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ABSTRACT

In this papemwe proposethe applicationof a new transform-based
codingmethod[} in conjunctionwith Golomb-Rice(GR) codes
to lower significantly the compleity, which canbe usedin var
ious applications,e.g. the Multiple Descriptioncoding[d. The
theoreticalevaluationspredict no importantlossin compression
performancewhile thecompleity is considerablyeducedSince
GR codesareveryfastandwell suitedfor exponentiallydecaying
distributions,they wereimplementediuringthelastdecadéen im-
ageandaudiocompressorsln all theseschemesthe selectionof
thecodeparameters performedpresuming.aplaciandistribution
of predictionerrors. We derive the selectionmethodfor the GR
codeparameterlsofor the caseof Gaussiannputs.

1. INTRODUCTION

TheMultiple Description(MD) codingbecamea populartopic of
researchn therecentyearsbecausavhenis appliedto thedesign
of communicationsystemsmakes them robust to paclet losses.
Onepracticalembodimenbf MD paradigmis theimplementation
of PAC coderin [2]. We areinterestedn thispaperin oneessential
blockin thereferredcodingschemenamelytheintegerto-integer
transformfollowed by entrofy coding. On a differentthread,the
integerto-integertransformcoding(l2ITC) wasproposedisanal-
ternative to transformcoding[1], wherethe customarytransform—
quantizatiortandemis revertedsuchthatthe quantizeiis followed
by the transform,and finally the transformedvectoris entrogy
coded.

The specificstepsof I21TC in the caseof a zero-mearointly
Gaussiartwo-dimensionasourcevectorz are: (1) uniformquanti-
zation,(2) integerto-integerinvertiblemapping and(3) separately
encodingof the resultingdescriptionswith Huffman codes. The
integerto-integertransformis optimizedin orderto minimize the
divergencebetweenthe distributions of the two outputs. Similar
distributions of the transformoutputsarein averagemore favor-
ableunderpaclet lossesthanthe caseof outputswith differently
skeweddistributions.Moreover, sincetheoutputshave similardis-
tributions,thesameHuffmantablesmaybeusedfor bothchannels,
which leadsto areductionof the algorithmcompleity[1].

We proposea further steptowardsthe compleity reduction
of 121TC by replacingHuffman codingwith Golomb-Ricecoding
(GR). We will shav that Golomb-Ricecodingis well suitedfor
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processingheoutputof theintegerto-integertransformn thecase
of Gaussiannput, andwe will studytheproblemof GR codepa-
rameterselection. The Golombcodeswere introducedin [3] to
encodearbitrary non-nejative integerswith one-sidedgeometric
distribution (OSG): P(n) = (1 — ¢)q™, q € (0,1). Theoptimal-
ity of theproposedodesnterpretecasHuffmancodedor infinite
alphabetswvas proven and recently Golomb codeswere success-
fully usedfor codingtwo-sidedgeometricsouices(TSG).

The Golomb-Ricecodeswith parametek, denotedG Ry, en-
codesa nonngative integer u by sendingthe leastsignificantk
bits of u, followed by the unaryrepresentationf ux = [ ;%] (a
sequencef u; ones),andfinally terminateghe codevord with a
0 bit to allow uniquedecoding. This resultsin a total numberof
bitsuy, + k + 1. The GR codingis thelow-compleity methodof
choicein researctaswell asin practice beingusedto encodepre-
dictionresidualse which aresupposedo beLaplaciandistributed.

We will investigatein Section3 the selectionof the codepa-
rameterin the hypothesisof Gaussiardistribution for samplese.
Firstthe samplesc arequantizedo integervaluedz. Onepossi-
ble choicefor codingZ[4] is to encodeseparatelyhesignandthe
modulusz = |Z|. Thisis the procedurene will alsoconsiderin
the sequel.For simplicity, we assumehe averagecodelengthfor
thesignis 1 bit andconsideronly the codingof modulusz.

Relatedresultsconcerninghecoderedundang andefficiency
have beenpresentedn [5], which addressethe problemof GR
encodinghequantizedyeneralizedsaussiapdf's, but theirmeth-
odsfor selectinghe codeparametehave highermemoryrequire-
ments,involving the storageof tablesdesignedff-line. Another
relatedpaperis [4]: the GR codeparametek is selectedo obey
the condition
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where f(z|o) is the Laplacianpdf. A similar techniquewill be

presentedn this paperto selectthe codeparametefor Gaussian
inputs.

