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ABSTRACT
We present a novel precoding or modulation scheme (matrix modu-
lation) that allows parallel transmission of several data signals over
an unknown multiple-input multiple-output (MIMO) channel. We
first present a theorem on unique signal demodulation and an ef-
ficient iterative demodulation algorithm for transmission over an
unknown instantaneous-mixture channel. We then generalize our
results to an unknown MIMO channel with memory.

1. INTRODUCTION

Using multiple antennas at transmitter and receiver allows a signif-
icant increase of data rates. Most transmission schemes (e.g., [1–
4]) require the receiver to know the multiple-input multiple-output
(MIMO) channel; unfortunately, training symbol based channel es-
timation significantly reduces the effective data rates. Other meth-
ods (e.g., [5–8]) do not require knowledge of the channel.

In this paper, we propose a scheme for transmission over an
unknownMIMO channel whereby K parallel data streams dk[n]
(k = 1; � � �; K) are “precoded” into MT antenna input signals
sk[n] (k = 1; � � �;MT) using a novel matrix modulation technique.
The receiver demodulates MR antenna output signals xk[n] (k =
1; � � �;MR) into data estimates d̂k[n] (see Fig. 1).

This paper is organized as follows. Section 2 presents a theo-
rem on unique demodulation and an efficient iterative demodulation
algorithm for the special case of memoryless MIMO channels (in-
stantaneous mixture channels). Section 3 extends the demodulation
method to general MIMO channels. Section 4 presents an improved
iterative equalization method for general MIMO channels. Finally,
simulation results are provided in Section 5.

2. INSTANTANEOUS MIXTURE CHANNEL

We first consider an instantaneous mixture channel (i.e., a memoryless
MIMO channel). The channel’s input-output relation is1

x[n] = Hs[n] ; (1)

with the transmit vector s[n]
4
= [s1[n] � � � sMT

[n]]T, the received
vector x[n]

4
= [x1[n] � � �xMR

[n]]T, and the (unknown) MR �MT

channel matrix H.
The matrix modulation precoding forces a “modulation struc-

ture” on the MT�N transmit signal matrix S
4
= [s[0] � � � s[N�1]]

(with some block length N ) according to

S =
KX
k=1

MkDk ; (2)

with the K diagonal N �N data matrices Dk
4
= diagfdk[0]; � � �;

dk[N�1]g and K “modulation matrices” Mk of size MT �N .
Combining N successive received vectors into the matrix X

4
=

[x[0] � � �x[N�1]] and inserting (2) into (1), we obtain
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1We consider noiseless transmission; the effect of noise will be studied

in Section 5.
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Fig. 1: Multi-input, multi-antenna transmission setup.

X = HS = H

KX
k=1

MkDk : (3)

Under certain conditions, the structure of S defined by (2) is strong
enough to allow unique reconstruction (up to a constant factor) of
the data sequences dk[n] from X. That is, the received matrix
X = H

PK0

k=1MkDk (where K0
� K is the number of active

data streams, i.e., we allow some data streams to be zero) does not
permit a different representation ~H

PK

k=1Mk
~Dk.

Theorem 1. LetDk and ~Dk beK0 resp.K diagonal matrices of
sizeN �N , withDk nonsingular, and letH and ~H be matrices of
sizeMR�MT and with full rank. LetK0

� K < MT andMR �

MT. Then there exist someN with
l
M2

T
�1

MT�K

m
� N �M2

T�1 and

K matricesMk (k = 1; � � �; K) of sizeMT �N such that

~H
KX
k=1

Mk
~Dk = H

K0X
k=1

MkDk (4)

(for one given set of data matricesDk) implies2 ~H#
H = cI and

~Dk =

�
cDk ; k � K0

0 ; K0 < k � K ;
(5)

wherec 2 C is an unknown factor.

A sketch of the proof, including one specific construction of the
modulation matrices Mk, is given in the Appendix.

