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ABSTRACT

In thispaperweproposetheapplicationof anew transform-based
codingmethod[1] in conjunctionwith Golomb-Rice( ��� ) codes
to lower significantly the complexity, which canbe usedin var-
ious applications,e.g. the Multiple Descriptioncoding[2]. The
theoreticalevaluationspredict no important loss in compression
performance,while thecomplexity is considerablyreduced.Since��� codesarevery fastandwell suitedfor exponentiallydecaying
distributions,they wereimplementedduringthelastdecadein im-
ageandaudiocompressors.In all theseschemes,theselectionof
thecodeparameteris performedpresumingLaplaciandistribution
of predictionerrors. We derive the selectionmethodfor the ���
codeparameteralsofor thecaseof Gaussianinputs.

1. INTRODUCTION

TheMultiple Description(MD) codingbecamea populartopic of
researchin therecentyearsbecausewhenis appliedto thedesign
of communicationsystemsmakes them robust to packet losses.
Onepracticalembodimentof MD paradigmis theimplementation
of PAC coderin [2]. Weareinterestedin thispaperin oneessential
block in thereferredcodingscheme,namelytheinteger-to-integer
transformfollowedby entropy coding. On a differentthread,the
integer-to-integertransformcoding(I � ITC) wasproposedasanal-
ternative to transformcoding[1], wherethecustomarytransform–
quantizationtandemis revertedsuchthatthequantizeris followed
by the transform,and finally the transformedvector is entropy
coded.

Thespecificstepsof I � ITC in thecaseof a zero-meanjointly
Gaussiantwo-dimensionalsourcevector� are:(1)uniformquanti-
zation,(2) integer-to-integerinvertiblemapping,and(3) separately
encodingof the resultingdescriptionswith Huffman codes. The
integer-to-integertransformis optimizedin orderto minimizethe
divergencebetweenthe distributionsof the two outputs. Similar
distributionsof the transformoutputsare in averagemorefavor-
ableunderpacket lossesthanthecaseof outputswith differently
skeweddistributions.Moreover, sincetheoutputshavesimilardis-
tributions,thesameHuffmantablesmaybeusedfor bothchannels,
which leadsto a reductionof thealgorithmcomplexity[1].

We proposea further steptowardsthe complexity reduction
of I � ITC by replacingHuffmancodingwith Golomb-Ricecoding
( ��� ). We will show that Golomb-Ricecoding is well suitedfor
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processingtheoutputof theinteger-to-integertransformin thecase
of Gaussianinput,andwe will studytheproblemof ��� codepa-
rameterselection. The Golombcodeswere introducedin [3] to
encodearbitrarynon-negative integerswith one-sidedgeometric
distribution (OSG): �	��

����������������� , ������� �!�"� . Theoptimal-
ity of theproposedcodesinterpretedasHuffmancodesfor infinite
alphabetswasproven andrecentlyGolombcodeswere success-
fully usedfor codingtwo-sidedgeometricsources(TSG).

TheGolomb-Ricecodeswith parameter# , denoted���%$ , en-
codesa nonnegative integer & by sendingthe leastsignificant #
bits of & , followed by the unaryrepresentationof & $ �('*)�,+ - (a
sequenceof & $ ones),andfinally terminatesthecodeword with a� bit to allow uniquedecoding.This resultsin a total numberof
bits & $/. # . � . The ��� codingis thelow-complexity methodof
choicein researchaswell asin practice,beingusedto encodepre-
dictionresiduals� whicharesupposedto beLaplaciandistributed.

We will investigatein Section3 theselectionof thecodepa-
rameterin the hypothesisof Gaussiandistribution for samples� .
First thesamples� arequantizedto integer-valued 0� . Onepossi-
blechoicefor coding 0� [4] is to encodeseparatelythesignandthe
modulus 1�2�43�0�*3 . This is theprocedurewe will alsoconsiderin
thesequel.For simplicity, we assumetheaveragecodelengthfor
thesignis � bit andconsideronly thecodingof modulus 1� .

Relatedresultsconcerningthecoderedundancy andefficiency
have beenpresentedin [5], which addressesthe problemof ���
encodingthequantizedgeneralizedGaussianpdf’s,but theirmeth-
odsfor selectingthecodeparameterhavehighermemoryrequire-
ments,involving the storageof tablesdesignedoff-line. Another
relatedpaperis [4]: the ��� codeparameter# is selectedto obey
thecondition 5 � +6 �,+87 ���93 :;��<=�>�?�"@BA (1)

where 7 ���C3 :
� is the Laplacianpdf. A similar techniquewill be
presentedin this paperto selectthe codeparameterfor Gaussian
inputs.