2. TRANSFORM CODING WITH
INTEGER-TO-INTEGER TRANSFORMS

Supposehe input vectorz(t) = [z1(t), z2(t)]T € R? is Gaus-
siandistributed,having the pdf

f(z)Z#\/mexp( ;_ *_>
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where K is the covariancematrix K = g1 poIO2 |
pPo102 g2
p* < 1,01,00 > 0and|K| = o305 (1 p®) is the determi-

nantof K. We assumex is azeromeanvector E[z] = 0.

2.1. Quantization of the input

Let consideranuniform quantizeQ y,a with N = 2M+' —1 (M
is a positive integer) reconstructiorlevels and stepsize A, such
thatthe quantizedversionz of thereal-valuedvariablez is given
by:

—NIA z<—(F-1)A
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For N large (N — 00), thequantizer@Qn,a appliedto ther.v.
z generategher.v.  givenby:

% = Qn,a(z) = iA when (i—%>A§m< <i+%>A (3)

for ary integers.

In thesequelve arebriefly discussinghequantizatiorof z by
usingdifferentapproaches:

Direct quantization (DQ): We use@Qn,a to quantizezs (t) and
z2(t) obtaining#:1(t) = 1A and#2(t) = i2A. Theintegers
[¢1 i2] have thejoint probability massfunction (pmf) P(i1,i2) =
fmeVil eaeVi, p([z1, T2])dz1dz2 WhereV;, andV;, denoteshe
Voronoicellsof thereconstructiong; A andis A.

Unitary transform coding (UTC): The Karhunen-Loge trans-
form (KLT) U is first appliedto z resultingin y = Uz. Then
Qn,a is appliedto the entriesof y to obtaing. Wheng is jointly
Gaussiardistributed, the KLT ensureghat the componentof y
arestatisticallyindependenaéndgy, §» canbe efficiently encoded
with scalarbut in generadifferent,entropiccoders.
Integer-to-integer transform coding (121TC)[1]: The indexes
[¢1 i2] obtainedafter quantizationasin methodDQ are mapped
to [} i%] with areversibleintegertransformZ’. The new obtained
indexes are encoded. The main differencewith respectto UTC
methodconsistsn usingadiscretetransforminsteadof acontinue
transform.

Thedistortionfor the uniform scalarquantizerQn, a is given
by D ~ A?/12 in the hypothesisof high-resolutionapproxima-
tion (A small). Whenthe componentf the quantizedvector
[Z1 &2] arenotindependentthe percomponentistortionis com-
putedwith the expression} ||z — £||>. In [1] it is shawn thatthe
distortionis nearlythe samefor all themethod9DQ,UTC,LITC)
whenA is small. So,thedistortionis fixed, but therateis variable
andthedesignwe describehasthe goalto minimizetherate.

For small A we mayassumehe pdf of z to beconstanbvera
cell Vi, x V;,, andthereforethejoint pmf canbeapproximateds
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with C anormalizationconstantlt resultsthatthe probability for
[i1 42]T canbeapproximatedsfollows:
2. . —1r. . T
P(fir 1)) v Qe T2 ©)
In the restof the paperwe useequality sign insteadof approx-
imation sign eachtime we are referring to the pmf of [ &2)”

or [i1 42]7. Due to the symmetryof the discretedistribution,
E[#1 £2]" = E[i1 32]" = 0". After somecalculationson the
momentsfor the distribution of the randomvector [z #2]* and
usingtheassumptionV large (IN — o0), we obtainthatthe auto-
correlationmatrixfor [#1 #2]" is K andtheautocorrelatiomatrix
for [i1 i2]7 is K; = K/A%

