{c}_l[i] = 0, \quad k = 1, \dots, M_T - K, \quad l = 1, \dots, K', \quad (14)$$

for $i = 1, \dots, I$. These are $(M_T - K)K'I$ equations of the type $\mathbf{x}^H\mathbf{G}\mathbf{y} = 0$ that constrain \mathbf{G} . If we choose $\mathbf{x} = \mathbf{u}_m$ and $\mathbf{y} = \mathbf{u}_n$ with $m \neq n$, with \mathbf{u}_m the m th unit vector of size M_T , then $\mathbf{x}^H\mathbf{y} = 0$ and $\mathbf{x}^H\mathbf{G}\mathbf{y} = 0$ becomes $G_{m,n} = 0$. Therefore, by choosing for $\mathbf{c}_l[i]$ and $\mathbf{b}_k[i]$ suitable unit vectors, we can force the off-diagonal elements of \mathbf{G} to zero while satisfying (13).

More specifically, we start with $i = 1$, allocating unit vectors for all $\mathbf{c}_l[1]$ and $\mathbf{b}_k[1]$ such that $\mathbf{c}_l[1] \neq \mathbf{b}_k[1]$. Since there are M_T unit vectors, we can find $M_T^2 - M_T$ pairs of *different* unit vectors. There are $(M_T - K)K'$ pairs $\mathbf{c}_l[1], \mathbf{b}_k[1]$ for which we must allocate pairs of *different* unit vectors. Since $(M_T - K)K' < M_T^2 - M_T$ (due to $K' \leq M_T - 1$), we can force $(M_T - K)K'$ off-diagonal elements of \mathbf{G} to zero. Note that by specifying $\mathbf{b}_1[1], \dots, \mathbf{b}_{M_T-K}[1]$ and $\mathbf{c}_1[1], \dots, \mathbf{c}_{K'}[1]$, we have specified the first subspace pair $\mathcal{C}_1, \tilde{\mathcal{C}}_1$.

We now proceed to construct the second subspace pair $\mathcal{C}_2, \tilde{\mathcal{C}}_2$. We allocate “new” unit vector pairs (that have not been used previously) for vector pairs $\mathbf{c}_l[2], \mathbf{b}_k[2]$; these allow to force additional off-diagonal elements of \mathbf{G} to zero. It may happen that less than $(M_T - K)K'$ new unit vector pairs exist (however, there always exists at least one new unit vector pair). In that case, we have to allocate “old” unit vector pairs for some pairs $\mathbf{c}_l[2], \mathbf{b}_k[2]$ in order to span our subspaces $\mathcal{C}_2, \tilde{\mathcal{C}}_2$; these vector pairs do not serve to annihilate additional off-diagonal elements of \mathbf{G} .

We continue this construction for $i = 3, i = 4$, etc., until we have forced *all* $M_T^2 - M_T$ off-diagonal elements of \mathbf{G} to zero, i.e., \mathbf{G} is a *diagonal* matrix.

To have $\mathbf{G} = c\mathbf{I}$, it remains to constrain all diagonal elements $G_{m,m}$ to be equal. For this, we use additional subspace pairs $\mathcal{C}_i, \tilde{\mathcal{C}}_i$ and additional equations (14). Here, $M_T - 1$ vector pairs $\mathbf{c}_l[i], \mathbf{b}_k[i]$ are constructed as follows: Two consecutive elements of $\mathbf{c}_l[i]$ are 1 and -1 , with all other elements 0, and the corresponding two consecutive elements of $\mathbf{b}_k[i]$ are both 1, again with all other elements 0. Again, (13) is satisfied. Furthermore, the equations (14) simplify to $G_{m+1,m+1} = G_{m,m}$ for $m = 1, \dots, M_T - 1$, which means that all diagonal elements $G_{m,m}$ are equal. Thus, finally, $\mathbf{G} = c\mathbf{I}$ with some $c \in \mathbb{C}$. It can be shown that the number of subspace pairs required for the entire construction, I , is bounded as

$$\frac{M_T^2 - 1}{(M_T - K)K'} \leq I \leq M_T^2 - 1.$$

Having shown how to construct suitable pairs of subspaces to force $\mathbf{G} = c\mathbf{I}$, we now return to our original problem. Since (10) maps just individual vectors of each K' -dimensional space \mathcal{C}_i (and not the entire subspace!) into $\tilde{\mathcal{C}}_i$, we have to choose K' linearly independent vectors for each given \mathcal{C}_i . Thus, $N = K'I$, which yields the lower bound of $N \geq \frac{M_T^2 - 1}{M_T - K}$ for the number of vectors. Moreover, it can be shown that N can be upper bounded as $N \leq M_T^2 - 1$ (instead of $N \leq K'(M_T^2 - 1)$).