2. TRANSFORM CODING WITH
INTEGER-TO-INTEGER TRANSFORMS

Supposethe input vector � ��D��%�4E �GF���D��H�I�J����D��LKNM?�PO � is Gaus-
siandistributed,having thepdf
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where S is the covariancematrix S\�^] : �F _ :;F,:`�_ :;F,:`� : �� a ,_ �cb � , : F �I: �ed � and 3 ST3C�f: �F : ��hg �i� _ �!j is the determi-
nantof S . We assume� is azeromeanvector, klE � KJ�m� .
2.1. Quantization of the input

Let consideranuniformquantizernpo8q r with st�uA=v	w F �Z� ( x
is a positive integer) reconstructionlevels andstepsize y , such
that thequantizedversion 0� of thereal-valuedvariable � is given
by:

n%o8q r����J�C�{z||} ||~
� o 6 F� y>�(� b � g o � �P� j y� y>� g � � F� j y��T� b g � . F� j yl�� o 6 F� b � b o 6 F�o 6 F� y>� ��� g o � �P� j y (2)

For s large( st��� ), thequantizern%o8q r appliedto ther.v.� generatesther.v. 0� givenby:0�>�unpo8q rh���J�/� � y when Y � � �A [�y��P� b Y � . �A [�y (3)

for any integer
�
.

In thesequelwearebriefly discussingthequantizationof � by
usingdifferentapproaches:
Direct quantization (DQ): We use npo8q r to quantize�GF���D�� and� � ��D�� obtaining 0� F ��D���� � F y and 0� � ��D���� � � y . The integersE � F � ��K have thejoint probabilitymassfunction(pmf) �	� � F�� � ���i��"���H���"� � ���������"� �
� �,E �GF��I�J�HK���<=�;F,<=�`� where��� � and ��� � denotesthe

Voronoicellsof thereconstructions
� F y and

� � y .
Unitary transform coding (UTC): The Karhunen-Loeve trans-
form (KLT) � is first appliedto � resultingin � ���h� . Thenn%o8q r is appliedto theentriesof � to obtain 0� . When � is jointly
Gaussiandistributed, the KLT ensuresthat the componentsof �
arestatisticallyindependentand 0�XF , 0��� canbeefficiently encoded
with scalar, but in generaldifferent,entropiccoders.
Integer-to-integer transform coding (I � ITC)[1]: The indexesE � F � ��K obtainedafter quantizationas in methodDQ aremapped
to E �L� F �L�� K with a reversibleintegertransform 0� . Thenew obtained
indexesare encoded.The main differencewith respectto UTC
methodconsistsin usingadiscretetransforminsteadof acontinue
transform.

Thedistortionfor theuniform scalarquantizern%o8q r is given
by � �¡y � @¢�"A in the hypothesisof high-resolutionapproxima-
tion ( y small). When the componentsof the quantizedvectorE£0�GFp0�J�HK arenot independent,theper-componentdistortionis com-
putedwith theexpression F� 3¤3 � �¥0� 3¦3 � . In [1] it is shown that the
distortionis nearlythesamefor all themethods(DQ,UTC,I� ITC)
when y is small.So,thedistortionis fixed,but therateis variable
andthedesignwedescribehasthegoalto minimizetherate.

For small y wemayassumethepdf of � to beconstantovera
cell � � �¨§ � � � , andthereforethejoint pmf canbeapproximatedas�	�,EL0�GF©0�J�HK M �C�«ª%¬ 6h­¤®¯ � ®¯ �I° ±8² � ­¤®¯ � ®¯ �,° ³�

(4)

with ª a normalizationconstant.It resultsthattheprobabilityforE � F � ��KNM canbeapproximatedasfollows:���,E � F � � K M �C�«ª%¬ 6i´ � ­ � � � �,° ±�² � ­ � � � �,° ³�
(5)

In the rest of the paperwe useequality sign insteadof approx-
imation sign eachtime we are referring to the pmf of E£0�GFZ0�J�HKNM

or E � F � ��KNM . Due to the symmetryof the discretedistribution,klE£0�GFµ0�J�HKNM?�tklE � F � ��KNM¶�·� M . After somecalculationson the
momentsfor the distribution of the randomvector E£0�GFµ0�J��KNM and
usingtheassumptions large( s¸��� ), we obtainthattheauto-
correlationmatrixfor EL0�GF�0�J�HKNM is S andtheautocorrelationmatrix
for E � F � � K¦M is S � �¹Sµ@By � .
2.2. Integer-to-integer transform

