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ABSTRACT

We present anovel precoding or modulation scheme (matrix modu-
lation) that allows parallel transmission of several data signals over

an unknown multiple-input multiple-output (MIMO) channel. We
first present a theorem on unique signal demodulation and an ef-

ficient iterative demodulation algorithm for transmission over an

unknown instantaneous-mixture channel. We then generalize our

results to an unknown MIMO channel with memory.

1. INTRODUCTION

Using multiple antennas at transmitter and receiver allows asignif-
icant increase of data rates. Most transmission schemes (e.g., [1-
4]) require the receiver to know the multiple-input multiple-output
(MIMO) channel; unfortunately, training symbol based channel es-
timation significantly reduces the effective data rates. Other meth-
ods (e.g., [5-8]) do not require knowledge of the channel.

In this paper, we propose a scheme for transmission over an
unknownMIMO channel whereby K parallel data streams di.[n]
(k = 1,---,K) are “precoded” into Mt antenna input signals
sk[n] (k =1, -+, Mt) using anovel matrix modulation technique.
The receiver demodulates Mg antenna output signals zx [n] (K =
1,---, MRr) into data estimates dx,[n] (see Fig. 1).

This paper is organized as follows. Section 2 presents a theo-
rem on unigque demodul ation and an efficient iterative demodul ation
algorithm for the special case of memoryless MIMO channels (in-
stantaneous mixture channels). Section 3 extends the demodulation
method to general MIMO channels. Section 4 presents an improved
iterative equalization method for general MIMO channels. Finaly,
simulation results are provided in Section 5.

2. INSTANTANEOUS MIXTURE CHANNEL

Wefirst consider an instantaneous mixture channel (i.e., amemoryless
MIMO channel). The channel’s input-output relation is*

x[n] = Hs[n], @

with the transmit vector s[n] 2 [s1[n] - - - sary [1]]7, the received

vector x[n] £ [z1[n] - - 215 [n]]7, and the (unknown) Mg x My
channel matrix H.

The matrix modulation precoding forces agmodulation struc-
ture” on the M x N transmit signal matrix S = [s[0] - - - s[N—1]]
(with some block length ) according to

K
S=> M;D,
k=1
with the K diagonal N x N data matrices Dy, = diag{d[0], - - -,
dr[N—1]} and K “modulation matrices” My, of size Mt x N.
Combining IV successive received vectors into the matrix X 2
[x[0] - - - x[IN —1]] and inserting (2) into (1), we obtain
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1We consider noiseless transmission; the effect of noise will be studied
in Section 5.
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Fig. 1: Multi-input, multi-antenna transmission setup.

K
X=HS=H)» M;D;.
k=1
Under certain conditions, the structure of S defined by (2) isstrong

enough to allow unique reconstruction (up to a constant factor) of
the data sequences di[n] from X. That is, the received matrix

X = HY [, M;D;, (where K’ < K is the number of active
data streams, i.e., we allow some data streams to be zero) does not
permit a different representation H Zle My Dyg.

®

Theorem 1. LetD;, andD;, be K’ resp.K diagonal matrices of
sizeN x N, with D, nonsingular, and leH andH be matrices of
sizeMg x M~ and with full rank. Letk’ < K < Mt and Mg >

2 b
M. Then there exist sonf€ with AAfTT:;( <N<M3%—1land

K matricesMy, (k = 1,-- -, K) of sizeMt x N such that

K K’
HY M;Dy = H)Y M;D; (4)
k=1 k=1

(for one given set of data matric&;) implie¥ H#*H = cI and

= _ CDk,
b, - {2

k<K'

K <k<K, ©)

wherec € C is an unknown factor.

A sketch of the proof, including one specific construction of the
modulation matrices My, is given in the Appendix.
Demodulation can be performed similarly to [9]. From (3),

K
x[n]:Hde‘[n]mk[n]: n=0,--,N-1, (6)
k=1

where my,[n] is the nth column of M. Multiplying (6) by H#

fromtheleft and using H¥*H = I, the NV linear equationsin (6) can
be rewritten as Qy = 0, where Q isan Mt N x (MtMr + KN)
matrix that contains the known quantities x[n] and my[n], and y is
an (Mr Mg+ K N) x 1 vector that contains the unknowns (H#), ;

2Here, I isthe identity matrix and H# is the pseudo-inverse of H.



and di[n]. Theleast-squares solution, y.s = argmin .y, [|Qyll,
is given by the right singular vector of Q corresponding to the
smallest singular value. This method is however computationally
intensive because of the large size of Q,

