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ABSTRACT

A digital chip hasbeendevelopedfor isolatedword recog-
nition in real-world noisy ervironments.By carefullycom-
paringrecognitionperformancandhardwareimplementabil-
ity amodified-ZCRA modelandRBF neuralnetwork model
areselectedor the featureextractorandclassifier respec-
tively. The modified-ZCRA modelis basedon featureex-
tractionmechanisnof humanauditorysystemanddemon-
stratedsuperiorityfor noisy speeches.The RBF network
hasexcellentOOV (out-of-vocahulary) rejectioncapability
aswell as good recognitionperformance. Both the fea-
ture extractor and classifierare implementedby repetition
of simple operationswhich resultin reductionof memory
operationdor thefull useof memorybandwidth.Thechips
is customdesignedatlogic level withoutany DSPcore,and
implementechtanFPGAwith 12 MHz clock speed.

1. INTRODUCTION

Speectrecognitionis regardedasthe major man-machine
interface. Although currentspeechrecognitionsystemge-
quirepowerful computersvith fastprocessorandlargemem-
ory, thereexist mary stand-alonapplicationsn real-world.
Speechrecognitionchipsareidealfor thesestand-aloneyp-
plications.However, the performancef speechrecognition
systemss seriouslydegradedn thepresencef background
noise,which becomesnoreseriousin out-doorstand-alone
applications. Therefore,speechrecognitionchips require
noise-rolustnesaswell asefficient low-power implemen-
tation. Carefuldesignstudyis alsoessentiato make com-
promisebetweenhigh performancendefficient VLSI im-
plementation.For the robustfeatureextractionwe adopted
theZCPA (Zero-Crossingwith PeakAmplitude)modelbased
on humanauditory system,which demonstrateguperior
performancén noisyernvironments.[] AlthoughHMM (hid-
denMarkov model)and neuralnetwork modelshave been
commonlyusedfor theclassifierthelatteris advantagegor
VLSI implementationglueto its regular computingarchi-
tecture. Especially RBF neuralnetworksis choserfor ex-
cellentbalancebetweerhigh recognitionperformanceand
OOV (out-of-vocahulary)rejectionperformanceAlso, spealer
adaptations easilyimplementedvith theRBFnetworks. In
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Fig. 1. Block Diagramof the developedspeecirecognition
chip

this papera new digital chip is reportedfor isolatedword
recognitionin real-world noisy ervironments. The feature
extraction module and classifiermodule are describedin
Section2 and Section3, respectiely. Section4 presents
the developedchip configurationandtestresults. Fig. 1
shaws the block diagramof the proposedsystem.

2. FEATURE EXTRACTION

Fig. 2 representa block diagramof the ZCPA model[1]].
The ZCPA modelis composedf cochlearbandpasfilters
anda nonlinearstageat the outputof eachbandpas#ilter.
The bank of bandpassfilters simulatesfrequeng subjec-
tivity of the basilarmembranen the cochleayandthe non-
linear stagemodelsinner hair cells attachedo the basilar
membrane The nonlinearstageconsistsof a zero-crossing
detectorfollowed by the compressie nonlinearity In this
paper the cochlearbandpasdilter is constructedby dig-
ital FIR filters with powers-of-two coeficients for multi-
plierlesschip implementations.Then,we proposea mod-
ified featureextractionmethodto reducecomputationate-
sources.

2.1. Cochlear Filter Banks

Cochleafrfilter banksarecomposedf 16 channelsand100
delaytapswith quantizatiorat signed12-bit.

2.1.1. Powers-of-two Decomposition

TheFIR coeficientsarerepresentetly

Cj =Y ax2¥c=-1,0,+1 (1)
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Fig. 2. Block Diagramof the ZCPA model

With thisexpressionwe candesignmultiplierlessFIR filters[5]
but the systemneedsmoreinstructions.By usingthe sym-
metryof FIR coeficients,the computingtimeis reducecdy
ahalf. It meanghatonecoeficienthastwo operandsNow,
instructionsfor the FIR systenmustbeconsideredThein-
structionsmustincludethe information of coeficientsand
operandsThesystemwith multipliersneedsonecoeficient
[12bit] and two operandaddresse$6+7=13bit]. Because
thefilter bankis designedising100delaytapsat the max-
imum, the first operandis limited by 50 delaytaps. Con-
sequently it needs25 x 324 = 8100 bits overall. Then
eachpowers-of-two filter needsone sign bit, 4 shift bits,
and 13 bits for the address.Becausehe width of FIR co-
efficientsis 11 exceptthe signbit, the maximumshift is re-
strictedby 4. Accordingly; it needsl? bits. However, all of
powers-of-two coeficientsneednot to have addressnfor-
mation. Thesemusthave theaddressnformationonly if the
operandsare changed. Becausehe coeficients are trans-
ferredfrom onemultiplier operatiorto severalsignandshift
operationsye need5 x 723 (signandshiftinformation)+
13 x 324 (addressnformation)= 7827 bits. If we assume
thatbuffer memoryusedfor the 100 delaytapshasa single
I/O, the systemmust have a stall stagefor two operands.
The multiplier filter needs648 clocks and the powers-of-
two filter needs723+324=104¢locks.Naturally, bothneed
clocksfor channelinformation. Therefore,powers-of-two
filter needmoreclocksbut lessareadueto lessinstruction
size and multiplierlessoperation. In this paper 12 MHz
clock is usedto completethe FIR filter operationwithin
time intervals for 11.025KHzsampling.Bble 1 shaws the
comparisorbetweenFIR filters with and without a multi-
plier.

