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ABSTRACT

This paper presents a new approach to modeling speech spectra
and pitch for text-independent speaker identification using Gaus-
sian mixture models based on multi-space probability distribution
(MSD-GMM). The MSD-GMM allows us to model continuous
pitch values for voiced frames and discrete symbols represent-
ing unvoiced frames in a unified framework. Spectral and pitch
features are jointly modeled by a two-stream MSD-GMM. We
derive maximum likelihood (ML) estimation formulae for the
MSD-GMM parameters, and the MSD-GMM speaker models
are evaluated for text-independent speaker identification tasks.
Experimental results show that the MSD-GMM can efficiently
model spectral and pitch features of each speaker and outper-
forms conventional speaker models.

1. INTRODUCTION

Gaussian mixture models (GMMs) have been successfully ap-
plied to speaker modeling in text-independent speaker identifica-
tion [1]. Such identification systems mainly use spectral features
represented by cepstral coefficients as speaker features. Pitch fea-
tures as well as spectral features contain much speaker specific
information [2, 3]. However, most of speaker recognition studies
in recent years have focused on using only spectral features. The
main reasons for this are i) the use of pitch features alone could
not give enough recognition performance and ii) pitch values are
not defined in unvoiced segments and this complicates speaker
modeling and feature integration.

Several works have reported that speaker recognition accu-
racy can be improved by the use of pitch features in addition
to spectral features [4, 5, 6, 7]. There are essentially two ap-
proaches to integrating spectral and pitch information: i) two
separate models are used for spectral and pitch features and their
scores are combined [4, 5], ii) two separate models for voiced
and unvoiced parts are trained and their scores are combined
[6, 7]. In [7], two separate GMMs are used, where the input ob-
servations are concatenations of cepstral coefficients and log F0

for voiced frames and cepstral coefficients alone for unvoiced
frames. Since the probability distribution of the conventional
GMM is defined on a single vector space, these two kinds of
vectors require their respective models.
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In this paper a new speaker modeling technique using a
GMM based on multi-space probability distribution (MSD) [8] is
introduced. The MSD-GMM allows us to model feature vectors
with variable dimensionality including zero-dimensional vectors,
i.e., discrete symbols. Consequently, continuous pitch values
for voiced frames and discrete symbols representing “unvoiced”
can be modeled using an MSD-GMM in a unified framework,
and spectral and pitch features are jointly modeled by a multi-
stream MSD-GMM, i.e., each speaker is modeled by a single
statistical model. We derive maximum likelihood (ML) esti-
mation formulae and evaluate the MSD-GMM speaker models
for text-independent speaker identification tasks comparing with
conventional GMM speaker models.

The rest of the paper is organized as follows. In Section
2, we introduce a speaker modeling technique based on MSD-
GMM. Section 3 presents the ML estimation procedure for MSD-
GMM parameters. Section 4 reports experimental results, and
Section 5 gives conclusions and future works.

2. MULTI-STREAM MSD-GMM

2.1. Likelihood Calculation

Let us assume that a given observation ot at time t consists
of S information sources (streams). The s-th stream ots has
a set of space indices Xts and a random vector with variable
dimensionality xts, that is

ot = (ot1,ot2, . . . ,otS), (1)

ots = (Xts,xts) . (2)

Note here that Xts is a subset of all possible space indices
{1, 2, . . . , Gs}, and all the spaces represented by the indices in
Xts have the same dimensionality as xts.

We define the output probability distribution of an S-stream
MSD-GMM λ for ot as

b(ot | λ) =
MX

m=1

cm

SY

s=1

pms(ots), (3)

where cm is the mixture weight for the m-th mixture component.
The observation probability of ots for mixture m is given by the
multi-space probability distribution (MSD) [8] :

pms(ots) =
X

g∈Xts

wmsgNDsg
msg (xts), (4)
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Fig. 1. An example of the m-th mixture component of a three-
stream MSD-GMM.

where wmsg is the weight for the g-th vector space of the s-th
stream and NDsg

msg ( · ) is the Dsg-variate Gaussian function with
mean vector �msg and covariance matrix Σmsg (for the case
Dsg > 0). For simplicity of notation, we define N 0

msg( · ) ≡ 1
(for the case Dsg = 0). Note here that the multi-space probabil-
ity distribution (MSD) is equivalent to continuous probability dis-
tribution and discrete probability distribution when Dsg ≡ n > 0
and Dsg ≡ 0, respectively. Also, an MSD-GMM is assumed to
be a generalized GMM, which includes the traditional GMM as
a special case when S = 1, G1 = 1, and D11 > 0.