POCS demodulation algorithm. As an dternative, we now
present an efficient iterative demodul ation algorithm that isinspired
by [10]. Given areceived matrix X = HS and modulation matri-
ces My, it follows from Theorem 1 that the matrix S =
Z{f:l M, D}, and, thus, the K data matrices D, are uniquely de-
termined (up to a scalar factor) by the following two properties:

1. S =Y, M, Dy, with D;, diagond;
2. therow span of S equals the row span of X.

(The second property follows from X = HS with H full rank).
Thus, S € AN B where A denotes the linear subspace of all matri-
cesY 1, M Dy, with M, given and D, diagonal, and B denotes
the linear subspace of all matrices whose row span lies in the row
span of X, i.e., of al matricesof theform BX with some Mt x Mg
matrix B. Since both A and B are linear subspaces and thus con-
vex, the formulation S € A N B suggests a POCS (projections
onto convex sets) algorithm [11] for calculating and demodulating
S. This agorithm isiterative and consists in alternately projecting
theiterated version of S onto .4 and B.

Projection ontoA: The projection onto .A amounts to forming
s =K M, D", where the nonzero (diagonal) elements of
D](j) can be shown to be given by

1 &

(i) B i—1

(D), = M_TZ(S( D (M), Y
=1

Here, S¢—1) is the result of the previous iteration (i.e., the pro-

jection onto B, see below) and the Mt x N matrices M;* are

defined such that (mj [n])”, the transpose of the nth column of

M, equalsthe kthrow of the K x M matrix [m [n] - - - m[n]] *.

If the vectors m[n],--- ,mx[n] are orthonormal, then there is
simply MZ = M}, where M, isthe complex conjugate of M.

Projection ontoB: The projection onto 3 amounts to forming
S® = B®X, where it can be shown that B®) = SG-UX#,
Here, S~ Y isthe result of the previous iteration (i.e., the projec-
tion onto .4, see above) and X# isthe pseudo-inverse of X, which
can be pre-calculated before starting the iteration.

The POCS algorithm is guaranteed to converge to an intersec-
tion point, i.e, S € AN B[11]. Thus, S = ¢S and
D{™ = ¢D,, where the D are the true datamatricesand ¢ € C.

The convergence speed depends on the initialization, S(. In the
semiblind case, some known input symbols can be used to calcu-
late a good initialization. Another way to speed up convergence is
to use relaxation[11] and/or knowledge of the data symbol apha-
bet. (cf. [12]). The latter approach, however, introduces a noncon-
vex set and thus convergence to the desired solution is no longer
guaranteed. For large IV, the POCS method typically is much more
efficient than the demodulation method discussed previously.

3. GENERAL MIMO CHANNEL

We will now extend our method to a MIMO channel with memory
(intersymbol interference). Here, the input-output relation is

x[n] = 2 H[m]s[n—m], (8)

m=0

where the Mr x Mt matrices H[m] constitute the channel’s im-
pulse response and L—1 isthe channel’s maximum time delay.
The matrix modulation precoding is still given by (2), however

with the Mt x (N + L — 1) transmit signal matrix S £ [s[-L+

1]---s[N—1]]and the (N + L—1) x (N + L—1) diagonal data
matrices Dy, £ diag{di[~L + 1], - --, dk[N—l]g.

Next, we will write the input-output relation (8) in block matrix
form. Setting H' 2 [H[0] - - - H[L — 1]], we define the following
channel block matrix of size Mrp x Mt (L +p — 1), inwhich H'

is stacked p times with shifts to the left by M+ positions each (the
stacking parameter p is called smoothing factof13, 14]),

We aso form the following transmit block matrix of size Mr(L +
p—1)x(N—-p+1),

s[p—1] s[p] s[N —1]
s2 s[p.—Z] s[p'—l] s[N.—Z]
s[~L+1] s[—L+2] S[N—L—p+1]

Thisis a block-Toeplitz matrix that is “generated” by the columns
of S = [s[-L + 1]- ~~sHN - 1;]. Thus, we shall call S the gener-
ating matrixof 8. Finally, we form the following received block-
Hankel matrix of size Mrp x (N —p + 1),

x[0]  x[1] x[N—p—1]  x[N—p]
x A X[l] XLZ] X[N_—p] X[N—_p +1]
xlp—1] x[p] x[N—=2]  x[N—-1]
Now (8) can be written as (cf. [13, 14])
X=HS. 9)