Demodulation can be performed similarly to [9]. From (3),

x[n] = H

KX
k=1

dk[n]mk[n] ; n = 0; � � �; N�1 ; (6)

where mk[n] is the nth column of Mk. Multiplying (6) by H#

from the left and usingH#
H = I, theN linear equations in (6) can

be rewritten asQy = 0, whereQ is an MTN � (MTMR+KN)
matrix that contains the known quantities x[n] andmk[n], and y is
an (MTMR+KN)�1 vector that contains the unknowns (H#)k;l

2Here, I is the identity matrix and ~H# is the pseudo-inverse of ~H.



and dk[n]. The least-squares solution, yLS = argminkyk=1 kQyk,
is given by the right singular vector of Q corresponding to the
smallest singular value. This method is however computationally
intensive because of the large size of Q,

POCS demodulation algorithm. As an alternative, we now
present an efficient iterative demodulation algorithm that is inspired
by [10]. Given a received matrix X = HS and modulation matri-
ces Mk, it follows from Theorem 1 that the matrix S =PK

k=1
MkDk and, thus, the K data matrices Dk are uniquely de-

termined (up to a scalar factor) by the following two properties:

1. S =
PK

k=1
MkDk withDk diagonal;

2. the row span of S equals the row span of X.

(The second property follows from X = HS with H full rank).
Thus, S 2 A\B where A denotes the linear subspace of all matri-
ces

PK

k=1MkDk withMk given andDk diagonal, and B denotes
the linear subspace of all matrices whose row span lies in the row
span ofX, i.e., of all matrices of the formBXwith someMT�MR

matrix B. Since both A and B are linear subspaces and thus con-
vex, the formulation S 2 A \ B suggests a POCS (projections
onto convex sets) algorithm [11] for calculating and demodulating
S. This algorithm is iterative and consists in alternately projecting
the iterated version of S onto A and B.

Projection ontoA: The projection onto A amounts to forming
S
(i) =

PK

k=1MkD
(i)

k , where the nonzero (diagonal) elements of
D
(i)

k can be shown to be given by

�
D
(i)

k

�
n;n

=
1

MT

MTX
l=1

�
S
(i�1)

�
l;n

�
M

+
k

�
l;n

: (7)

Here, S(i�1) is the result of the previous iteration (i.e., the pro-
jection onto B, see below) and the MT � N matrices M+

k are
defined such that (m+

k [n])
T , the transpose of the nth column of

M
+
k , equals the kth row of theK�MT matrix

�
m1[n] � � �mK [n]

�#
.

If the vectors m1[n]; � � � ;mK [n] are orthonormal, then there is
simply M+

k =M
�
k where M�

k is the complex conjugate of Mk.

Projection ontoB: The projection onto B amounts to forming
S
(i) = B

(i)
X, where it can be shown that B(i) = S

(i�1)
X
#.

Here, S(i�1) is the result of the previous iteration (i.e., the projec-
tion onto A, see above) and X# is the pseudo-inverse of X, which
can be pre-calculated before starting the iteration.

The POCS algorithm is guaranteed to converge to an intersec-
tion point, i.e., S(1)

2 A \ B [11]. Thus, S(1) = cS and
D
(1)

k = cDk where the Dk are the true data matrices and c 2 C .
The convergence speed depends on the initialization, S(0). In the
semiblind case, some known input symbols can be used to calcu-
late a good initialization. Another way to speed up convergence is
to use relaxation[11] and/or knowledge of the data symbol alpha-
bet. (cf. [12]). The latter approach, however, introduces a noncon-
vex set and thus convergence to the desired solution is no longer
guaranteed. For large N , the POCS method typically is much more
efficient than the demodulation method discussed previously.

3. GENERAL MIMO CHANNEL

We will now extend our method to a MIMO channel with memory
(intersymbol interference). Here, the input-output relation is

x[n] =
L�1X
m=0

H[m]s[n�m] ; (8)

where the MR �MT matrices H[m] constitute the channel’s im-
pulse response and L�1 is the channel’s maximum time delay.

