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ABSTRACT

This paper analyzes the influence of channel estimation er-
rors on the performance of linear multi-user receivers. As-
suming randomized codes and asymptotically high spread-
ing factors and noise power, we show that the performance
of the decorrelating and the minimum mean squared er-
ror (MMSE) receivers tend to the same limit in terms of
signal to noise ratio and bit error rate (but not in terms
of mean squared error). Using these results and assum-
ing Gaussian-distributed channel estimators, we derive two
simple approximations to the bit error rate and compare
them with the actual values via simulation.

1. INTRODUCTION AND SIGNAL MODEL

The increasing interest in the implementation of DS/CDMA
mobile communication systems has motivated the study of
the performance of these systems under realistic conditions.
In particular, the effect of imperfect parameter estimation
on the performance of linear multi-user receivers has been
considered in several recent papers. For instance, the in-
fluence of imperfect timing along with phase and frequency
errors on linear multi-user detectors was discussed in [1] and
[2], whereas the influence of a mismatched channel impulse
estimate was investigated in [3] and [4]. Particularly, in [4]
the authors assumed randomized spreading sequences and
studied the performance of linear multi-user receivers when
the number of users of the system increases without bound.
Here, we take a similar approach to the problem: assuming
randomly generated spreading sequences, the performance
of linear multi-user receivers is analyzed in terms of bit er-
ror probability under the approximation of high spreading
factors and noise power.

Let us consider a synchronous multi-rate DS/CDMA
system with simultaneous multi-code and variable spread-
ing factor transmission. Note that this is the basic configu-
ration of the wideband CDMA (WCDMA) system proposed
for the Frequency Division Duplex (FDD) mode of UTRA
(UMTS Terrestrial Radio Access). The signal model pro-
posed here could correspond either to an uplink communi-
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cation in a single user scenario where the user of interest
transmits with several codes or to a downlink communi-
cation where different users (with different bit rates) are
being served. The following parameters characterize the
multi-rate structure of the signal:

N, Period of the spreading code sequences
(in number of chips)

Q Number of codes transmitted in parallel

SF, Spreading factor associated with the
qth code

Ns(g) Number of symbols transmitted on the
qth code within N, chips.

We assume that at the basestation the signal is syn-
chronously sampled at the chip rate (modulation with no
excess bandwidth) and that symbol detection is made in ob-
servation windows of M N, chips. Stacking M N. samples

of the received signal into a column vector x € CMNe*1 we
can describe the received signal as
x=Gs+n (1)

with G a matrix of received signatures, s a vector con-
taining the complex-valued transmitted symbols and n the
noise component. The column vector h € CE*! contains
the channel impulse response, assumed constant on the ob-
servation window and of length L < N..

Let us now concentrate on the matrix of received sig-
natures G. This matrix is formed stacking side by side the
signature matrices corresponding to each of the code se-
quences G = [Gl "'GQ]. These Gg, ¢ = 1...Q, can in
turn be expressed as

G, =C, (IM.s-(q) ® h)
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the effective number of symbols received in an observation
interval and Cq(1), C4(2) the upper and lower parts of the
next convolution matrix:

{Cq(l)} - [Cq,1 Caz - Cq,NS(q)} € O2NexNs(a)L

Cq(2)
[ cqr(l) 0 Or_ix:
. cq.r(1)
Cos = | can(N) : € 2NexL
0 L egr(Ne)
L : <+ ON.—Ly1x1 ]

where I; and 0% stand for the ¢ x ¢ identity matrix and the
Jj X k all-zero entries matrix respectively. Matrix Dy(2) is

obtained as the [g—;ﬂ columns on the right of C4(2), and
contains the contribution from symbols transmitted prior
to the observation interval. The complex-valued modified
code sequences c¢q,r(n) are defined from the original codes
cq(n) setting to zero all the samples outside the rth symbol
interval,
Can(n) = cq(n) (r—1)SF,<n<rSF,
LA 0 otherwise ’

Finally, returning to (1), s € CM=*! is a complex-valued
vector with length M, = Zqul M,(q) containing all the
symbols that contribute to the signal within the observation
interval

s=[sls] sk

]T
Each vector s, CM:(9*! contains the symbol stream
transported by the gth spreading sequence and received dur-
ing the observation interval.

We consider the use of multi-user receivers to perform a
joint detection of the symbols transported by the @) spread-
ing codes. In particular, we will study the best linear unbi-
ased estimator (BLUE) of s, under the assumption of cir-
cularly symmetric white noise —referred to as decorrelating
receiver—,

528 = (¢ 4] gty

and the linear Bayesian estimator under the assumption
of circularly symmetric i.i.d. symbols and white noise —
referred to as MMSE receiver—,

N N -1 4
gMMSE _ {GHG_'_OA_QI] GHX7

where h and 62 are estimations of the channel impulse re-
sponse h and noise power o? respectively and G equal to
G replacing h with h.