Wehaveto defineaninteger-to-integertransform: E � F � ��KJº�»E � � F � � � K
which dependson a setof parameters.A first temptingchoiceis
to approximatea linear transform

� �¼E � F,F � F���½ � �HF � �,��K (the
entriesof matricesaredescribedfollowing Matlab–likenotations).
If
� F��©¾�m� thematrix

�
canbefactoredby usingthelifting scheme

asfollows� �¿] � ���ÀÁ� a ] �Â���� � a ] � ���FÂ� a (6)

In [1] thetransformedvectoris expressedin thereal-valuedcoor-
dinates E � F!y � ��y©K . A first matrix multiplication

� F��4EÃ���X½,��F"�!K
createsE � F!yl�
��F � FHy . � ��y©K which is truncatedto E � FHy>�8�"'Ä��F � F .�XÅ Æ - . � ���Iy©K . It is simplerto definethis stagein integercoordi-
natesas E � F � � � KÇº�ÈE � F �>'Ä� F � Fi. �XÅ Æ - . � � K . Continuethe sec-
ondmultiplication,by

� �	�tEÃ���"��½,���!K producingafter roundingE � F . 'Ä���É'Ä��F � F . �XÅ Æ - . �"� � � . �XÅ Æ - ��'���F � F . �XÅ Æ - . � �HK . Finally, the
third multiplication,by

� À �ÊEÃ�¨�X½,� À �!K , producesafter roundingE � F . 'Ä�"��'Ä��F � F . �XÅ Æ - . ��� � � . �XÅ Æ - �h'Ä��À � F . ��ÀÉ'Ä�"��'Ä��F � F . �XÅ Æ - .��� � � . �XÅ Æ - . � Å Æ - . '���F � F . �XÅ Æ - . � �,K . Sincethereis anone-
to-onemappingbetweenthevectors E �GFC�J��K and E � F � ��K we denote
by 0� ��0�`� themapping E � F � ��K9º�ËE �L� F �L�� K . Therearethreerounding
operations,introducingthe errors Ì F , Ì � and Ì À respectively. For0�>�ÍE � FHy � ��y©K¦M , it maybeproved[1] that 3¦3 0� ��0�J�;� � 0�93¦3 Î is less
or equalthang � .�Ï�Ð �ÒÑ`3 � FÓ� 3 ��3 � �,� 3 . 3 � 6 FF�� � � �I� �P�"��3¤Ô j y A (7)

This shows that 0� �"0�J� is a goodapproximationfor
�

(in thesense
of thenorm 3¦3"Õ¢3¦3 Î ) when y is small.

SincethetransformationE � F � ��KJº�¼E � � F � � � K is completely
reversible[1], thepmf of E � � F � � � K is exactlythesameasthatof E � F � �HK .
An equallylikelycontourin the Ö � lattice(which,accordingto (5)
is theellipsis E � F � ��K¦S 6 F E � F � ��KNMP��ª%×"

Ø�D ) will be transformed
to theapproximateellipsis E � � F � � � K � 6 M*� 6 F � 6 F E � � F � � � K¦M��mªÇ×�
;Ø�D
in thenew coordinateaxes.

2.3. The coding rate versus the algorithmic complexity

Using thesamequantizernpo8q r for all thecodingschemes(DQ,
UTC, I � ITC) ensuresnearlythesamedistortionin thehighresolu-
tion hypothesis.So,theperformanceof theencodingalgorithmis
givenby thetrade-off betweenrateandcomplexity. A comparison
of codingratesfor differentmethodscanbeobtainedby studying
theentropy of theencodedindexes.

For the UTC schemewe denote� �t�h� and 0� is the quan-

tizedversionfor � . In the I � ITC case 0Ù is thenotationfor 0� ��0� � .�ÇÚ���Õ � is the rate in bits/samplefor scalarentropy coding(based
on the marginal probabilitiesof the vector entries)and �ÇÛX��Õ � is
the ratefor vectorentropy coding(evaluatedwith joint probabil-

ities of the vectorentries). The rate � Û r�t� Û �"0Ù ���t� Û �"0� �Ü���ÛX��0� � obtainedby entropiccoding basedon joint probabilities



