LIMITSFOR GENERALIZED SIDELOBE CANCELLERS
WITH EMBEDDED ACOUSTIC ECHO CANCELLATION

W. Herbordt and W. Kellermann

University of Erlangen-Nuremberg, Telecommunications L aboratory
Cauerstr. 7, D-91058 Erlangen, Germany
{ herbordt, wk} @LNT.de

ABSTRACT

This paper analyzes positive synergies and theoretical limits
of the combination of acoustic echo cancellation (AEC) and
Generalized Sidelobe Cancellers (GSC) for the removal of
echoes of loudspeaker signals and local interferers. While
the proposed system only requires one AEC for an arbi-
trary number of microphones, the array gain is limited by
the number of sensor channels when all interferers arrive
from different directions-of-arrival (DOAS). The paper also
shows that the degrees of freedom of the adaptive sidelobe
cancelling path are not sufficient when local interferers and
acoustic echoes have common DOAS.

1. INTRODUCTION

Natural communication between the user and personal com-
puting devices calls for speech-driven application control
via hands-free acoustical interfaces. The user may thus move
freely without wearing or holding any microphone device.
For optimum speech communication quality and at maxi-
mum speech recognition rates, such human/PC interfaces
need to produce signals of interest that a) are free of back-
ground noise, reverberation, and echoes of loudspeaker sig-
nals, and that b) can be distinguished from interfering local
speakers.

In contrast to desktop PCs for mobile personal devices,
the computational power of mobile personal devices will re-
main a limiting factor in the usage of complex noise-reduction
algorithms. Compared to single-channel temporal filtering
noise-reduction schemes, multichannel space-time filtering
promises better target signal quality and more efficient sup-
pression of interferers (local interferers).

AEC is desirable whenever a reference of the interfer-
ence is accessible. With personalized devices, these inter-
ferers may be echoes from the loudspeakers that are part of
the device (acoustic echoes).

This research aims at reconciling multichannel noise-
reduction techniques and AEC while preserving the effi-
ciency of both approaches and keeping the computational
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load moderate. In [1], three basic concepts have been pre-
sented. These methods have been applied to the combina-
tion of a robust GSC [2] and AEC in [3]. It has been shown
that placing one AEC in the reference path behind the fixed
beamformer (FBF) seems to be most promising. Only one
AEC is required for an arbitrary number of microphones
(see Fig. 1). However, when acoustic echoes are efficiently
suppressed by the AEC, they may still leak through the side-
lobe cancelling path that is formed by the adaptive blocking
matrix (ABM) and the adaptive interference canceller (AIC)
due to the limited number of degrees of freedom of the adap-
tive filters (AF) in the AIC.

Fig. 1. AEC embedded into GSC: GSAEC

This paper shows theoretical limits of the interference
rejection of GSAEC in anechoic environments with a finite
number of interferers as well as in diffuse noise fields. First,
the optimization problem of finding AIC filters that maxi-
mize the array gain is formulated (Section 2). In Section 3,
the solution of this equation is discussed for variable num-
ber of interferers with the assumption of single-path propa-
gation. In Section 4, the optimization problem is applied to
diffuse noise fields, and theoretical limits of local interfer-
ence rejection and acoustic echo rejection are derived.

2. PROBLEM FORMULATION
Throughout the paper, the array gain [4] is extended to the
combination of beamformer and AEC: The SNR improve-
ment with respect to acoustic echoes and with respect to



local interferers are termed echo rejection and local inter-
ference rejection, respectively.

Our analysis is based on the discrete-time Fourier trans-
form. In an arrangement with L discrete interferers and
M microphones, interfering signals are described by X;(w)
with! =0,1,..., L — 1. X;;(w) describes the contribu-
tion of the [ -th interferer to the i-th sensor channel, with
1=20,1,..., M — 1. For now, we do not distinguish local
interferers from acoustic echoes.

All noise contributions should be stationary and ergodic
ao that cross power spectral densities may thus be written as

®pi5(w) = Xpi(w)* Xi,5(w), D

where * denotes complex conjugation. Furthermore, they
should be spatially homogeneous, i.e.