The modulation matrices \mathbf{M}_k can finally be constructed as follows. Since we need K' linearly independent vectors for each subspace pair, we can choose $\mathbf{m}_k[n] = \mathbf{c}_k[1]$ for $k = 1, \dots, K$ and $n = 0, \dots, K' - 1$, $\mathbf{m}_k[n] = \mathbf{c}_k[2]$ for $k = 1, \dots, K$ and $n = K', \dots, 2K' - 1$, etc., or equivalently $\mathbf{m}_k[n] = \mathbf{c}_k[\lfloor n/K' \rfloor + 1]$ for $k = 1, \dots, K$ in general. Now, if any K' successive vectors $\mathbf{d}[n] \triangleq [d_1[n] \dots d_{K'}[n]]^T$ with $n = iK', iK' + 1, \dots, (i + 1)K' - 1$ (i.e., starting at integer multiples of K') are linearly independent, the first K' vector constraints in (10) will span \mathcal{C}_1 , the second K' vector constraints in (10) will span \mathcal{C}_2 , etc., and thus all our I subspace constraints will be enforced.

ACKNOWLEDGMENT

The authors would like to thank Klaus List and Christian Stiegler for contributions to the proof of Theorem 1.

REFERENCES

- [1] J. H. Winters, “On the capacity of radio communication systems with diversity in a Rayleigh fading environment,” *IEEE J. Sel. Areas Comm.*, vol. 5, pp. 871–878, June 1987.
- [2] A. J. Paulraj and T. Kailath, “Increasing capacity in wireless broadcast systems using distributed transmission/directional reception,” *U.S. Patent*, no. 5,345,599, 1994.
- [3] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” *Bell Syst. Tech. J.*, pp. 41–59, 1996.
- [4] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” *Wireless Personal Communications*, vol. 6, pp. 311–335, 1998.
- [5] B. Hochwald, T. Marzetta, T. Richardson, W. Sweldens, and R. Urbanke, “Systematic design of unitary space-time constellations,” *IEEE Trans. Inform. Theory*, vol. 46, no. 6, pp. 1962–1973, 2000.
- [6] J.-F. Cardoso, “Blind signal separation: Statistical principles,” *Proc. IEEE*, vol. 86, pp. 2009–2025, Oct. 1998.
- [7] A. Chevrel and P. Loubaton, “MIMO blind second-order equalization method and conjugate cyclostationarity,” *IEEE Trans. Signal Processing*, vol. 47, no. 2, pp. 572–578, 1999.
- [8] H. Bölskei, R. W. Heath Jr., and A. J. Paulraj, “Blind channel estimation in spatial multiplexing systems using nonredundant antenna precoding,” in *Asilomar Conf. Signals, Systems, Computers*, (Pacific Grove (CA)), Oct. 1999.
- [9] H. Liu and G. B. Giannakis, “Deterministic approaches for blind equalization of time-varying channels with antenna arrays,” *IEEE Trans. Signal Processing*, vol. 46, pp. 3003–3013, Nov. 1998.
- [10] H. Artés, F. Hlawatsch, and G. Matz, “Efficient POCS algorithms for deterministic blind equalization of time-varying channels,” in *Proc. IEEE GLOBECOM-2000*, (San Francisco, CA), pp. 1031–1035, Nov. 2000.
- [11] P. L. Combettes, “The foundations of set theoretic estimation,” *Proc. IEEE*, vol. 81, pp. 181–208, Feb. 1993.
- [12] S. Talwar, M. Viberg, and A. Paulraj, “Blind separation of synchronous co-channel digital signals using an antenna array — Part I: Algorithms,” *IEEE Trans. Signal Processing*, vol. 44, pp. 1184–1197, May 1996.
- [13] A. J. van der Veen, S. Talwar, and A. Paulraj, “A subspace approach to blind space-time signal processing for wireless communication systems,” *IEEE Trans. Signal Processing*, vol. 45, pp. 173–190, Jan. 1997.
- [14] H. Liu and G. Xu, “Closed form blind symbol estimation in digital communications,” *IEEE Trans. Signal Processing*, vol. 43, pp. 2714–2723, Nov. 1995.
- [15] J. A. Cadzow, “Signal enhancement—A composite property mapping algorithm,” *IEEE Trans. Acoust., Speech, Signal Processing*, vol. 36, pp. 49–62, Jan. 1988.
- [16] J. Laurila, K. Kopsa, R. Schürhuber, and E. Bonek, “Semi-blind separation and detection of co-channel signals,” in *Proc. IEEE Int. Conf. Commun. (ICC)*, (Vancouver B.C., Canada), pp. 17–22, June 1999.