Table 1. Thecomparisorof FIR filters
powers-of-two  multiplier

non-zerocoef. 722 324
instruction
romsize 7827 8100
executiontime
(# of clocks) 1047 648

2.2. ZCPA FeatureExtraction

Theoutputof ZCPA moduleattime m is describedas

N:.h Zp—1

y(m,i) = Y Y big(Al), 1<i<M (2)
n=1 [=1

g(z) = log(l+=) 3)

where N is the numberof frequeng bins, and d;; is the
Kronecler delta. For eachchannelthe index of frequengy
bin, j;, is computedby taking the inverseof the time in-
tenval betweenthe /th and the (I+1)th zero-crossingsfor
I=1,--- , Zy-1. Thenthevalueof the frequeng histogram
atfrequeng bin, j;, is increasedy (g(Pxl)). In theZCPA
model,thelengthof windowsis setto 10/F};, whereFj, isthe
centerfrequeng of the kth channeko captureabouttenpe-
riods of the signalat eachchannel providedthatthe signal
is asinusoidwith a singlefrequeng equalto the character
istic frequeng of the channel[2. Thus,thewindow length
becomedonger for low frequenciesand shorterfor high
frequencies.And the featuresare generatedvery 10 mil-
liseconds.Therefore the corventionalZCPA modelneeds
the memoryfor speectdataasmuchasthe channelof the
longestwindow, which correspondso thelowestfrequeny
bin.[1]. Fig. 3(a) shovs an exampleof the corventional
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Fig. 3. Exampleof FeatureExtractionMethod

ZCFA model. It needsmemoriesfor the previous speech
dataandcheckghezero-crossingitevery 10 msalongwith
the linesin Fig. 3(a). The dottedlines denotethe waste
of the corventionalmethod. If the systemcan extractthe
featurevectorduring every 10 ms and buffer this informa-
tion to previousframe,thereis no necessityor keepingthe
speechdataandcomputinginclude zero-crossingletection



for the previous data. Therefore we canextractthe ZCPA
featuremotfrom the pastspeechdatabut from the buffered
featurevectors.For example,we canextractfeaturesfrom
Rbase+Rt0+Rt1+Rt2at t4. The featuresare extractedby
only oncecomputationduring 10 mswith only small extra
memorydueto the bufferedfeature. For example,the fea-
ture of the lowestchannelis extractedat 50 ms, equivalent
to 550 samplesIt needshe memoryfor 550filter outputs.
But, in the proposedmethod,only 5 registersare needed,
andtheZCPA modelworksin realtime with smallermemo-
ries. Fig. 4 shovstheZCPA featurevectorsof theproposed
systemnfor /il.

Anpl i t ude

Fig. 4. ZCPA featurevectorof /i’

3. CLASSIFIER

Theclassifiebasedn artificial neuralnetworkscanbeeas-
ily implementedn VLSI dueto its regularcomputingarchi-
tecture.Theoperatioris composedy therepetitionof sim-
ple operations multiplications and accumulationgnainly.

EspeciallyRadialBasisFunction(RBF) modelhasthe OOV

(out-of-vocalulary)rejectioncapabilityandrealizeghespealer

adaptatiorfunctionby justaddingthepatternsatanew hid-
denneuron.Dueto theseadvantageswe designthe classi-
fier usingRBF model.