2.2. Integer-to-integer transform

We have to defineanintegerto-integertransform:[iy 2] — [ 45]

which depend®n a setof parametersA first temptingchoiceis

to approximatea linear transformT" = [T11 Ti2; 131 Tee] (the

entriesof matricesaredescribedollowing Matlab—like notations).
If T12 # 0 thematrixT canbefactoredby usingthelifting scheme
asfollows
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In [1] thetransformedrectoris expressedn thereal-valuedcoor

dinates[i; A i2A]. A first matrix multiplication 7y = [1 0;¢11]

creategii A, ¢1i1A + i2A] whichis truncatedo [i1 A, (|g1¢1 +

0.5] + i2)A]. It is simplerto definethis stagein integer coordi-
natesas[i1, 2] — [i1, [gi1%1 + 0.5] + i2]. Continuethe sec-
ond multiplication, by T> = [1 g2; 0 1] producingafter rounding
[il + I_Q2 |_q1i1 +05J +qat2 +05J R |_q1i1 +05J +i2]. Finally, the
third multiplication,by T5 = [1 0; g5 1], producesafterrounding
[i1+ [g2]g1%1 +0.5] + g2i2 +0.5], |gsi1+gs]g2|q1i1 +0.5] +

g2i2 + 0.5] + 0.5] + |g1¢1 + 0.5] + ¢2]. Sincethereis anone-
to-onemappingbetweerthevectors[z; z2] and[i; i2] we denote
by T'(&) the mapping[i1 2] — [i} i5]. Therearethreerounding
operationsjntroducingthe errorse, €2 andes respectrely. For
& = [i1A i2 AT, it maybeproved[1] that||T'(#) — T'2||« is less
or equalthan

vo| >

(1 + maz {|Ta|, |Toa| + | T3 (To2 — 1)|}) @)
This shavs that’.f“(:i) is agoodapproximatiorfor T' (in thesense
of thenorm|| - ||ec) WhenA is small.

Sincethetransformatior{é, i2] — [4] 5] is completely
reversible[1, thepmf of [i] 73] is exactlythesameasthatof [i1 42].
An equallylik ely contourin the 22 lattice (which, accordingo (5)
is the ellipsis [i1 2] K ~'[i1 i2]T = Const ) will betransformed
to the approximateellipsis[é} 5T~ T R™*T[i} i5]" = Const
in thenew coordinateaxes.

2.3. Thecoding rate versusthe algorithmic complexity

Using the samequantizer@ n,a for all the codingschemegDQ,
UTC, I2ITC) ensuresiearlythe samedistortionin the high resolu-
tion hypothesis.So, the performancef the encodingalgorithmis
givenby thetrade-of betweerrateandcompleity. A comparison
of codingratesfor differentmethodscanbe obtainedby studying
theentropy of theencodedndexes.

For the UTC schemewe denotey = Uz andg is the quan-

tized versionfor y. In thel,ITC casez is the notationfor T'(%).
R,(-) is the ratein bits/samplefor scalarentropy coding (based
on the maginal probabilitiesof the vector entries)and R, (-) is
theratefor vectorentrory coding (evaluatedwith joint probabil-

ities of the vectorentries). Therate R, 2 R,(2) = Ry(2) ~
R, (f) obtainedby entropic coding basedon joint probabilities



is the sameratefor all threeschemes.Unfortunately to achieve
this rate, the size of the codedictionary (necessaryo implement
Huffmancoding)is N2. Thescalarcodingof thevectorentriesre-
ducesthe memoryrequiremento at most2/N codevords,andwe
evaluatenext the price to be payedfor this reduction. Generally
Rs(Z) > R,, but Rs(§) = R, whengz is jointly Gaussianmak-
ing UTC attractive sinceit givessimilar resultsto vector coding
with a smalleramountof resourceslt is provedin [1] thatrelax-
ing UTC to non-orthogonatransform,the bestresultwith 12ITC
is Rs(2) = Rs(%). The sameratewas obtained[] by usinga
single (common)codebookfor both channelswhich reduceshe
memoryrequirementérom 2N codevordsto N codeavords. To
achieve this performancethe transformT was chosensuchthat
T-TK 171 is proportionalto the identity matrix I, transform-
ing equallylikely contoursfrom ellipsisto circles. Two assump-
tionsareneededor theabavetohold: 7' ~ T, andN = 2M+1—1
is alargenumber

Our approachs a further steptowardsreducingthe complec-
ity: we apply GR codesand,consequentlyeliminatethe needto
storeHuffmantables.G R codeswill beappliedindependentlyor
eachchannelthe averagecodelengthbeingcomputedas L,, =
(LL, + L%,)/2 where L%, denoteshe averagecodelength for
channeki. The problemto be solved s to designthe mapping?’
that ensureshe minimum L,, whenz is jointly Gaussiarwith
known pdf andthe quantizerQ v, a is given.