Blind equalizationof the unknown channel (described by H)
corresponds to calculation of the transmit matrix S (or, equiva-
lently, its generating matrix S) from the known received matrix X’.
For thisto be possible, S must be a wide matrix and the row span
of X must be equal to the row span of S [13,14]. This, in turn,
requires that ‘H is a square or tall matrix and has full rank. These

requirements lead to the necessary conditions [13] p > FEEZD,

with Mg > My, and N > MrL + (Mt +1)(p—1). Blind
equalization can then be done as follows:

Step 1: Using a singular value decomposition (SVD), the row
span of S iscalculated from X [13, 14].

Step 2:Another SVD is used to construct an Mt (L + p—1) x
(N —p + 1) block-Toeplitz matrix S4 whose row span equals that
of 8 [13,14]. It can be shown [13] that the Mt x (N + L — 1)
generating matrix of S4 can be written as S, = AS, where A
is an unknown invertible matrix of size K x K. Dueto the SVD
construction, the rows of S 4 are orthonormal.

Step 3: The unknown instantaneous mixture defined by Sy =
AS is analogous to the instantaneous mixture X = HS in (3).
Thus, it can be resolved using the demodul ation methods of Section
2, whereby S and, inturn, the data sequences dy. [— L+1], d[— L+
2], +,di[N —1] are obtained up to a common constant factor.

We next present an alternative POCS method that is computation-
ally more efficient and allows to incorporate a-priori knowledge
such as the symbol alphabet.

4. POCSEQUALIZATION ALGORITHM

A computationally intensive part of the three-step method of Sec-
tion 3 isthe SVD in Step 2 that is used to construct the generat-



ing matrix S4. This SVD can be avoided by the following ap-
proach. As mentioned in Section 3, because of its block-Toeplitz
structure S can be reconstructed from the row span of X up to an
unknown instantaneous mixture. According to Section 2, thisin-
stantaneous m| xture can be resolved based on the modulation struc-
ture S = Z 1 M Dy. Consequently, S is uniquely determined
(upto ascalar factor) by the following two properties:

1. Sisblock-Toeplitz and itsgenerating matrix has modulation
structure, i.e, S = Y1, MDy, with Dy, diagonal;
2. therow span of S equals the row span of X.

(The second property follows from (9) with # full rank). Thus,
S € AnBwhere A isthelinear subspace of all block-Toeplitz ma-
trices with generating matrix S = Zszl M. Dy, with M, given
and D, diagonal, and B isthe linear subspace of all matriceswhose
row span liesinthat of X, i.e., of al matrices of the form BX with
some Mt (L+p—1) x Mp matrix B. Thisagain suggests aPOCS
algorithm for calculating S that consists in aternately projecting
theiterated version of S onto .4 and B.

Projection ontoA: 8 being a linear structured matrix [15], it
can be shown that the projection onto A can be performed by the
following two steps: 4

Step 1: Enforce block-Toeplitz propertiet S©—Y be the re-
sult of the previous iteration (projection onto 3, see below). From
SU~Y, which is not block-Toeplitz, we calculate an Mr x (N +
L —1) “pseudo generating matrix” S~ ") asfollows. Thefirst one
of the M rows of S¢~1) is obtained by averaging properly aligned
and zero-padded versions of the first, (Mt + 1)st, (2Mr + 1)st,
etc. rows of SV, More precisely, the first row of S~ 1 is
shifted to the right by one position and added to the (Mt + 1)st
row of 8¢~ with zeros appended where necessary. The re-
sult is again shifted to the right by one position and added to the
(2Mr + 1)st row of SU~Y etc. Finally the jth element of the
resulting row vector of length N + L — 1 is divided by the jth
element of (1, %, - My, Mr,---, M, MT —1,---,1) toyield
the first row of S¢~1). The second row of S¢~1) is obtained simi-
larly by averaging properly aligned and zero-padded versions of the
second, (M + 2)nd, (2Mr + 2)nd, etc. rows of SO~ 1. In this
manner, all Mt rows of S¢~1) are obtained. _

Step 2: Enforce modulation structuré\ext, we form S =
YK M, D, where the nonzero (diagonal) elements of D\
can be shown to be given by (7) with S¢~V replaced by S¢—
and with M as defined in Section 2. We then form the block-
Toeplitz matrix S generated by S

Projection onto3: The projection onto B amounts to forming
S = B x, where it can be shown that B = SU=Dx#,
Here, S¢~1 isthe result of the previous iteration (projection onto
A, see above). The pseudo-inverse X# can be pre-cal culated.