Py(w) = Pii(w) = Rp55(w) Vi, J, )
and they should be mutually orthogonal, or
Xiyi(w)* X j(w) =0 Vi, j; k#1. ©)

Using the normalized complex spatial coherence func-
tion py,ij(w)
@55 (w)
Dy,ii(w) i 5j (w)

prij(w) = ; 4

Eqg. 1 can be written as

®yi(w) = Pr(w)pr,ij(w) - ®)
The response vector of FBF is given by the frequency
responses of each channel filter W;(w)
wl(w) = (Wo(w) Wi(w) - - Wy_1(w)).  (6)
The AEC only attenuates acoustic echoes without dis-
torting local interferers. The suppression of the AEC of the
I-th interference is described by the inverse gain 1/G 4 ;(w),
|Ga,i(w)| € [0;1]. Here, local interferers have to be treated
differently than acoustic echoes: G, ;(w) = 1 for local in-
terferers, and |G, (w)| € [0;1] for acoustic echoes. The
AEC output Y, (w) can be written as
L-1M-1
Yow) =Y > Wilw)Gay(w)Xii(w).  (7)
=0 i=0
The ABM is assumed to be ideal, that is, all interferers
are passed without being distorted while the desired signal
is perfectly suppressed. The i-th ABM output is then given
by:

L-1
Yilw) = 3 Xiaw). ®)
=0

Capturing the ABM output signals Y;(w) and the AIC filter
transfer functions H;(w) in vectors

y'(w) = (Yo(w) i) -+ Y1 (w)), 9)
and
h(w) = (Ho(w) Hi(w) -+ Hy—1(w)), (10)

respectively, the GSAEC output signal Z(w) can be written
as

Z(w) = Ya(w) ~h" (w)y(w). (11)

Thus, to optimize the array gain, the AIC filters have to
solve the least-squares problem

b (w)y(w) = Ya(w)|* = min (12)

3. POINT SOURCESWITH SINGLE-PATH
PROPAGATION

Here, the solution of the least-squares problem Eq. 12 is
discussed for an arbitrary number of interferers with a sin-
gle propagation path each. The propagation delay between
the [-th interference and the i-th microphone is denoted by
71;. The contribution of the [-th interferer to the i-th sensor
signal is thus given by

Xii(w) = Xi(w) exp(—jwm;) - (13)
Introducing matrices
Y (w) = {Xi(w) exp(—jwi) } s (14)
and
Y, (w) = {Gau Xi(w) eXp(_jWTli)}LxM ) (15)

and using the assumption of mutually orthogonal interfer-
ers, the minimization problem Eq. 12 can be written as fol-
lows:

Zmin(w) = {ﬁfﬁ 1Y (@)w(w) = Y(wh(w)[*. (16)

Two trivial cases with Z,,;,(w) = 0 can be considered:
First, without echo cancellation, i.e. G,(w) = 1, ideal in-
terference rejection is given for h,,:(w) = w(w). Second,
with perfect echo cancellation, i.e. G,(w) = 0, and with-
out local sources, all interferers are ideally suppressed for
h,,:(w) = 0. Depending on the rang of the matrix Y (w),
these trivial cases can be found in different classes that are
discussed in the following.
In the general case, we observe that ideal interference
rejection Z,in(w) = 0 is obtained, if*
Y (w)h(w) = Y, (w)w(w) Vw. (17)
This system of linear equations can be solved, if
rank{ (Y (w), Y (0)W(w))  , pr41 } = rank{ Y (w)rxar} -
(18)
If rank{Y (w), Yy (w)w(w)} # rank{Y(w)}, Eq. 17 can-
not be solved, and the optimal value of h(w) is found by set-

ting the partial derivative of || Z (w)||* with respect to h(w)
equal to zero. That is,

Y7 (W)Y (wh(w) = YT (W)Y, (w)w(w), (19)

where # denotes the Hermitian operator.

1The matrix (Y (w), Yg(w)w(w)) is obtained by appending the col-
umn vector Y g (w)w(w) to the right side of the matrix Y (w).