is the sameratefor all threeschemes.Unfortunately, to achieve
this rate,the sizeof the codedictionary(necessaryto implement
Huffmancoding)is s � . Thescalarcodingof thevectorentriesre-
ducesthememoryrequirementto at most A�s codewords,andwe
evaluatenext the price to be payedfor this reduction. Generally� Ú ��0� �h�m� Û , but � Ú �H0� �i�?� Û when � is jointly Gaussian,mak-
ing UTC attractive sinceit givessimilar resultsto vectorcoding
with a smalleramountof resources.It is provedin [1] that relax-
ing UTC to non-orthogonaltransform,the bestresultwith I � ITC
is �ÇÚ���0Ù ���¿�ÇÚ��H0� � . The samerate was obtained[1] by using a
single(common)codebookfor both channels,which reducesthe
memoryrequirementsfrom A�s codewordsto s codewords. To
achieve this performance,the transform

�
waschosensuchthat� 6 M
S 6 F � 6 F is proportionalto theidentity matrix Ý , transform-

ing equallylikely contoursfrom ellipsis to circles. Two assump-
tionsareneededfor theaboveto hold: 0� � �

, and st�uABv�w F �	�
is a largenumber.

Our approachis a furthersteptowardsreducingthecomplex-
ity: we apply ��� codesand,consequently, eliminatetheneedto
storeHuffmantables.��� codeswill beappliedindependentlyfor
eachchannel,theaveragecodelengthbeingcomputedas ÞàßHÛl���Þ FßHÛ . Þ �ßHÛ �I@BA where Þ � ßHÛ denotesthe averagecodelength for
channel

�
. The problemto be solved is to designthe mapping 0�

that ensuresthe minimum Þàß!Û when � is jointly Gaussianwith
known pdf andthequantizernpo8q r is given.

2.4. An approach based on Karhunen-Loeve transform

We choose
� �¸� orthogonal,where �hSá�hM¥�t< � Ð=â �£Ø � F ��Ø �� � .

From the transform � we obtain the integer to integer mapping0�Ò��Õ � by performingthe lifting factorizationdescribedin (6). The
equality E£0� � F 0� � � KNMe�«�	EL0�GF©0�J��KNM implies

�	�,EL0� � F 0� � � K M �C�«ª%¬ 6 ��Gã ®¯!ä �å �¢æ � ¬ 6 ��Gã ®¯Hä�å ��æ �
whereweusetheapproximations(4)and(7). Theresultshowsthat
therandomvariables 0� � F and 0� � � areindependentandwe canmini-
mizetheaveragecodelengthby encodingseparatelyeachvariable.
Since 3 ��3 ��� we find that Ø � F Ø �� �ç���h� _ � �Ó: �F : �� . Theequation

above givesthepmf for
� � F as ��� � � F �8�èª�F!¬ 6 �� ã � ä �å ä � æ � where Ø � F �Ø�FH@=y andrespectively the pmf for

� � � is �	� � � � �Ç�Êªi��¬ 6 �� ã � ä�å ä� æ � ,Ø � � �ÍØ � @By . We considernow a supplementaryinteger-to-integer
reversibletransform E � � F � � � KÒ�ÂE � � �F � � �� K . When ��� $ � is applied
for channel1 and ���%$ � for channel2, theaveragecodelengthis
givenby Þ ßHÛ � F� ��Þ FßHÛ . Þ �ßHÛ �/�F�8é �ê�ë F/ì A é Î� ä äí ëJîÒï � ä äí� + í
ð ª � �ê U!V¢W Y � F�	ñ � ä äíÚ ä äíCò � [�. �£# ê . �"�"ó .

A fastmethodto selectthe parameters# ê , � �Íô��=�,A�õ is to
choose A $ í �¡' 7 Ø � �ê - � 7 �á���X���"� (8)

where 7 � �XÅ ö=÷�ø�Æ , as explainedin Section3. The term # F�.#�� in Þàß!Û can be approximatedby ù¦úBû � � 7 Ø � �F � . ù¤ú=û � � 7 Ø � �� �á�ù¦úBû � �£Ø � �F Ø � �� 7 � � and it is invariantwith respectto any unitary de-
terminanttransform E � � F � � � K`�¼E � � �F � � �� K since Ø � �F Ø � �� �uØ � F Ø � � .