The POCS algorithm is guaranteed to converge to an intersection
point, i.e, ) € AN B[11]. Thus, 8¢ = ¢S and D{™ =
cDy, Wlth ceC In the semiblind case, some known coneecutlve
input symbols di[n1], - - -, di[n2] can be used to calculate a good
initialization S(*) with generating matrix S = Y% ™M, D"
where D\ = diag{0,- -, 0, d[n1], - - -, dy[n2],0, - - -, 0} [16].
Convergence can again be accel erated as outllned on Sectr on 2.

5. SSIMULATION RESULTS

We studied the performance of the proposed methods for Mt = 4
transmit antennas and K = 3 uncoded QPSK data signals dj. [n]

The modulation matriceswere constructed with N = 200 by taking
realizations of iid Gaussian variables as matrix entries and then or-
thonormalizing the corresponding columns of all M, (this ways
worked in our smulations). The channel impulse responses were
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Fig. 2: Normalized MSE vs. SNR for (a) an instantaneous mixture
channel, using the method of Section 2, and (b) a MIMO channel

with memory, using the methods of Section 3 and Section 4.

randomly generated for each simulation run. The channel output
signals were corrupted by white Gaussian noise with variance ¢°
and observed over aninterval of length N = 200.

First, we considered three instantaneous mixture channels with
Mg = 4, 6 and 8 receive antennas. Fig. 2(a) shows the normalized
mean-square error (MSE) vs. the SNR® obtained with the POCS
method of Section 2. It is seen that use of more receive antennas
results in better signal estimation.

Next, we considered a MIMO channel with memory (Mg = 6
receive antennas, channel impulse response length L = 3). Fig.
2(b) shows the normalized MSE vs. the SNR obtained with the
methods of Section 3 and Section 4 (smoothing factor p = 5). It
is seen that for low SNR, the method of Section 4 performs sig-
nificantly better. This may be due to the fact that in Step 2 of the
method of Section 3, a signal subspace/noise subspace allocation
of certain singular vectorsis required (cf. [13, 14]).

APPENDIX: SKETCH OF PROOF OF THEOREM 1
Setting G 2 H#H, we can rewrite (4) as
N-1, (10)

Vo = Gvy,

v 23 di[n]my[n]

where my,[n] denotes the nth column of Mj,. We have to show
that there exist vectors m; [n], - - -, mx [n] such that (10) with (11)
implies G = ¢I with some ¢ € C. Assuming that the vectors
m;[n], -, mg[n] are linearly independent for n fixed, G = cI
together with (10) and (11) will imply the desired result in (5), viz.,
di[n] = cdg[n]for1 <k < K’ anddy[n] =0for K’ <k < K.

The vectors v,, and v,, in (11) are elements of, respectively, the
K'-dimensional subspace C, = span {m[n], -+, m[n]} and
the K -dimensional subspace C,, = span {m;[n],-- -, mx|[n]} of
CMr  Since K' < K < Mr, thereisC, C C,, C (CMT Hence,
(10) means that G maps a specificvector v, € Cp (defined by
the specific transmitted data d,[n]) to some vector v, € C,. We
have NV such transformation relations. The question is, can vectors
my[n],---, mgn] (n = 0,---, N—1) be found such that these
transformation relationsimply G = ¢I with some ¢ € C, and how
many such relations do we need (how largeis N)?

Let us first study a different problem. Suppose we have I pairs

of subspaces C; = span {c1]i], - - -, cx[i]} and C; = span{c.]i],

3The normaized MSE is defined as 5, 37 |de[n] —
édy[n]|®/ K |3, |dy[n]|?> averaged over al smulation runs,

where d;, [n] is the estimate of dj, [n] obtained with the respective method
and ¢ is the least-sguares fit for the unknown factor ¢. The number of
simulation runs was chosen between 200 and 10000, depending on the

1 M, N-1 :
N Mg 22k=1 2n=0 |lzk[n]]?/a®.

n=0,--
with




el G =1,---I),with K' < K < Mt and
C; C C; c CMT, and we know that G maps any v € C; to some
i.e

GG CCi, i=1,---1. (12)