The matrix modulation precoding is still given by (2), however
with the MT � (N + L� 1) transmit signal matrix S

4
= [s[�L+

1] � � � s[N�1]] and the (N + L�1)� (N + L�1) diagonal data

matrices Dk
4
= diagfdk[�L+ 1]; � � �; dk[N�1]g.

Next, we will write the input-output relation (8) in block matrix

form. Setting H0 4=
�
H[0] � � �H[L� 1]

�
, we define the following

channel block matrix of size MRp�MT(L+ p� 1), in whichH0

is stacked p times with shifts to the left by MT positions each (the
stacking parameter p is called smoothing factor[13, 14]),

H
4
=

2
666664

0 H
0

H
0

. .
.

H
0

0

3
777775
:

We also form the following transmit block matrix of size MT(L+
p� 1)� (N � p+ 1),

S
4
=

2
664
s[p�1] s[p] � � � s[N�1]
s[p�2] s[p�1] � � � s[N�2]

...
...

. . .
...

s[�L+1] s[�L+2] � � � s[N�L�p+1]

3
775 :

This is a block-Toeplitz matrix that is “generated” by the columns
of S = [s[�L+ 1] � � � s[N � 1]]. Thus, we shall call S the gener-
ating matrixof S. Finally, we form the following received block-
Hankel matrix of size MRp� (N � p+ 1),

X
4
=

2
664
x[0] x[1] � � � x[N�p�1] x[N�p]
x[1] x[2] � � � x[N�p] x[N�p+ 1]

...
... . .

. ...
...

x[p�1] x[p] � � � x[N�2] x[N�1]

3
775 :

Now (8) can be written as (cf. [13, 14])

X =HS : (9)

Blind equalizationof the unknown channel (described by H)
corresponds to calculation of the transmit matrix S (or, equiva-
lently, its generating matrix S) from the known received matrixX .
For this to be possible, S must be a wide matrix and the row span
of X must be equal to the row span of S [13, 14]. This, in turn,
requires that H is a square or tall matrix and has full rank. These
requirements lead to the necessary conditions [13] p � MT(L�1)

MR�MT
,

with MR > MT, and N > MTL + (MT + 1)(p� 1). Blind
equalization can then be done as follows:

Step 1: Using a singular value decomposition (SVD), the row
span of S is calculated from X [13, 14].

Step 2:Another SVD is used to construct an MT(L + p�1) �
(N�p+ 1) block-Toeplitz matrix SA whose row span equals that
of S [13, 14]. It can be shown [13] that the MT � (N + L � 1)
generating matrix of SA can be written as SA = AS, where A
is an unknown invertible matrix of size K � K. Due to the SVD
construction, the rows of SA are orthonormal.

Step 3: The unknown instantaneous mixture defined by SA =
AS is analogous to the instantaneous mixture X = HS in (3).
Thus, it can be resolved using the demodulation methods of Section
2, whereby S and, in turn, the data sequences dk[�L+1]; dk[�L+
2]; � � �; dk[N�1] are obtained up to a common constant factor.

We next present an alternative POCS method that is computation-
ally more efficient and allows to incorporate a-priori knowledge
such as the symbol alphabet.

4. POCS EQUALIZATION ALGORITHM

A computationally intensive part of the three-step method of Sec-
tion 3 is the SVD in Step 2 that is used to construct the generat-



ing matrix SA. This SVD can be avoided by the following ap-
proach. As mentioned in Section 3, because of its block-Toeplitz
structure S can be reconstructed from the row span of X up to an
unknown instantaneous mixture. According to Section 2, this in-
stantaneous mixture can be resolved based on the modulation struc-
ture S =

PK

k=1
MkDk. Consequently, S is uniquely determined

(up to a scalar factor) by the following two properties:

1. S is block-Toeplitz and its generating matrix has modulation
structure, i.e., S =

PK

k=1
MkDk with Dk diagonal;

2. the row span of S equals the row span of X .

