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ABSTRACT

A digital chip hasbeendevelopedfor isolatedword recog-
nition in real-world noisyenvironments.By carefullycom-
paringrecognitionperformanceandhardwareimplementabil-
ity amodified-ZCPA modelandRBFneuralnetwork model
areselectedfor the featureextractorandclassifier, respec-
tively. The modified-ZCPA model is basedon featureex-
tractionmechanismof humanauditorysystem,anddemon-
stratedsuperiorityfor noisy speeches.The RBF network
hasexcellentOOV (out-of-vocabulary) rejectioncapability
as well as good recognitionperformance. Both the fea-
ture extractorandclassifierare implementedby repetition
of simpleoperations,which resultin reductionof memory
operationsfor thefull useof memorybandwidth.Thechips
is customdesignedat logic level withoutany DSPcore,and
implementedat anFPGAwith 12 MHz clockspeed.

1. INTRODUCTION

Speechrecognitionis regardedasthe major man-machine
interface.Althoughcurrentspeechrecognitionsystemsre-
quirepowerful computerswith fastprocessorsandlargemem-
ory, thereexist many stand-aloneapplicationsin real-world.
Speechrecognitionchipsareidealfor thesestand-aloneap-
plications.However, theperformanceof speechrecognition
systemsis seriouslydegradedin thepresenceof background
noise,whichbecomesmoreseriousin out-doorstand-alone
applications. Therefore,speechrecognitionchips require
noise-robustnessaswell asefficient low-power implemen-
tation. Carefuldesignstudyis alsoessentialto make com-
promisebetweenhigh performanceandefficient VLSI im-
plementation.For therobust featureextractionwe adopted
theZCPA (Zero-Crossingswith PeakAmplitude)modelbased
on humanauditory system,which demonstratedsuperior
performancein noisyenvironments.[1] AlthoughHMM (hid-
denMarkov model)andneuralnetwork modelshave been
commonlyusedfor theclassifier, thelatteris advantagesfor
VLSI implementationsdueto its regular computingarchi-
tecture.Especially, RBF neuralnetworks is chosenfor ex-
cellentbalancebetweenhigh recognitionperformanceand
OOV (out-of-vocabulary)rejectionperformance.Also,speaker
adaptationis easilyimplementedwith theRBFnetworks.In
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Fig. 1. Block Diagramof thedevelopedspeechrecognition
chip

this papera new digital chip is reportedfor isolatedword
recognitionin real-world noisy environments.The feature
extraction module and classifiermodule are describedin
Section2 and Section3, respectively. Section4 presents
the developedchip configurationand test results. Fig. 1
shows theblockdiagramof theproposedsystem.

2. FEATURE EXTRACTION

Fig. 2 representsa block diagramof the ZCPA model[1].
TheZCPA modelis composedof cochlearbandpassfilters
anda nonlinearstageat the outputof eachbandpassfilter.
The bankof bandpassfilters simulatesfrequency subjec-
tivity of thebasilarmembranein thecochlear, andthenon-
linear stagemodelsinner hair cells attachedto the basilar
membrane.Thenonlinearstageconsistsof a zero-crossing
detectorfollowed by the compressive nonlinearity. In this
paper, the cochlearbandpassfilter is constructedby dig-
ital FIR filters with powers-of-two coefficients for multi-
plierlesschip implementations.Then,we proposea mod-
ified featureextractionmethodto reducecomputationalre-
sources.

2.1. Cochlear Filter Banks

Cochlearfilter banksarecomposedof 16 channelsand100
delaytapswith quantizationat signed12-bit.

2.1.1. Powers-of-two Decomposition

TheFIR coefficientsarerepresentedby���������
	 ����
 � � 	������ ������� � (1)
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Fig. 2. Block Diagramof theZCPA model

With thisexpression,wecandesignmultiplierlessFIRfilters[5]
but thesystemneedsmoreinstructions.By usingthesym-
metryof FIR coefficients,thecomputingtime is reducedby
ahalf. It meansthatonecoefficienthastwo operands.Now,
instructionsfor theFIR systemmustbeconsidered.Thein-
structionsmustincludethe informationof coefficientsand
operands.Thesystemwith multipliersneedsonecoefficient
[12bit] and two operandaddresses[6+7=13bit]. Because
thefilter bankis designedusing100delaytapsat themax-
imum, the first operandis limited by 50 delay taps. Con-
sequently, it needs25

�
324 = 8100 bits overall. Then

eachpowers-of-two filter needsone sign bit, 4 shift bits,
and13 bits for the address.Becausethe width of FIR co-
efficientsis 11 exceptthesignbit, themaximumshift is re-
strictedby 4. Accordingly, it needs17 bits. However, all of
powers-of-two coefficientsneednot to have addressinfor-
mation.Thesemusthavetheaddressinformationonly if the
operandsarechanged.Becausethe coefficientsare trans-
ferredfrom onemultiplier operationto severalsignandshift
operations,we need5

�
723(signandshift information)+

13 x 324 (addressinformation)= 7827bits. If we assume
thatbuffer memoryusedfor the100delaytapshasa single
I/O, the systemmust have a stall stagefor two operands.
The multiplier filter needs648 clocks and the powers-of-
two filter needs723+324=1047clocks.Naturally, bothneed
clocksfor channelinformation. Therefore,powers-of-two
filter needmoreclocksbut lessareadueto lessinstruction
size and multiplierlessoperation. In this paper, 12 MHz
clock is usedto completethe FIR filter operationwithin
time intervals for 11.025KHzsampling.Table1 shows the
comparisonbetweenFIR filters with andwithout a multi-
plier.