3.1. End-Point Detection and Normalization

Artificial neuralnetwork workswell for the isolatedwords
of speechsignalin small vocahulary, but is week for the
dynamicpatterns.To recognizethe speectsignal,speechs
transferredasstaticpatterndy end-pointdetectiorandnor-
malizationin time andpower. In thispaperend-pointdetec-
tion is materializedasFig. 5. Word boundariesredetected
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Fig. 5. End-PointDetection

by theintensity whichis the summatiorof ZCPA featureat

eachfrequeng bin. L; and L, aretheroughendingpoint
level overwhichtheintensityis 8 timesandL,’ andL,’ are
theminimum/levelsof actualboundary To avoid backward
processinghe systemchecksall levels(L.1 and L; or L2

andL,), andfindstheT; or T firstanddeterminesvhether
the endpointis true or not. Finally, the input signalis de-
cidedasawordif the powergoesabove L3 atleast4 times.
If theend-pointdetectionis done,the featurevectoris nor-

malized by trace-sgmentationalgorithmin time domain,
andnormalizedto a fixedintensity The division operation
requiredin this stagels implementedy

Alz = AxM/2? (4)

M = 28/z (5)

whereM isreadfrom alook-uptable.As an8 bit multiplier
is necessaryn section3.2, we usethe orderof 8. In this

papertheinput vectorof classifieris normalizedasa 16x64
staticpattern.

3.2. RBF Networks
Fig. 6 shavsthenetwork architecturef RBF classifier The

Fig. 6. RadialBasisFunctionModel

numberof input speecHeaturess setto 16 x 64 = 1024.
The RBF modelis operatedhy

1023

hij = exp|> —D%/(2x1024x0%)| (6)
7=0

D} = (xj —u;)? @)

Y =

To calculatethesevalueswith limited dynamicrangesof
integercomputationwe use

hi = exp [t,/64] (9)
1023

ti = Y D3/ (o}) (10)
=0

Dy = (zj—u;)*/32 (12)

Y =

> hiwg (12)



Here,z; andu; denotethe jth componenbf theinputfea-
ture and meanvector of the ith hiddenneuron. Eachhid-
denneuronhasits uniquevariancevalue o;; for eachin-
putcomponentEquation9 is implementedhsa look-upta-
ble. Basedon theseformula,we designthe classifierwhich
shawvs 95.2 % correctrecognitionrate in 8 bit depthand
95.6 % in 16 bit depth. In out chip, the neural network
classifieris constructeas8 bit multiplier which hassigned
and unsignedoperations. The normalizationstagein sec-
tion 3.1 needsunsignedoperationfor maximumresolution
of ZCPA featurevector, that has8 bit depth. In our chip
designthe multiplier for signedand unsignedoperationis
implementedy the Pezariamultiplier[4].

3.3. Learning and Adaptation

In the phaseof learning,the floating point computationis
neededo expresshedifferencebetweertarmgetandweight.
Thelearningis executedatworkstatiorbut thespealeradap-
tation is accomplishedn the chip. The training parame-
ters of RBF classifierare meansand variancesof hidden
neurons. The meansare adaptedby just add and shift as
Mnew = old + (Enput - Mold) >>4=094x Mold +
0.06F}pput WhereF;, ;. is thefeaturevectorwith thehigh-
estfiring rate of outputneuron,andvariancesare adapted
from meansby a look-up table. The performancds im-
provedfrom 95.2% to 98.0% via adaptation.

3.4. Regection

For real-world applicationst is alsoimportantto rejectOOV

words. To improve rejectionperformancevithout reducing
recognitionratesis very difficult. Although RBF networks
demonstrategjoodrejectionperformanceye provided an

additionalconstraint. With the help of simple finite-state
logic, we let the chip actually executethe commandonly

if a specificpre-commandvord proceedshe actualcom-

mand. The pre-commandvord may be enteredat the boot
sequence.As a result, the classifierfor pre-commands

thespealerdependentyhile actualcommandsreindepen-
dent.

4. SYSTEM CONFIGURATION AND RESULTS

Fig. 7 showvs the designedboard. The systemis composed
of anamplifier, SampleandHold, 12 bits Analogto Digital
Corverter 128 KBytes SRAM andROM, andmainspeech
recognitionprocessar The main processqrZCFA feature
extractorandRBF classifieris embeddeéh AlteraFlex10K
and usesabout160 thousandgates. By 2.1.1the system
needsl2 MHz oscillatorandthe input signalis sampledas
11.025KHz with 12 bit quantizationlevel. It takes15 ms
to recognizethe commandafter end-pointdetection. The

Fig. 7. SystemPhotograph

recognitionrateis improvedto 98 % with spealer adapta-
tion andpre-command.

5. CONCLUSIONSAND FURTHER WORKS

The isolatedword recognitionsystemfor real world ap-
plication is proposedandimplementedby FPGA. For the
robustnesgo backgroundnoise,we usethe ZCFA model
and proposethe modified algorithmfor digital chips. For
boththerejectionto OOV inputsandspealeradaptationye
usedRBF modelfor classifier The developedchip shovs
98 % recognitionrate for 50 isolatedKoreanwords with
spealer adaptatiorand pre-commandThe chip may oper
atespealer independentspealer dependenand/orspealer
spealeradaptatiormode.Thesystemis currentlyunderde-
velopmentasasingleASIC.
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