(The second property follows from (9) with H full rank). Thus,
S 2 A\B whereA is the linear subspace of all block-Toeplitz ma-
trices with generating matrix S =

PK

k=1
MkDk, with Mk given

andDk diagonal, and B is the linear subspace of all matrices whose
row span lies in that ofX , i.e., of all matrices of the formBX with
some MT(L+p�1)�Mp matrixB. This again suggests a POCS
algorithm for calculating S that consists in alternately projecting
the iterated version of S onto A and B.

Projection ontoA: S being a linear structured matrix [15], it
can be shown that the projection onto A can be performed by the
following two steps:

Step 1: Enforce block-Toeplitz property.Let S(i�1) be the re-
sult of the previous iteration (projection onto B, see below). From
S
(i�1), which is not block-Toeplitz, we calculate an MT � (N +

L�1) “pseudo generating matrix” ~S(i�1) as follows. The first one
of the MT rows of ~S(i�1) is obtained by averaging properly aligned
and zero-padded versions of the first, (MT + 1)st, (2MT + 1)st,
etc. rows of S(i�1). More precisely, the first row of S(i�1) is
shifted to the right by one position and added to the (MT + 1)st
row of S(i�1), with zeros appended where necessary. The re-
sult is again shifted to the right by one position and added to the
(2MT + 1)st row of S(i�1), etc. Finally the jth element of the
resulting row vector of length N + L � 1 is divided by the jth
element of (1; 2; � � �;MT;MT; � � �;MT;MT � 1; � � �; 1) to yield
the first row of ~S(i�1). The second row of ~S(i�1) is obtained simi-
larly by averaging properly aligned and zero-padded versions of the
second, (MT + 2)nd, (2MT + 2)nd, etc. rows of S(i�1). In this
manner, all MT rows of ~S(i�1) are obtained.

Step 2: Enforce modulation structure.Next, we form S
(i) =PK

k=1MkD
(i)

k , where the nonzero (diagonal) elements of D(i)

k

can be shown to be given by (7) with S(i�1) replaced by ~S(i�1)

and with M+
k as defined in Section 2. We then form the block-

Toeplitz matrix S(i)generated by S(i).
Projection ontoB: The projection onto B amounts to forming

S
(i) = B

(i)
X , where it can be shown that B(i) = S

(i�1)
X
#.

Here, S(i�1) is the result of the previous iteration (projection onto
A, see above). The pseudo-inverse X# can be pre-calculated.

The POCS algorithm is guaranteed to converge to an intersection
point, i.e., S(1)

2 A \ B [11]. Thus, S(1) = cS and D(1)

k =
cDk with c 2 C . In the semiblind case, some known consecutive
input symbols dk[n1]; � � �; dk[n2] can be used to calculate a good
initialization S(0) with generating matrix S(0) =

PK

k=1MkD
(0)

k

where D(0)

k = diagf0; � � �; 0; dk[n1]; � � �; dk[n2]; 0; � � �; 0g [16].
Convergence can again be accelerated as outlined on Section 2.

5. SIMULATION RESULTS

We studied the performance of the proposed methods for MT = 4
transmit antennas and K = 3 uncoded QPSK data signals dk[n].
The modulation matrices were constructed withN = 200 by taking
realizations of iid Gaussian variables as matrix entries and then or-
thonormalizing the corresponding columns of all Mk (this always
worked in our simulations). The channel impulse responses were
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Fig. 2: Normalized MSE vs. SNR for (a) an instantaneous mixture
channel, using the method of Section 2, and (b) a MIMO channel
with memory, using the methods of Section 3 and Section 4.

randomly generated for each simulation run. The channel output
signals were corrupted by white Gaussian noise with variance �2
and observed over an interval of length N = 200.

First, we considered three instantaneous mixture channels with
MR = 4, 6 and 8 receive antennas. Fig. 2(a) shows the normalized
mean-square error (MSE) vs. the SNR3 obtained with the POCS
method of Section 2. It is seen that use of more receive antennas
results in better signal estimation.