Depending on the rank R and the dimensions of the
L x M matrix Y (w), four classes of solutions for the mini-
mization problem must be distinguished:

(8 R = L: (al) L = M: There are as many interferers
as microphones with a different DOA each. The system of
linear equations Eq. 17 is solved by

h(w) =Y (W)Y, (w)w(w),
and consequently Z,,;, (w) = 0.
(@2) L < M: There are less interferers than microphones
with a different DOA each. The matrix Y (w) is of full row

rank and it can be shown that one solution of the underde-
termined least-squares problem is given by [5]

hop (W) = Y () (Y(@) Y () ¥, (@)w(w). (20)
It may be easily verified that Eq. 17 is fulfilled by substitut-

ing Eq. 20 into || Z (w)||?. Optimum interference rejection is
thus possible.

(b) R = M and L > M: The number of interferers with
different DOAs is greater than the number of microphones.
Y (w) has full column rank, and the matrix (Y# (w)Y (w))
is invertible in turn. With Eq. 19, the optimum AIC filters
h(w) can thus be determined as follows:

hope (@) = (YA ()Y (@) T Y)Y, (@)w(w). (21)

Substituting Eq. 21 into || Z(w)||? gives the optimum inter-
ference rejection Z,,,;, (w). That is,

H
Zrmin(w) = (Yg(w)w(w)) (Yg (w)w(w) — Y(w)h(w)) .
(22)
Zmin{w) = 0isonly given, if exactly L — R interferers with
common G, (w) arrive from same DOAs.

(R< M < LorR< L< M: Here, no closed form of
optimum filter coefficients can be given. However, a solu-
tion in the least-squares sense is found by applying singular
value decomposition [5]. That is,

S-t 0

hon() = 0@) (569 1) V@Y, @w).

The unitary matrices U(w) and V (w) are determined such
that

VIY@UE = (55§ )
0 0

with the matrix S = diag (oo (w) o1 (w) - - - op—1 (w)).

Zmin(w) = 0, i.e. Eq. 18 is fulfilled, if exactly L — R
interferers with common G, (w) arrive from same DOASs.

In summary, ideal suppression of acoustic echoes and
local interferers is possible when the acoustic echoes arrive
from different DOAs than the local interferers and when the
total number of interferers from different DOAs is less or
equal to the number of microphones.

This means that in real applications positive synergies
between AEC and GSC may be expected in environments
with few interferers and with acoustic echoes arriving from

different DOAs than local interferers. Otherwise, better in-
terference rejection may be obtained by applying GSC only.

4. DIFFUSE NOISE FIELDS
In the following section, upper and lower limits are derived
for diffuse interfering wave fields. This corresponds to the
case of an infinite number of correlated interferers. With-
out loss of generality, presence of a single local interferer
and presence of a single echo signal is assumed for simplic-
ity. First, the optimum AIC filters in the Minimum Mean-
Squared Error (MSE) sense are derived. Then, expressions
for the acoustic echo rejection and local interference rejec-
tion are developed. Finally, upper and lower limits are dis-
cussed.
The optimum AIC filters h,,.(w) are given by [5]:

hgpt(w) = Pil (w)rYaY(w) ’ (23)
with the cross spectral density matrix

P(w) = {®viv; (@)} 1y pr (24)
where i is the column index and j is the row index, and with
the cross spectral density vector

}Mxl' (25)

The power spectral densities (PSD) of the local interferer
and of the acoustic echo signal are given by ® x, x, (w) and
®x . x (w), respectively. The spatial coherence of the as-
sumed diffuse noise fields p;; (w) is given by [4]

pij(w) = sinc (M> ; (26)

C
when a linear array with sensor spacing d is assumed. ¢
denotes the propagation speed. In the following, the spa-
tial coherence functions between the sensors after the FBF
filters w(w) will be combined in a matrix

R(w) = {pij (@)} prar - (27)
where i is the column index and j is the row index. As-
suming mutually uncorrelated local interference and acous-
tic echo, Eq. 24 and Eq. 25 may then be computed as

ry,y(w) = {®y,v; (W)