2.4. An approach based on Karhunen-L oeve transform

We chooseT' = U orthogonalwhereUKUT = diag(s?, s3).
From the transformU we obtain the integer to integer mapping
U(-) by performingthelifting factorizationdescribedn (6). The

equality[£] #5]" = U[#1 22]" implies

P([#) #5)") ~ Ce*%(%ye*%(%)z

wherewe usetheapproximationg4) and(7). Theresultshavsthat

therandomvariablesz; andz; areindependenandwe canmini-

mizetheaveragex:odelengthbyencodingseparatelyeacmariable.

Since|U| = 1 wefind thats3s3 = (1 — p*)oios. Theequation
_1(a

above givesthepmf for 4, asP(i}) = Cie * ('1) wheres| =

1 ”2
s1/A andrespectiely the pmf for i3 is P(i5) = Cae ° ('2) ,
s5 = s3/A. We considemow a supplementaryntegerto-integer
reversibletransform{sy i5] — [if i5]. WhenGRy, is applied
for channell andGRx, for channel2, the averagecodelengthis

givenby Lq, = %(L}w + Lgv) =

P {22?;?:0 LT‘Z,J Cyp exp (—% () ) + (kp + 1)}

A fastmethodto selectthe parameters,, p € {1,2} is to
choose

" = |fsp], f€(0,1) (8)

where f = 0.6745, asexplainedin Section3. Thetermk; +
k2 in L,, canbe approximatedoy log,(fs?) + log,(fss) =

n_n

log, (s7s% %) andit is invariantwith respectto ary unltary de-
terminantiransform(zy 5] — [¢7 45] sincesY sy = sis5.

We focus on the transform[z1 is] — [#f i5] which equal-
izesthe variancess} = s5 = s” [1] in orderto accomplishthe

MD requirementsThe pmf for 1} is the sameasthe pmf for 5,

SN\ 2
P@E") = C(s”)e_%(ﬁ) . We will evaluatein the sequelthe
averagecodelength L,, after this transform. When GR;, code
is usedfor both channelsthe term of L, which dependsnthe
transform,is

A(s") = 2i§0 B—’“J C(s") exp (—% <;—Z>2> .

Lemma2l If s"
C(s") is bounded:

> 1/4/2m, then the normalizationconstant

1 1
<
Vams'"+1 V2rs' — 1
Proof: We apply the Maclaurin-Cauch integral testto the series
1 (! 2
S 2 (7) = % (@) wheref : [0,00) - (0,1],

z 2 . . .
flz) = e~ 2(:%)" is continuousandmonotonedecreasing The

C(s”) S

il 2
nth partialsumoftheconsidered;eriesiSan = Z",, 0€ 2( ) .
Considetb, = Y7o [in T f(@)dz = [ f(a)dz. Forary
integerN1 > 0,an,41 — 1 < by, < an, Whlchlmpllesthatthe
series(an)n>0 covergesto L, and Y255 < [, < ¥2ms” 4 g

’”
(we usedlimy, —ooby, = ¥225-). 0O

Lemma 2.2 a) For anypositiveinteger i”,

1 1/-// _ fs” S C(S”) i S 1 i”
V2ors" +1  fs" 2k Vorst —1 fs" —1
b) Usmgtheapprommanonr T fsl,’ - f\}ﬁ;,% we ob-
tain

Sl (4():

/=0
Z 77

S (3(5))

Proof: a) Thecondition(8) leadsto ;77— > 3¢ > 7 if fs" —

1 > 0. By applyingLemma2.1we obtaintheresult.C]

Proposition 2.1 UndertheassumptionfromLemma2.1and?2.2,
thevariabletermin L,, is boundecby

2 2 A
) < +
fV2r  f/2me+/S182

Proof: Let considerthefunction¢ : [0, 00) — [0, 00),
p(z) = -5z exp (—% (%)2) which hasthe derivative