Next, we considered a MIMO channel with memory (MR = 6
receive antennas, channel impulse response length L = 3). Fig.
2(b) shows the normalized MSE vs. the SNR obtained with the
methods of Section 3 and Section 4 (smoothing factor p = 5). It
is seen that for low SNR, the method of Section 4 performs sig-
nificantly better. This may be due to the fact that in Step 2 of the
method of Section 3, a signal subspace/noise subspace allocation
of certain singular vectors is required (cf. [13, 14]).

APPENDIX: SKETCH OF PROOF OF THEOREM 1

SettingG
4
= ~H#

H, we can rewrite (4) as

~vn = Gvn ; n = 0; � � �; N�1 ; (10)
with

vn
4
=

K0X
k=1

dk[n]mk[n] ; ~vn
4
=

KX
k=1

~dk[n]mk[n] (11)

where mk[n] denotes the nth column of Mk. We have to show
that there exist vectors m1[n]; � � �;mK [n] such that (10) with (11)
implies G = cI with some c 2 C . Assuming that the vectors
m1[n]; � � �;mK [n] are linearly independent for n fixed, G = cI
together with (10) and (11) will imply the desired result in (5), viz.,
~dk[n] = cdk[n] for 1 � k � K0 and dk[n] = 0 for K0 < k � K.

The vectors vn and ~vn in (11) are elements of, respectively, the
K0-dimensional subspace Cn = span fm1[n]; � � �;mK0 [n]g and
the K-dimensional subspace ~Cn = span fm1[n]; � � �;mK [n]g of
C
MT . Since K0

� K < MT, there is Cn � ~Cn � C
MT . Hence,

(10) means that G maps a specificvector vn 2 Cn (defined by
the specific transmitted data dk[n]) to some vector ~vn 2 ~Cn. We
have N such transformation relations. The question is, can vectors
m1[n]; � � �;mK [n] (n = 0; � � �; N �1) be found such that these
transformation relations imply G = cI with some c 2 C , and how
many such relations do we need (how large is N )?

Let us first study a different problem. Suppose we have I pairs
of subspaces Ci = span fc1[i]; � � �; cK0 [i]g and ~Ci = spanfc1[i];

3The normalized MSE is defined as
PK
k=1

P
n

�
�dk[n] �

ĉ d̂k[n]
�
�2=

PK
k=1

P
n jdk[n]j

2 averaged over all simulation runs,

where d̂k[n] is the estimate of dk[n] obtained with the respective method
and ĉ is the least-squares fit for the unknown factor c. The number of
simulation runs was chosen between 200 and 10000, depending on the
SNR. The SNR is defined as 1

NMR

PMR

k=1

PN�1
n=0 jxk[n]j

2=�2 .



� � �; cK0 [i]; � � �; cK [i]g (i = 1; � � �; I), with K 0
� K < MT and

Ci �
~Ci � C

MT , and we know that G maps anyv 2 Ci to some
~v 2 ~Ci, i.e.,

GCi �
~Ci ; i = 1; � � �; I : (12)

How should we construct the pairs of subspaces Ci; ~Ci (or, equiv-
alently, the basis fc1[i]; � � �; cK0 [i]; � � �; cK [i]g), and how many
such pairs do we need (i.e., how large must we choose I) such that
(12) implies G = cI? Let ~C?i = span fb1[i]; � � �;bMT�K [i]g �

C
MT denote the orthogonal complement space of ~Ci. Since ck[i] 2
~Ci and bk[i] 2 ~C?i , there must be cl[i] ? bk[i], i.e.,

b
H
k [i]cl[i] = 0 ; k = 1; � � �;MT�K ; l = 1; � � �; K ; (13)

for i = 1; � � �; I . Moreover, since according to (12) Gck[i] 2 ~Ci
for all ck[i] with k = 1; � � �; K0, we also have

b
H
k [i]Gcl[i] = 0 ; k = 1; � � �;MT�K ; l = 1; � � �; K0

; (14)

for i = 1; � � �; I . These are (MT�K)K0I equations of the type
x
H
Gy = 0 that constrain G. If we choose x = um and y = un

withm 6= n, with um the mth unit vector of size MT, then xHy =
0 and xHGy = 0 becomes Gm;n = 0. Therefore, by choosing for
cl[i] and bk[i] suitable unit vectors, we can force the off-diagonal
elements of G to zero while satisfying (13).

