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ABSTRACT

The design of accurate equalization schemes, optimizing the
transmission strategy, can be achieved if channel status in-
formation is available not only at the receiver but also at the
transmitter side. Accordingly, we propose a feasible scheme
to track the channel response by the transmitter based on
channel prediction, becoming a suitable solution in time-
varying channels. Moreover, to follow faithfully the channel
variability, the receiver can estimate the channel prediction
error and next update the transmitter predictor through
a return link. This paper, provides an accurate study of
the predictor design, and analyzes the way to minimize
the amount of information exchanged through the feedback
channel concerning the differential entropy of channel evo-
lution. Furthermore, the prediction error is quantified fo-
cusing on the rate-distortion function, and it is shown that
a low throughput is enough for tracking the channel coeffi-
cients even in the presence of fast time-varying channels.

1. INTRODUCTION

Knowledge of the channel status information (CSI) at the
transmitter is of paramount importance for the design of re-
liable high speed communication systems. When the trans-
mitter has information on the propagation channel, it is
possible to design pre-equalization schemes and power al-
location strategies, which optimize the use of the avail-
able resources. If transmitter precoders are combined with
transmitter diversity and the channel variability dynam-
ics, the resulting schemes become more favorable. Time-
varying channels have traditionally been a handicap in com-
munications systems, nevertheless those channel fluctua-
tions can be exploited as an additional diversity source
when the transmitter knows the channel dynamics. Fur-
thermore, combining precoding with transmitter diversity,
the total transmitted power can be optimally distributed
through the antennas according to the channel profiles.

In this paper a pragmatic solution to convey channel
response to the transmitter is proposed. Since channel es-
timation can only be carried out at the receiver, the trans-
mitter has to obtain those coefficients through a feedback
channel. However, in the presence of time-varying chan-
nels this previous solution becomes inefficient, and the CSI
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must be frequently updated. A more interesting design can
be achieved if the transmitter is able to predict the chan-
nel as a function of the past behaviour. Hence, we propose
to tackle the channel variability with a scheme containing
identical linear predictors at the transmitter and the re-
ceiver, and a feedback link to assist the transmitter predic-
tor with the prediction error, which can only be measured
at the receiver. The proposed solution addresses the severe
limitations of the feedback channel capacity by means of a
scheme which reminds the well known DPCM transmitter,
and allows tracking slow and fast varying channels fitting
the predictor to the channel dynamics.

This paper is organized as follows. Next section intro-
duces the signal and channel model, and briefly summarizes
the optimal equalization scheme when the CSI is available
at the transmitter [1]. Section 3.1 addresses an accurate
study of linear predictors based on the Kalman filter, as
a function of the normalized Doppler frequency, while sec-
tion 3.2 focuses on prediction error quantification analysis
according to a rate-distortion criterion, to determine the
required return link throughput. Section 4 illustrates some
simulation results, and finally section 5 concludes the paper.

2. BACKGROUND

2.1. Signal and Channel Model

Let us consider a discrete-time sequence transmitted through
a linear time-variant (LTV) frequency selective fading chan-
nel. The equivalent baseband received waveform can be
modeled as:

[e%e}

r(t)= Y h(t;t—kT.) (k) + w(t), (1)

k=—o0

where z(k) is the discrete-time sequence corresponding to
an arbitrary complex alphabet; T is the transmitted sym-
bol period; h (¢, 7) is the continuous-time LTV impulse re-
sponse; and finally w(t) models the AWGN term, with zero
mean and variance o2,.

Focusing on the time dispersive channel, and sampling
the received signal waveform at one sample per symbol T,
the equivalent discrete-time channel model becomes:

h(n, ) 2 b (nTs, kTs) = Sk b (nTs, kTs) 6 (1 — kTs)  (2)

referring L. as the number of relevant paths, 7 as the dif-
ferent multipath delays and n as the discrete time evolution.