Table 1. Thecomparisonof FIR filters
powers-of-two multiplier

non-zerocoeff. 722 324
instruction
romsize 7827 8100

executiontime
(# of clocks) 1047 648

2.2. ZCPA Feature Extraction

Theoutputof ZCPA moduleat time � is describedas
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where G is the numberof frequency bins, and 2 4 � is the
Kronecker delta. For eachchannel,the index of frequency
bin, H 1 , is computedby taking the inverseof the time in-
terval betweenthe

;
th and the (

;
+1)th zero-crossings,for

;
=1, I5IJI , K � -1. Thenthevalueof thefrequency histogram

at frequency bin, H 1 , is increasedby � 7 �8L � ;  � . In theZCPA
model,thelengthof windowsis setto 10/M � whereM � is the
centerfrequency of the N th channelto captureabouttenpe-
riodsof thesignalat eachchannel,providedthat thesignal
is a sinusoidwith a singlefrequency equalto thecharacter-
istic frequency of thechannel[2]. Thus,thewindow length
becomeslonger for low frequencies,and shorterfor high
frequencies.And the featuresaregeneratedevery 10 mil-
liseconds.Therefore,the conventionalZCPA modelneeds
the memoryfor speechdataasmuchasthe channelof the
longestwindow, whichcorrespondsto thelowestfrequency
bin.[1]. Fig. 3(a) shows an exampleof the conventional
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Fig. 3. Exampleof FeatureExtractionMethod

ZCPA model. It needsmemoriesfor the previous speech
dataandchecksthezero-crossingatevery10msalongwith
the lines in Fig. 3(a). The dottedlines denotethe waste
of the conventionalmethod. If the systemcanextract the
featurevectorduringevery 10 msandbuffer this informa-
tion to previousframe,thereis no necessityfor keepingthe
speechdataandcomputingincludezero-crossingdetection



for thepreviousdata. Therefore,we canextract the ZCPA
featuresnot from thepastspeechdatabut from thebuffered
featurevectors.For example,we canextract featuresfrom
Rbase+Rt0+Rt1+Rt2at t4. The featuresare extractedby
only oncecomputationduring10 mswith only smallextra
memorydueto thebufferedfeature.For example,the fea-
tureof the lowestchannelis extractedat 50 ms,equivalent
to 550samples.It needsthememoryfor 550filter outputs.
But, in the proposedmethod,only 5 registersareneeded,
andtheZCPA modelworksin realtimewith smallermemo-
ries.Fig. 4 showstheZCPA featurevectorsof theproposed
systemfor /i/.
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Fig. 4. ZCPA featurevectorof ’/i/’

3. CLASSIFIER

Theclassifierbasedonartificial neuralnetworkscanbeeas-
ily implementedin VLSI dueto its regularcomputingarchi-
tecture.Theoperationis composedby therepetitionof sim-
ple operations,multiplicationsand accumulationsmainly.
Especially, RadialBasisFunction(RBF)modelhastheOOV
(out-of-vocabulary)rejectioncapabilityandrealizesthespeaker
adaptationfunctionby justaddingthepatternsatanew hid-
denneuron.Dueto theseadvantages,we designtheclassi-
fier usingRBF model.

3.1. End-Point Detection and Normalization

Artificial neuralnetwork workswell for the isolatedwords
of speechsignal in small vocabulary, but is week for the
dynamicpatterns.To recognizethespeechsignal,speechis
transferredasstaticpatternsby end-pointdetectionandnor-
malizationin timeandpower. In thispaper, end-pointdetec-
tion is materializedasFig. 5. Wordboundariesaredetected

Fig. 5. End-PointDetection

by theintensity, which is thesummationof ZCPA featureat

eachfrequency bin. O * and OQP arethe roughendingpoint
level overwhichtheintensityis 8 timesand O * ’ and OQP ’ are
theminimumlevelsof actualboundary. To avoid backward
processingthe systemchecksall levels(O � and O * or O 

and O P ), andfindsthe R * or R P first anddetermineswhether
the endpoint is trueor not. Finally, the input signalis de-
cidedasaword if thepowergoesabove OTS at least4 times.
If theend-pointdetectionis done,thefeaturevectoris nor-
malizedby trace-segmentationalgorithm in time domain,
andnormalizedto a fixed intensity. Thedivision operation
requiredin this stageis implementedby9VU0A � 9 � ? U 
)W (4)? � 
 W U<A (5)

where
?

is readfrom alook-uptable.As an8 bit multiplier
is necessaryin section3.2, we usethe orderof 8. In this
papertheinputvectorof classifieris normalizedasa16x64
staticpattern.