More specifically, we start with i = 1, allocating unit vectors for
all cl[1] and bk[1] such that cl[1] 6= bk[1]. Since there areMT unit
vectors, we can find M2

T�MT pairs of differentunit vectors. There
are (MT�K)K0 pairs cl[1];bk[1] for which we must allocate pairs
of different unit vectors. Since (MT�K)K0 < M2

T�MT (due to
K0

� MT�1), we can force (MT�K)K0 off-diagonal elements
of G to zero. Note that by specifying b1[1]; � � �;bMT�K [1] and
c1[1]; � � �; cK0 [1], we have specified the first subspace pair C1; ~C1.

We now proceed to construct the second subspace pair C2; ~C2.
We allocate “new” unit vector pairs (that have not been used previ-
ously) for vector pairs cl[2]; bk[2]; these allow to force additional
off-diagonal elements of G to zero. It may happen that less than
(MT�K)K0 new unit vector pairs exist (however, there always
exists at least one new unit vector pair). In that case, we have to
allocate “old” unit vector pairs for some pairs cl[2];bk[2] in or-
der to span our subspaces C2; ~C2; these vector pairs do not serve to
annihilate additional off-diagonal elements of G.

We continue this construction for i = 3, i = 4, etc., until we
have forced all M2

T �MT off-diagonal elements ofG to zero, i.e.,
G is a diagonalmatrix.

To have G = cI, it remains to constrain all diagonal elements
Gm;m to be equal. For this, we use additional subspace pairs Ci; ~Ci
and additional equations (14). Here,MT�1 vector pairs cl[i];bk[i]
are constructed as follows: Two consecutive elements of cl[i] are
1 and �1, with all other elements 0, and the corresponding two
consecutive elements of bk[i] are both 1, again with all other ele-
ments 0. Again, (13) is satisfied. Furthermore, the equations (14)
simplify to Gm+1;m+1 = Gm;m for m = 1; � � �;MT � 1, which
means that all diagonal elements Gm;m are equal. Thus, finally,
G = cI with some c 2 C . It can be shown that the number of
subspace pairs required for the entire construction, I , is bounded as
M2

T
�1

(MT�K)K
0
� I �M2

T � 1.
Having shown how to construct suitable pairs of subspaces to

force G = cI, we now return to our original problem. Since (10)
maps just individual vectors of each K0-dimensional space Ci (and
not the entire subspace!) into ~Ci, we have to choose K0 linearly
independent vectors for each given Ci. Thus, N = K0I , which

yields the lower bound of N �
M2

T
�1

MT�K
for the number of vectors.

Moreover, it can be shown that N can be upper bounded as N �

M2
T � 1 (instead of N � K0(M2

T � 1)).

The modulation matrices Mk can finally be constructed as fol-
lows. Since we need K0 linearly independent vectors for each sub-
space pair, we can choose mk[n] = ck[1] for k = 1; � � �; K and
n = 0; � � �; K0

� 1, mk[n] = ck[2] for k = 1; � � �; K and n =
K0; � � �; 2K0

� 1, etc., or equivalently mk[n] = ck [bn=K
0
c+ 1]

for k = 1; � � �; K in general. Now, if any K0 successive vectors

d[n]
4
=

�
d1[n] � � � dK0 [n]

�T
with n = iK0; iK0 + 1; � � �; (i +

1)K0
� 1 (i.e., starting at integer multiples of K0) are linearly in-

dependent, the first K0 vector constraints in (10) will span C1, the
second K0 vector constraints in (10) will span C2, etc., and thus all
our I subspace constraints will be enforced.
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