2. EFFECT OF IMPERFECT CHANNEL
ESTIMATION

From the set of symbols mapped to the gth code sequence,
we are only interested in those for which our observation
x constitutes a sufficient statistic. The vector containing

this selection of symbols will be denoted by t, so that for a
particular code ¢, we will have

b= ([52] +1) oo (0 - [52) ]

with §4(¢) representing the ith element of §,. The same
definition holds for all the estimators presented in the last
section, as well as for the vector of actual values s,.

Consider now the following statistical assumption:

(Asl) The spreading sequences are circularly sym-
metric independent identically distributed (i.i.d.) ran-
dom variables with zero mean, variance E [cp(n)c;(m)]| =
q0p—qOm—n, finite higher order moments and independent
of the noise vector n.

(As2) The noise samples are circularly symmetric i.i.d.
with zero mean and covariance F [nnH] = oQIMNF.

As shown in the Appendix, under (Asl, As2) and as-
suming that the spreading factors SFy and the noise power
o2 increase without bound while their quotient remains con-
stant, the random variables EqDEC and ‘E(IIVIMSE tend in law
to a circularly symmetric jointly Gaussian-distributed ran-
dom vector with mean

DEC _ ﬁHht MMSE — 1 mDEC
q S B S TR

and covariance

2 1 DEC

DEC __ HhH Vs (‘1) I ( )6 CMMSE _ g

p,q - 2 s(q)¥YP—q> p,q - ~— 29
[1+45" (9)]

being

aqSF, ||h|?

~.(q) = 28 o:12H I

the symbol energy to noise spectral density associated with
the gth spreading sequence.

Since the symbol estimates are asymptotically indepen-
dent, one can evaluate the performance in terms of proba-
bility of error for a generic ith symbol transported over the
qth code sequence. Under the asymptotic conditions estab-
lished, the output signal to noise ratio is the same for the
two detectors and can be expressed as

SNRYPC = SNRYMSP = tr [PuPL]7.(q), (2)

aall

where, for a generic column vector a, Pa = el

3. EFFECT ON THE SYMBOL ERROR RATE

Let us first concentrate on the asymptotic expression for
the output of the two receivers,

. h"h

tqDEC = ——=t¢+npec

gMMSE ;&t +nyppmsE
! 1+4." (9) ! ’

with nprc and nyumse the output noise contributions.
The effect of an imperfect channel estimation is a reduc-
tion of the signal to noise ratio, characterized by the term



tr [PoPy] in (2) as well as a phase error at the output of
the equalizer. The bit error rate can be expressed as,

BER = E [ Pg]

with Py the bit error probability conditioned on the chan-
nel estimator and where the expectation is carried out with
respect to h. Assuming Gray coding and QPSK modula-
tion, one can express the conditional bit error probability
as [5]:

Pb|;, = %Q (cos (

12 Q(cos(

o) V2L@)+ )

6) V207.@)

with
Qz) = \/% /:o e N 2dN, ¢ = tr [PuPy]
¢ = arctan {Im (ﬁHh> /Re (ﬁHh>] .

Note that, under the asymptotic conditions described, this
probability is equivalent for the two detectors under con-
sideration. Making use of several trigonometric identities,
(3) can be expressed as

P =3Q (V3@ Re(n) ~Im()]) +  (4)
+5Q (V3@ [Re (1) +Tm ()

hh
[[B][1m0 -

In order to give more intuitive approximations for the
bit error probability, consider now the first order Taylor
series development of the decorrelator output with respect
to the channel estimation around the true channel impulse
response (note that under the asymptotic conditions stated,
the MMSE receiver will yield the same performance),

with n =

§PFC _gn {GHG] G- [GHG} el (G - G> s

- [GHG] el (G - G) {GHG] eL
n [GHGrl ((‘;— G)HPén, (5)

with P§ = Iun, — G[GPG] "G, The first term
corresponds to the noise at output of the decorrelator
assuming perfect channel estimation, whereas the rest
can be associated with an additional noise due to chan-
nel mismatching. Let us now consider a Gaussian-
distributed circularly symmetric h with mean h and vari-

ance E {(h - h) (1‘17 h)H} — Cp independent of both

the noise vector n and the transmitted symbols s. It can
be shown that, under (Asl, As2) and assuming that noise
power and spreading factors increase without bound at the
same rate, the covariance of the total noise contribution in
(5) tends in probability to