How should we construct the pairs of subspaces C;, C; (or, equiv-
adently, the basis {ci[i], - - -, cx/[i],- -, cx[i]}), and how many
such pairs do we need (i.e., how large must we choose I) such that
(12) implies G = ¢1? Let i+ = span {bi[i], - -, barp—x[i]} C
((;MT denote the orthogonal complement space of C;. Sincecx[i] €
C; and by[i] € i, there must be ¢;[i] L by[i], i.e,

by [ilcifil =0, k=1, Mr—K,1=1,-- K, (13
fori = 1,---,I. Moreover, since according to (12) Gex[i] € C;
for al ci[i] withk =1, ---, K', weaso have

bi [i|Gelil=0, k=1, Mr—K,l=1,--- K, (14)
fori = 1,---, 1. These are (Mt — K) K'I equations of the type
x? Gy = 0 that constrain G.. If wechoose x = u,, andy = u,
withm # n, with u,, themth unit vector of size Mr, then xy =
0 and x Gy = 0 becomes G.,,., = 0. Therefore, by choosing for
¢;[¢] and by [4] suitable unit vectors, we can force the off-diagonal
elements of G to zero while satisfying (13).

More specifically, we start with ¢ = 1, alocating unit vectors for
al ¢;[1] and by [1] such that ¢;[1] # by [1]. Sincethereare M+ unit
vectors, we can find M3 — M pairsof differentunit vectors. There
are (Mr—K) K' pairsc;[1], bx[1] for which we must allocate pairs
of different unit vectors. Since (Mr—K) K’ < M2 — M (dueto
K' < Mr—1), wecan force (Mt —K) K’ off-diagonal elements
of G to zero. Note that by specifying by [1], -, b - [1] and
ci[l], - -+, ex[1], we have specified the first subspace pair C1, ..

We now proceed to construct the second subspace pair Cz, Co.
We alocate “new” unit vector pairs (that have not been used previ-
ously) for vector pairs ¢;[2], bx[2]; these allow to force additional
off-diagonal elements of G to zero. It may happen that less than
(Mt — K)K' new unit vector pairs exist (however, there always
exists at least one new unit vector pair). In that case, we have to
alocate “old” unit vector pairs for some pairs ¢;[2], bx[2] in or-
der to span our subspaces C», C»; these vector pairs do not serve to
annihilate additional off-diagonal elements of G.

We continue thi's construction for i« = 3, i = 4, etc., until we
have forced all M3 — My off-diagonal elements of G to zero, i.e.,
G isadiagonalmatrix.

To have G = cI, it remains to constrain all diagonal elements
Gm,m tobeequal. For this, we use additional subspace pairsC;, C;
and additional equations (14). Here, Mt —1 vector pairsc;[i], bx[i]
are constructed as follows: Two consecutive elements of ¢;[i] are
1 and —1, with all other elements 0, and the corresponding two
consecutive elements of bk@ are both 1, again with all other ele-
ments 0. Again, (13) is satisfied. Furthermore, the equations (14)
smplify t0 Gpt1,m+1 = Gm,m form = 1,--., Mt — 1, which
means that all diagona elements G, are equal. Thus, finally,
G = cI withsome ¢ € C. It can be shown that the number of
subspace pairs required for the entire construction, I, isbounded as

M2 —1
e ST<Mi—1.

Having shown how to construct suitable pairs of subspaces to
force G = cI, we now return to our original problem. Since (10)
maps just individual vectors of each K'-dimensional space C; (and
not the entire subspace!) into C;, we have to choose K' linearly

independent vectors for each given C;. Thus, N = K'I, which

yields the lower bound of N > ]ﬁ[/f%__}l( for the number of vectors.

Moreover, it can be shown that NTcan be upper bounded as N <
M?% — 1 (instead of N < K'(M3 — 1)).

The modulation matrices M, can finally be constructed as fol-
lows. Sincewe need K linearly independent vectors for each sub-
space pair, we can choose mkE;L] =ci[l]fork =1,---, K and
n=20-K —1 mg[n] = ck2]fork =1,--- Kandn =
K' - 2K’ — 1, etc.,, or equivaently mg[n] = ci [[n/K'] + 1]
fork = 1,---, K in general. Now, if any K’ successive vectors
dn] £ [di[n]-- di[n]]" withn = iK' iK' + 1, (i +
1)K’ — 1 (i.e, starting at integer multiples of K') are linearly in-
dependent, the first K’ vector constraints in (10) will span Ci, the

second K’ vector constraintsin (10) will span Cs, etc., and thus all
our I subspace constraints will be enforced.
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