3.2. RBF Networks

Fig. 6 showsthenetworkarchitectureof RBFclassifier. The

Fig. 6. RadialBasisFunctionModel

numberof input speechfeaturesis setto
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Here, A � and
n��

denotethe H th componentof theinput fea-
ture andmeanvectorof the � th hiddenneuron. Eachhid-
denneuronhasits uniquevariancevalue

i P4 � for eachin-
put component.Equation9 is implementedasa look-upta-
ble. Basedon theseformula,we designtheclassifierwhich
shows 95.2 % correct recognitionrate in 8 bit depthand
95.6 % in 16 bit depth. In out chip, the neuralnetwork
classifieris constructedas8 bit multiplier which hassigned
andunsignedoperations.The normalizationstagein sec-
tion 3.1 needsunsignedoperationfor maximumresolution
of ZCPA featurevector, that has8 bit depth. In our chip
designthe multiplier for signedandunsignedoperationis
implementedby thePezarismultiplier[4].

3.3. Learning and Adaptation

In the phaseof learning,the floating point computationis
neededto expressthedifferencebetweentargetandweight.
Thelearningisexecutedatworkstationbut thespeakeradap-
tation is accomplishedin the chip. The training parame-
ters of RBF classifierare meansand variancesof hidden
neurons. The meansare adaptedby just addandshift as? '�x!y ��?{z 1D| � � M 4 '~}5�~� �o?�z

1�|  ���� Y�� ��� � Y � ?{z 1D| ���� � X M 4 '~}5�~� whereM 4 '0}`�~� is thefeaturevectorwith thehigh-
estfiring rateof outputneuron,andvariancesareadapted
from meansby a look-up table. The performanceis im-
provedfrom 95.2% to 98.0% via adaptation.

3.4. Rejection

For real-worldapplicationsit isalsoimportantto rejectOOV
words.To improverejectionperformancewithout reducing
recognitionratesis very difficult. AlthoughRBF networks
demonstratedgoodrejectionperformance,we providedan
additionalconstraint. With the help of simple finite-state
logic, we let the chip actuallyexecutethe commandonly
if a specificpre-commandword proceedsthe actualcom-
mand.Thepre-commandword maybeenteredat theboot
sequence.As a result, the classifierfor pre-commandis
thespeakerdependent,while actualcommandsareindepen-
dent.

4. SYSTEM CONFIGURATION AND RESULTS

Fig. 7 shows thedesignedboard.Thesystemis composed
of anamplifier, SampleandHold, 12 bits Analogto Digital
Converter, 128KBytesSRAM andROM, andmainspeech
recognitionprocessor. The main processor, ZCPA feature
extractorandRBFclassifier, is embeddedin AlteraFlex10K
and usesabout160 thousandgates. By 2.1.1 the system
needs12 MHz oscillatorandthe input signalis sampledas
11.025KHz with 12 bit quantizationlevel. It takes15 ms
to recognizethe commandafter end-pointdetection. The

Fig. 7. SystemPhotograph

recognitionrateis improvedto 98 % with speaker adapta-
tion andpre-command.

5. CONCLUSIONS AND FURTHER WORKS

The isolatedword recognitionsystemfor real world ap-
plication is proposedand implementedby FPGA. For the
robustnessto backgroundnoise,we usethe ZCPA model
andproposethe modifiedalgorithmfor digital chips. For
boththerejectionto OOV inputsandspeakeradaptation,we
usedRBF model for classifier. The developedchip shows
98 % recognitionrate for 50 isolatedKoreanwords with
speaker adaptationandpre-command.Thechip mayoper-
atespeaker independent,speaker dependentand/orspeaker
speakeradaptationmode.Thesystemis currentlyunderde-
velopmentasa singleASIC.

6. REFERENCES

[1] D.S. Kim, S.Y. Lee, and R.M. Kil, “Auditory Pro-
cessingof SpeechSignalsfor RobustSpeechRecogni-
tion in Real-World NoisyEnvironments.,IEEE Trans,
Speech and Audio Processing, vol. 7, p55-69. Jan.
1999.

[2] O.Ghitza,“Auditory modelsandhumanperformances
in tasksrelatedto speechcodingandspeechrecogni-
tion”, IEEE Trans. Speech Audio Signal Processing,
vol. 2, pt. II, p. 115-132,1994.

[3] G. von. Bekesy, Experiments in Hearing, McGraw-
Hill, 1960.

[4] StylianosD. Pezaris,“A 40-ns17-Bit by 17-Bit Array
Muliplier”, IEEE Trans. Computers, vol. 2, no. 3, p.
421-435,1971.

[5] Y. C. Lim andS. R. Parker, “FIR Filter DesignOver
aDiscretePowers-Of-Two CoefficientsSpace.”, IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-
31 p 583-591,June1983.