Next, a linear prediction model, to estimate the chan-
nel coefficients and tracking its time evolution, is accurately
introduced. Considering stochastic assumptions over the
LTV channel for each multipath delay, the channel evolu-
tion is represented as a low-pass circular complex Gaussian
process, and the time variation rate is directly related to
the Doppler shift. Defining the channel response vector as
h(n) 2 [ h(n,0) ..., h(n,Lc—1) |7, the LTV chan-
nel evolution can be modeled as:

N

h(n) =Y Fih(n—1) + v(n) (3)

=1

where v(n) is a complex Gaussian process modeling the
prediction error, with zero mean and correlation Ry, =
021, and F; i =1,..., N matrices contain the prediction
coefficients.

When no information is available on the channel fluctu-
ations, a simple first-order prediction assuming next chan-
nel state equals the previous one (i.e. F; = ;N = 1) can
be considered for slow to moderate LTV channels. Never-
theless, a more accurate approach in predicting the time
evolution and capturing the channel dynamics consists in
modeling the LTV channel as a Nth-order autoregresive
(AR) process [2]. In the latter case, knowledge of chan-
nel time correlation is required in Yule-Walker equations to
fit prediction coefficients to the channel features. However,
the aim of this paper is not to obtain those AR coefficients,
and thus the Doppler shift for all scatters will be assumed
to be known. A useful method to derive the F; sequence
matrices can be found in [3].

2.2. Global Equalization

In this section we will summarize the joint design of the
transmitter and receiver assuming perfect knowledge of the
channel response at both sides [1]. Figure 1 illustrates a
joint transmitter and receiver equalization scheme which
achieves optimal performance when both, transmitter and
receiver, have an accurate knowledge of the CSI. Hence, a
feedback link is essential to inform the pre-equalizer or en-
coder filter F(n) about the CSI. Subsequently, next section
will discuss the way to pass on the CSI to the transmitter
minimizing the amount of data to be transmitted over the
feedback link.

Transmitting in a burst mode, collecting M consecutive
symbols as x(n) £ [ z(nM) ,..., z(nM+ M —1) ]T,
and adding the appropriate guard time in order to avoid
inter-block interference, the received signal vector becomes:

r(n) £ [ r(nM') ..., r(nM' + M —1) ]T and M' =
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Figure 1: Global Equalization Scheme

M + L. — 1. Therefore, the input-output equivalent rela-
tionship can be denoted in a matrix form as follows:

r(n) = H(n)x(n) + w(n) (4)

where H(n) is the convolution matrix containing the chan-
nel coefficients, and w(n) is the sampled noise vector w(n) £
[ wnM') ..., wnM +M —1) ]T. We will assume
that the channel remains constant within a burst, and so
channel coefficients need to be estimated only once per
block.

When linear transformations F(n) and G(n) are applied
at the transmitter and receiver, estimated symbols can be
expressed as:

3(n) = G(H()F(n)s(n) + Gmw(n)  (5)

Optimal values of F(n) and G(n) can be derived un-
der the hypothesis of i.i.d symbols, constrained transmitted
power and perfect CSI knowledge at the transmitter side.
By means of the singular value decomposition (SVD) of the
channel matrix, H(n) = U(n)A(n)VT(n), those optimal
expressions are:

Fopt = V(n)®(n) (6)
Gopt = I‘(n)A_l(n)UH(n)

where ®(n) and I'(n) are diagonal matrices allowing dif-
ferent design rules. Moreover, according to (6) the time
dispersive channel expression (4) can be transformed into a
set of M parallel independent flat-fading channels. Differ-
ent criteria can be found to design ®(n) and I'(n) matrices:
minimum mean square error with zero-forcing constraint
[1], minimum mean square error with average power con-
straint [1],[4], and maximum information rate with average
power constraint [5].

3. TRANSMITTER CHANNEL TRACKING

As shown previously, to design optimal F(n) and G(n) ma-
trices, it is of paramount importance not only to identify
the channel response at the receiver, but also to inform
about its status to the transmitter. Moreover, in LTV chan-
nels, because of its time evolution, information at both sides
must be continuously updated. In this section a scheme is
proposed to update the CSI at the transmitter while min-
imizing the amount of data to be transmitted through the
feedback channel.