P(UJ) = ((PXIXI (w) + (PXEXE ((U))R(CU) ) (28)
and
r;T,aY(w) ((I)XIXI( )+G ( )(I)XEXE(‘U))'
M-1
W; (W) (pjo(w) pjr(w) -+ pja-1(w)),(29)
JZO
.:r¥(w)

respectively. In the absence of AEC, Eq. 23 reduces to
h(w) = R™}(w)r(w) when Egs. 28, 29 are observed. With
Egs. 7, 11, the optimum coefficients are given by hp, (w) =
w(w). Finally, the general case reads with Egs. 23, 28, 29:

1+ Gal®)
h,p(w) = 1+ (@) (w), (30)



with n(w) = Px,x,(w)/Px,x,(w) the ratio of power
spectral densities. With Eq. 7 through Eq. 11, ® zz(w) =
Z(w)Z*(w) may be written as follows:

zz(w) = (1P W)Px,x, W) + Bxpxs(W)) -
1—Ga(w)|?
=G, @
(1+n(w))
where
M-1M-1
= Wz pz]( ) (32)
i=0 j=0
We see that (5= 0 " plw )dw) is equivalent to the array

gain of FBF when the response vector w(w) is normalized
such that the array response is unity for the DOA of the
target.

We now split @ 7z (w) in Eq. 31 into terms with local in-
terferer components and into terms with acoustic echo com-
ponents ® ;. (w), z € {I, E}:

@Zz(w) :(I)ZIZI(CU)+(I)ZEZE(W)- (33)

Then, we decompose the local interference and the acous-
tic echoes into narrow frequency intervals of width 2Aw
around the center frequency wg, and we define

wo+Aw

- (I)Zm Za (w) dw
Gw (u.)o) = fuo Aw

+A ’
f::)o_A: QXEXE (LU) dw

(34)

The array gain with respect to local interferers or with re-
spect to acoustic echoes is thus given by 1/G (wo).
G1(wg) and Gg(wg) can be written as:

o)l = Galn)?

Grlioo) = (1+n(wo))”

(35)

and
|1 = Ga(wo)?

(1+n(wo)”
respectively. Several special cases can be considered. Gen-
erally, ideal suppression is possible for G,(wo) = 1. Then,
assume that either no acoustic echo signal or no local inter-
ferer is present. It follows that 5y(wo) = 0 or n{wp) = +oo
and ideal suppression G(wg) and Gg(wp) is possible, re-
spectively.

The worst case is obtained when both interferers have
identical energy, or n{wg) = 1, and the AEC ideally sup-
presses acoustic echoes, or G, (wp) = 0. Then,

GEr(wo) = Gr(wo) = p(:o) .
This corresponds to 6 dB array gain relative to FBF.

In Fig. 2(a)(b), the interference rejection 1/G r(wg) and
the acoustic echo rejection 1/Gg(wo) are illustrated as a
function of wo with parameter n(wo) € {0.01, 1, 10}, re-
spectively. The array consists of M = 8 equally spaced

GE(wo) =

p(wO) ’ (36)

(37)

sensors that are arranged linearly with a distance d = 4 cm.
FBF is a simple delay&sum beamformer, or w; (w) = 1/M.

@ (b)
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Fig. 2. Local interference rejection(a) and acoustic echo
rejection(b) for —201g (|G (wo)|) = 25 dB over frequency

It can be seen that when the acoustic echoes are 10 dB
stronger than the local interferer (p(wo) = 10), then
—101g (Gr(wo)) is reduced to less than 12 dB. Moreover,
an acoustic echo rejection greater than that of the AEC
(Ge(wo) > |Ga(wo)|) can only be obtained for 27we >
1200 Hz. On the other hand, when n(wy) = 0.01, more
than 40 dB local interference rejection is reached, but the
acoustic echo leakage through the sidelobe cancelling path
is between 14 dB and 24 dB.

5. CONCLUSION
In this work, we have investigated synergies of AEC em-
bedded into GSC. We have shown that optimum interfer-
ence rejection is only possible when local interferers and
acoustic echoes have no DOAs in common and when the
total number of interferers is less than the number of micro-
phones. The lowest array gain is obtained for diffuse noise
fields with identical PSD of local interferers and acoustic
echoes: The array gain is only 6 dB higher than that of FBF.
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