1 tr (C hCpLh
(1+ r ( ;)) n h
7(9) [kl [kl

so that the bit error rate (BER) of the two systems can be

approximated as
~ tr (C hZCph] /2
BER:Q({Wsl(q) (1+ z( Q)) - HhHl‘I } :
(6)

[
We can identify two terms influenced by imperfect chan-

‘cuh
Dk is the

dominating term and only the part of the covariance matrix
generated by the channel subspace contributes as effective
interference. This term is responsible for an irreducible er-
ror floor at the output of the linear receivers. At low signal
to noise ratios, the term %}%2 becomes dominant and the
whole covariance matrix span is responsible for the perfor-
mance degeneration. This is in strong connection with the
performance of semiblind ML channel estimators in muti-
rate synchronous CDMA discussed in [6].

nel estimation. At high signal to noise ratios, b

4. GOODNESS OF FIT OF THE
APPROXIMATIONS

Figures 1 and 2 represent the performance of the decor-
relator with an observation window of M = 4 spreading
periods (N. = 256 ) for the cases of @ =1 and Q = 2 codes
respectively. The channel length was set to L = 5 and the
spreading factor to SFy; = 64, so that each code represented
Ns(g) = 4 virtual users per spreading period. The results
obtained via Monte-Carlo simulations with randomly gen-
erated codes (asterisks) are plot together with the bit error
rate approximations derived in (4) and (6) —dash-dotted
and solid line respectively—. The channel estimator was
assumed unbiased and Gaussian-distributed with diagonal
normalized covariance % = a?21;, where o2 ranged from

0.01 to 0.5. Results for the MMSE receiver are omitted here
for clarity (in any case, its performance is very close to that
of the decorrelating receiver).

Performance SF=64, Q=1

3 4 5 6 7 8 9 10 11
Es/No (dB)

Figure 1: Asymptotic performance of the multiuser detec-
tors with SF' = 64, Q = 1. Dotted line: performance with
perfect channel estimation. Dash-dotted line: BER in (4).
Solid line: BER in (6). Asterisks: simulated performance.



In spite of the fact that the BER expressions are derived
under the assumption of infinite SFy, they turn out to be
quite tight for relatively moderate spreading factors. Note
that, in WCDMA, a low bit rate user can transmit with a
SFy as high as 256.

Performance SF=64, Q=2
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Figure 2: Asymptotic performance of the multiuser detec-
tors with SF' = 64. Line conventions are as in Fig. 1.

5. CONCLUSIONS

This paper has presented an asymptotic analysis of the in-
fluence of an imperfect channel estimation on the perfor-
mance of linear multiuser receivers when both spreading
factor and noise power increase without bound. Under these
conditions, the performance of the MMSE and decorrelat-
ing receivers has been shown to be equivalent in terms of
signal to noise ratio and symbol error probability. Finally,
the asymptotic bit error rate and an approximation based
on first order perturbations have been derived and their
accuracy has been compared via simulation.

6. APPENDIX. ASYMPTOTIC DISTRIBUTION
OF THE OUTPUT OF THE RECEIVERS

Recalling the structure of matrix G and applying the Weak
Law of Large Numbers, the 4, jth element of matrix Gqu

for (é—;ﬂ <1, < Ms(q)— [g—;ﬂ can be expressed, under

(Asl), as

= [GHGqu - %ﬁ% bp-abimgtOp (K71/2),

o2 P

with x denoting the order of magnitude of either SF, or o2,
and Op (.) the in-probability version of the corresponding
deterministic notation. The i¢th output of the decorrelating
receiver can be asymptotically expressed as

— [SQ]i - T

Convergence in law to a Gaussian distribution follows from
the central limit theorem for sums of i.i.d. random vari-
ables. The mean of the asymptotic distribution of EqDEC
is readily identified from (7), and its covariance takes the
expression:

(HeoH _HpA 1
E[h Cg:nn prjh] _ 1 HhH2 6p_qbi_j+0, (Kﬁl/Q)
RO R |

~ 14
a2SF? HhH

Since it is assumed that all the moments of c4(n) are fi-
nite, the limiting value of the covariance coincides with the
covariance of the limiting distribution [7].

Let us now turn to the ith output of the MMSE receiver,
which can asymptotically be expressed as

~MMSE 1 h¥h
=8, +
s } 1+, (a) |17 s
1 h¥cHn

Lt s+0, (Iiil/Z) .

+ pa
1+, (q) 0y SF, ||h

Convergence in law to a Gaussian distribution follows from
the central limit theorem for sums of i.i.d. random vari-
ables. Once again, the mean of the asymptotic distribution
of M5 ig readily identified from (7), and its covariance
can be calculated as

@ I o (e
3 @) Srmabios 0y (<)
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