Previous challenges, as shown in figure 1, are resolved
using two identical predictors at the transmitted and re-
ceiver sides, and just transmitting the error prediction over
the feedback channel. We propose to assist the transmitter
with the prediction error instead of transmitting the chan-
nel coefficients themselves. As will be shown in section 3.2,
the differential entropy of the error prediction is much lower
than the differential entropy of the channel coefficients, and
therefore the whole number of required bits is accordingly
reduced. Next, Kalman filter is introduced, as minimum
variance linear predictor [6], to track the channel evolution.
Afterwards, the way to to transfer the CSI to the transmit-
ter is analyzed. Finally, it will be shown how to quantize
the prediction error and employ it to compensate the trans-
mitter linear prediction.



3.1. Linear prediction by Kalman Filter

Rewriting (3) in matrix notation, and defining H(n) 2
[ h(n) h(n—1) h(n—N+1) ]T, time evolution
of vector H(n) can be written as:

F, F, .- Fy v(n)
1 o --- 0 0

H(n)=| . IR H(n—1)+ : (7)
0 - I 0 0

This expression can be regarded as the Kalman state equa-
tion, having #H(n) as the Kalman state vector, while the
measurement equation can be obtained from the channel
output (4) as:

r(n)=[ X(n) 0 0" JH(n)+w(n). (8)

The measurement matrix X(n) is a Sylvester matrix whose
columns are scrolled versions of vector x(n). Notice that the
transmitted symbols z(n) are needed to build the measure-
ment matrix, so the information data s(n) must be known
at the receiver. In tracking, this information is available at
the receiver because F(n) and G(n) equalize the channel.
However, during acquisition §(n) is not reliable, and an aux-
iliary deterministic blind equalizer (e.g. [7]) or a training
sequence must be introduced.

Equations (7) and (8) define the Kalman state space
representation. Thus, the minimum variance estimator for
the channel vector h(n), conditioned to the channel output
observation r(n) is given by [6]:

f(n) = A(n/n — 1) + K(n) (r(n) — X(n)h(n/n — 1)) (9)

e(n)

where h(n/n — 1) is the channel prediction according to
the Kalman state transition matrix (7), and K(n) is the
Kalman gain matrix.

Notice in (9) that the deviation of the predicted mea-
surement from the actual measurement r(n), i.e. the inno-
vation, is used to define the prediction error, which com-
pensates the differences between the real channel evolution
and the predicted model. This prediction error can be only
measured at the receiver, because the observation vector
is required. Moreover, note that e(n) is the minimum re-
quired information to track the LTV channel by the trans-
mitter. Therefore, this prediction error information, whose
dynamics range is much lower than the channel coefficient
dynamics, should be transferred to the transmitter across
the feedback channel.

3.2. Prediction Error Quantization

The optimal way to quantize and encode the prediction er-
ror vector in a finite number of bits according to information
theory principles is next analyzed. First, it is essential to
identify the statistics of the aforementioned vector defined
in (9). As a consequence of the central limit theorem, real
and imaginary elements in e(n) are approximately Gaus-
sian random processes. Besides, after some manipulations,
and considering the steady-state Kalman filter, it can be
shown that the mean and variance of the error vector are:

E{e(n)} = 0 (10)
E {e(n)eH(n)} = (FlFf - I) £+ Ry

where ¥ denotes the steady-state covariance matrix of the
channel estimate.

Channel coefficients variance of and the prediction er-
ror variance ol always verify of > o2, and most of the
times o > o2. Next, we will deduce that lower variance
means a minor number of bits to transfer the same informa-
tion. The e(n) vector elements require an infinite number of
bits to be encoded without loosing information. Therefore,
when a finite number of bits are employed, a quantization
distortion is always unavoidable. We propose to minimize
such difference making use of the rate-distortion function,
which gives the minimum number of bits required to quan-
tize a source with distortion less or equal to D. For a zero
mean Gaussian source, with variance o2, the rate-distortion
function is given by [8]:

X4 (11)

where D is defined as the square-error distortion: D =
(# — #)>. Note that the rate-distortion function is a theo-
retical bound in the sense that it can only be achieved by
increasing the encoding-decoding complexity.