¢'(z) = 4z exp (—% (%) ) [1 ~ (—)2}. It is easyto obsere
thatthe function ¢(-) is increasingon the interval [0, s'] andde-
creasing)ntheinterval (s", 00). Themonotonicityimpliesforary
" € {0,1,...,[s"] — 1}, ¢(i") < f’ +1 gb(a:)d:c < @@ +1)
andfor ary integer” > |s"] +1, $(i” +1) <[5 T ¢(z)de <
é(z"). With the assumptlonthat the supplementarynequality

o(ls"] +1) < [L17 p(x)dz < ¢(|s"]) is true, we obtain

s

550 e (- (;"TZ) ) < I oty + (15" This

A(s” (10)



inequality Lemma2.2b)andthepropertys” = ¥%:°2 imply (10).
|

Sincethe upperboundin (10) is approximatelyl.2 when A is
small,we canconcludethatthe averagelengths with andwithout
the transform[s} i3] — [¢f 5], differ by at most1.2 bits. Note
thatthe parametek wascomputedo fulfill (8). We will investi-
gatein thenext Sectionhow farfrom optimalis thecodeparameter

k obeying the condition(8).

3. SELECTION OF CODE PARAMETER WHEN THE
INPUT DISTRIBUTION IS GAUSSIAN

x

ConsidemGaussiam.v. z anddenotey(z) =

Ther.v. z is quantizedo & = Qn,1(z) asin (2), which leadsto
the pmf for themodulusz = |Z|:

Prob{z =n} =
_1{22 g(z)dz, n=0
f;?/; g(z)dz, 0<n<2M -1

{sz 31//22 9(@)dz + [ ), g(:c)dx} ,n=2M_1

Proposition 3.1 Theaverage codelengthobtainedwhenz is en-
codedwith GRy, k = M — m, is givenby

EL: = EL%,_
M +1, m=0
M+2"™ —m— 222 7lerf(p2Lm—6), 1<m<M

wheer = 2~ en‘(t) f fo exp(—3y°)dy andé = sz
Corollary 3.1 For anyintegerm, 2 < m < M, if EL%, . >

M thenEL%;_ i1y > ELY .

The problemof finding the parameteik (or equivalently m)
suchthatthe code G Ry, insuresthe shortestaveragecodelength
for themoduli  canbesolvedby applyingafull-searchalgorithm
which sequentiallyevaluatesE L%, .. for all possiblevaluesof
m: 0,1,..., M. Theresultfrom Corollary 3.1 reduceghe com-
plexity of suchanalgorithm:thedifferentvaluesof m aretestedn
increasingorderandthe processs stoppedvhenthefirst m* > 2
with propertyEL%, ..« > M is found. It resultsfrom Proposi-
tion 3.1thatwhenwe useG Ry (m = 0) to codethesamplef &
truncatedo thevalues{0,1, . .., 2™ —1}, theaveragecodelength
(M + 1) is 1 bit longerthanthe codelengthnecessaryo represent
the samplesin binary format. It is straightforvard to checkthat
M<EI: <M+1ifk=M-1(m=1).

Thecondition(1) for selectingthe parametek becomes

k = |log,(0.67450) | < k = |log,(o) — 0.57] . (11)

A comparisorof resultsobtainedby applyingthe minimumaver
agecodelengthcriterionandthe conditionaboveis representeih
Figurel. We obsenethetendenyg of criterionintroducedn [4] to
commutethecodeparametefrom k to k — 1 for valuesof standard
deviation o which arelargerthanin the caseof applyingminimum
averagecodelengthcriterion. This leadsto longeraveragecode
for somevaluesof the standardieviation, but the differences not
dramatic.An improvementin averagecodelengthcanbeobtained

o -5 (2)°]
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Fig. 1. Comparisorof averagecodelength[bits/sample]n thecase
of minimumaveragecodelengthcriterion(continuoudine) andcri-

terionfrom [4] (dashedine) for differentvaluesofindexr = 2 /o

whereM = 8. For eachcasethe optimalvalueof the parametek

is plotted by using the sametype of line asfor the averagecode
length. The standardleviation o is representeéh logarithmicscale
for comparisorwith commutatiorvaluesin selectionof k.

by definingthresholdgasafunctionof thevarianceX¥or switching
betweenthe selectionof k or £ — 1 ascodingparameterIn this
caseit is necessaryo storea tablecontainingthe thresholds.The
sametablemaybe sharecdby all channelf theintegerto-integer
transform.
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