We focus on the transform E � � F � � � Kl�üE � � �F � � �� K which equal-
izesthe variancesØ � �F �·Ø � �� �·Ø � � [1] in orderto accomplishthe
MD requirements.Thepmf for

� � �F is thesameasthe pmf for
� � �� ,

�	� � � � ����ª	�£Ø � � �I¬ 6 ��`ý � ä äå ä äIþ � . We will evaluatein the sequelthe
averagecodelength ÞàßHÛ after this transform. When ���p$ code
is usedfor both channels,the term of Þ ßHÛ which dependson the
transform,isÿ �£Ø � � �C�«A Î�� ä ä ëJî � � � �A $�� ª��£Ø � � � U!V¢W�� � �A Y � � �Ø � � [ ��� Å
Lemma 2.1 If Ø � � d �"@	� A�Q , then the normalizationconstantª	�£Ø � � � is bounded:�� A�Q
Ø � � . � � ª��£Ø � � ��� �� A�Q
Ø � � �T�
Proof: We apply the Maclaurin-Cauchy integral testto theseriesé Î� ä ä ëJî ¬ 6 ��Gý � ä äå ä ä,þ � � é Î� ä ä ëJî 7 � � � � � where 7�
 E �X���P�p� ��� �!��K ,7 ���J�Ç�ç¬ 6 �� � ¯å ä ä � � is continuousandmonotonedecreasing.The
 thpartialsumof theconsideredseriesis Ð � � é �� ä ä ëÉî*¬ 6 ��`ý � ä äå ä äIþ � .
Consider� � � é �� ä ä ëJî � � ä ä w F� ä ä 7 ���J��<=�c� � � w Fî 7 ���J��<=� . For any
integer sÜF d � , Ð o � w F8�T�p���!o � � Ð o � which impliesthatthe
series� Ð � � ��
 î convergesto Þàß and � ���=Ú ä ä� �mÞàßl��� ���=Ú ä ä� . �
(weused� � Ï o ��� Î��Ho � � � ���BÚ ä ä� ). �
Lemma 2.2 a) For anypositiveinteger

� � �
,�� A�Q;Ø � � . � � � � � 7 Ø � �7 Ø � � �¹ª	�£Ø � � � � � � �A $�� � �� A�Q
Ø � � �P� � � �7 Ø � � �P�

b) Usingtheapproximation F� ���BÚ ä ä 6 F � ä ä� Ú ä ä 6 F � F� � ��� � ä äÚ ä ä � weob-
tain Î�� ä ä ëJî � � � �A $ � ª	�£Ø � � � U!VXW � � �A Y � � �Ø � � [ � � �

�7 � A�Q Î�� ä ä ëJî � � �Ø � � � U!VXW�� � �A Y � � �Ø � � [ ���
Proof: a)Thecondition(8) leadsto F� Ú ä ä 6 F d F��+ � F� Ú ä ä if 7 Ø � � �� d � . By applyingLemma2.1we obtaintheresult. �
Proposition 2.1 UndertheassumptionsfromLemma2.1and2.2,
thevariabletermin ÞàßHÛ is boundedbyÿ �£Ø � � ��� A7 � A�Q . A7 � A�Q
¬ y� Ø�FHØ"� (10)

Proof: Let considerthefunction � 
 E � �����/�»E � ����� ,�
���J�/� �Ú ä ä � U!V¢W ñ � F� g �Ú ä ä j � ò whichhasthederivative� � ���J�/� FÚ ä ä � U!V¢W ñ � F� g �Ú ä ä j � ò�� �¨� g �Ú ä ä j ��� . It is easytoobserve

that the function �*��Õ � is increasingon the interval E �X��Ø � � K andde-
creasingontheinterval �£Ø � � ���P� . Themonotonicityimpliesfor any� � � �áô��X�!�B��Å�Å!Å��¢'�Ø � � - �T��õ , �*� � � � �¨� � � ä ä w F� ä ä �
���J��<=��� �
� � � � . ���
andfor any integer

� � � ��'ÄØ � � - . � , �
� � � � . �"�à� � � ä ä w F� ä ä �*���J��<=����
� � � � � . With the assumptionthat the supplementaryinequality�
�"'�Ø � � - . �"�µ� �"! Ú ä ä$# w F! Ú ä ä # �*���J��<=�è�%�*�"'�Ø � � - � is true, we obtainé Î� ä ä ëJî � ä äÚ ä ä � U!VXW Y � F�	ñ � ä äÚ ä ä ò � [ � � Îî �*���J��<=� . �
�"'�Ø � � - � . This



inequality, Lemma2.2b)andthepropertyØ � � � � Ú � Ú �r imply (10).�
Sincethe upperboundin (10) is approximately �BÅ A when y is
small,we canconcludethattheaveragelengths,with andwithout
the transform E � � F � � � Kh� E � � �F � � �� K , differ by at most1.2 bits. Note
that theparameter# wascomputedto fulfill (8). We will investi-
gatein thenext Sectionhow farfrom optimalis thecodeparameter# obeying thecondition(8).