In our application, the prediction error is a complex
vector of length L., hence the total number of real Gaus-
sian variables to encode is 2L.. Vector quantization is the
optimal solution to attain the performance given by the
rate-distortion function (11). Nevertheless, due to the ex-
cessive complexity of vector quantization, a suboptimum
solution, quantizing each vector element separately, will be
used. As e(n) elements are approximately Gaussian random
processes, an optimum non-uniform quantifier for Gaussian
sources designed by Max [9] will be applied.

4. SIMULATION RESULTS

Computer simulation were carried out to illustrate the per-
formance of the proposed algorithm. A block transmission
mode, QPSK modulation gathering M = 32 symbol per
block, a symbol rate of r = 0.72Mbauds (1.44Mb/s), and a
random multipath Rayleigh channel with L. = 5 uncorre-
lated scatters (US assumption), has been considered. Two
LTV channels were simulated, a slow LTV channel with
a normalized Doppler frequency f, = 0.016 (carrier fre-
quency f. = 9GHz, mobile speed v = 40kph.), and a fast
LTV channel with f, = 0.05 (fo = 9GHz, mobile speed
v = 120kph.). The normalized Doppler frequency is de-
fined as: B foo M+ Lo —1

m —

(& T (12)

Figure 2 plots the LTV prediction error ¢? versus the
normalized Doppler shift frequency. Linear prediction with-
out Doppler information F = I (dashed line), and lin-
ear AR(1)-AR(2) models, assuming perfect knowledge on
Doppler for all scatters, were considered for different quan-
tization bits. Several conclusions can be drawn from fig-
ure 2. First, it can be seen that identity matrix (i.e. no
Doppler information) and AR(1) predictors have similar
performance, and only a slight difference appears in fast
time-varying channels. Moreover, a second important re-
sult is the threshold for the prediction order. As it can be
concluded, a 1st order predictor provides a low prediction
error in low Doppler scenarios, while this error grows as
Doppler increases requiring the introduction of 2nd order
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predictors. Finally, illustrates the dependency of the pre-
diction error with the number of quantization bits. Notice
that Q = 3 bits is a reasonable solution as verified in next
simulation.

Figure 3 compares the equalization performance of the
proposed algorithm when no information is available on the
channel variability (assuming next channel state equals the
previous one), and modeling the LTV channel as an AR(2)
process (assuming AR coefficients are known). A MMSE
criterion with average power constraint was considered to
design Fop¢ and Gope matrices, and a MISO scheme with
diversity order B = 2 was reproduced. Simulations were
carried out for different number of quantization bits, and
a fast LTV channel, as the worst choice, was considered.
It is not surprising that the AR(2) model outperforms the
first order solution. As illustrated in figure 2, AR(2) pre-
dictor provides a lower prediction error, and consequently
residual intersymbol interference is reduced. Furthermore,
with (Q = 3 quantization bits, the solution is in both cases
close to the unquantized solution. Finally, we point out
that although AR(2) outperforms 1st order, prediction co-
efficients are required, and hence Doppler shifts for all paths
have to be estimated. Consequently, the 1st order predic-
tor still remains interesting when straightforward designs
are required.

5. CONCLUSIONS

This paper has introduced a suitable scheme to assist the
transmitter with the CSI in optimal transmitter-receiver
equalization designs. The proposed solution is based on
identical linear predictors at both sides, and a feedback
channel to aid the transmitter with the prediction error
computed at the receiver. Thus, it is possible to track fast
fading channels with a low rate feedback link. The paper
evaluates the performance of different channel predictors
and derives results as a function of the channel variabil-
ity according to the normalized Doppler frequency. Sim-
ulations have shown 1st order predictors are good in slow
LTV channels, while 2nd order predictors are required in
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fast LTV channels at the expense of higher complexity.
Moreover, considering the severe limitations of the feed-
back channel capacity, the paper addresses the return link
required throughput, analyzing the prediction error quan-
tization.
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