3. SELECTION OF CODE PARAMETER WHEN THE
INPUT DISTRIBUTION IS GAUSSIAN

ConsideraGaussianr.v. � anddenoteâ ���J�/� F� ���'& U!V¢W � � F� g �& j � � .
Ther.v. � is quantizedto 0�c��n o8q F ���`� asin (2), which leadsto
thepmf for themodulus 1�>�¥3�0�93 :�)(�×*��ôÉ1�µ�¹
*õ��
z||} ||~

� F�+��6 F�+,� â ���J��<=�;�*
��m�A � � w F�+,�� 6 F�+�� â ���J��<=�;�*� b 
 b A v �P�A-, � �/. 6 F�+,�� . 6 À�+,� â ���J��<=� . � Î� . 6 F�+�� â ���J��<=�10©�

Z�uA v �P�
Proposition 3.1 Theaverage codelengthobtainedwhen 1� is en-
codedwith ���p$ , #��mx»� Ï , is givenbyk%Þ32� $ �mk%Þ32�v 654 �
ì x . �B� Ï �m�x . A 4 � Ï �2A é ��6 6 Fê�ë F erf g � 7� 6 ��8 j � �%� Ï � x

where (%� �/.& , erf ��D��/� F� ��� �:9î U!VXW ��� F� � � ��<=� and 8Ç� 7� .<; � .

Corollary 3.1 For any integer Ï , A�� Ï b x , if k%Þ32�v 654¡dx then k%Þ32�v 6>=$4 w F�? d k%Þ32�v 654 .

The problemof finding the parameter# (or equivalently Ï )
suchthat the code ��� $ insuresthe shortestaveragecodelength
for themoduli 1� canbesolvedby applyingafull-searchalgorithm
which sequentiallyevaluateskpÞ)2�v 6�4 for all possiblevaluesofÏ : �X���B��Å!Å�Å��Ix . The resultfrom Corollary3.1 reducesthecom-
plexity of suchanalgorithm:thedifferentvaluesof Ï aretestedin
increasingorderandtheprocessis stoppedwhenthefirst ÏA@ �¹A
with property kpÞ)2�v 6�4)Bld x is found. It resultsfrom Proposi-
tion 3.1thatwhenweuse��� v ( Ï �m� ) to codethesamplesof 1�
truncatedto thevaluesô��X�!�B��Å�Å!Å��HA v �Ò��õ , theaveragecodelength
( x . � ) is 1 bit longerthanthecodelengthnecessaryto represent
the samplesin binary format. It is straightforward to checkthatx b k%Þ32� $ b x . � if #	�mx»�P� ( Ï �¶� ).

Thecondition(1) for selectingtheparameter# becomes#	�Ê'�ù¦úBû � ���XÅ ö=÷�ø�Æ�:;� -<C #��Ê'�ù¦úBû � ��:
�9�á�XÅ ÆB÷ - Å (11)

A comparisonof resultsobtainedby applyingtheminimumaver-
agecodelengthcriterionandtheconditionabove is representedin
Figure1. Weobservethetendency of criterionintroducedin [4] to
commutethecodeparameterfrom # to #/�Ü� for valuesof standard
deviation : whicharelargerthanin thecaseof applyingminimum
averagecodelengthcriterion. This leadsto longeraveragecode
for somevaluesof thestandarddeviation,but thedifferenceis not
dramatic.An improvementin averagecodelengthcanbeobtained
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Fig. 1. Comparisonof averagecodelength[bits/sample]in thecase
of minimumaveragecodelengthcriterion(continuousline) andcri-
terionfrom[4] (dashedline) for differentvaluesof index (%�uABvµ@�:
where x �ED . For eachcasetheoptimalvalueof theparameter#
is plotted by using the sametype of line as for the averagecode
length.Thestandarddeviation : is representedin logarithmicscale
for comparisonwith commutationvaluesin selectionof # .

by definingthresholds(asafunctionof thevariance)for switching
betweenthe selectionof # or #Ü�u� ascodingparameter. In this
caseit is necessaryto storea tablecontainingthethresholds.The
sametablemaybesharedby all channelsof theinteger-to-integer
transform.
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