For an observation sequence O = (o1,o2, . . . ,oT ), the
likelihood of MSD-GMM λ is given by

P (O | λ) =

TY

t=1

b(ot | λ). (5)

Figure 1 illustrates an example of the m-th mixture compo-
nent of a three-stream MSD-GMM (S = 3). The sample space of
the first stream consists of four spaces (G1 = 4), among which
the second and third spaces are triggered by the space indices
and pm1(ot1) becomes the sum of the two weighted Gaussians.
The second stream has only one space (G2 = 1) and always out-
puts its Gaussian as pm2(ot2). The third stream consists of two
spaces (G3 = 2), where a zero-dimensional space is selected,
and outputs its space weight wm32 (a discrete probability) as
pm3(ot3).

2.2. Speaker Modeling Based on MSD-GMM

Figure 2 shows an example of spectral and pitch sequences of
a Japanese word “/ashi/” spoken by a Japanese male speaker.
Generally, spectral features are represented by multi-dimensional
vectors of cepstral coefficients with continuous values. On the
other hand, pitch features are represented by one-dimensional
continuous values of log fundamental frequencies (log F0) in
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Fig. 2. An example of spectral and pitch sequences of a word
“/ashi/” spoken by a male speaker.
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Fig. 3. The m-th mixture component in a two-stream MSD-
GMM based on spectra and pitch.

voiced frames and discrete symbols representing “unvoiced” in
unvoiced frames because pitch values are defined only in voiced
segments.

As shown in Fig. 3, each speaker can be modeled by a
two-stream MSD-GMM (S = 2); the first stream is for the
spectral feature and the second stream is for the pitch feature.
The spectral stream has a D-dimensional space (G1 = 1), and
the pitch stream has two spaces (G2 = 2) : a one-dimensional
space and a zero-dimensional space for voiced and unvoiced
parts, respectively.

3. ML-ESTIMATION FOR MSD-GMM

In a similar way to the ML-estimation procedure in [8], P (O | λ)
is increased by iterating the maximization of an auxiliary function
Q(λ′, λ) over λ to improve current parameters λ′ based on the
expectation maximization (EM) algorithm.

3.1. Definition of Q-Function

The log-likelihood of λ for an observation sequence O, a se-
quence of mixture components i and a sequence of space indices
l can be written as

log P (O, i, l | λ) =
TX

t=1

log cit

+

TX

t=1

SX

s=1

log witslts +

TX

t=1

SX

s=1

logNDslts
itslts

(xts), (6)

where

i = (i1, i2, . . . , iT ), (7)

l = (l1, l2, . . . , lT ), (8)

lt = (lt1, lt2, . . . , ltS). (9)



Hence the Q-function is defined as

Q(λ′, λ) =
X

all i,l

P (i, l | O, λ′) log P (O, i, l | λ)

=
X

all i,l

P (i, l | O, λ′)
TX

t=1

log cit

+
X

all i,l

P (i, l | O, λ′)
TX

t=1

SX

s=1

log witslts

+
X

all i,l

P (i, l | O, λ′)
TX

t=1

SX

s=1

logNDslts
itslts

(xts)

=
MX

m=1

TX

t=1

P (it = m | O, λ′) log cm

+
MX

m=1

SX

s=1

GsX

g=1

X

t∈T (O,s,g)

P (it = m, lts = g | O, λ′) log wmsg

+
MX

m=1

SX

s=1

GsX

g=1

X

t∈T (O,s,g)

P (it = m, lts = g | O, λ′) logNDsg
msg (xts), (10)

where

T (O, s, g) = {t | g ∈ Xts} . (11)

3.2. Maximization of Q-Function

The first two terms of (10) have the form
PN

i=1 ui log yi, which
attains a global maximum at the single point

yi =
ui

NX

j=1

uj

, for i = 1, 2, . . . , N, (12)

under the constraints
PN

i=1 yi = 1 and yi ≥ 0. The maximiza-
tion of the first term of (10) leads to the re-estimate of cm:

cm =

TX

t=1

P (it = m | O, λ′)

MX

m=1

TX

t=1

P (it = m | O, λ′)

=
1

T

TX

t=1

P (it = m | O, λ′)

=
1

T

TX

t=1

γ′
t(m), (13)

where γt(m) is the posterior probability of being in the m-th
mixture component at time t, that is

γt(m) = P (it = m | O, λ) =

cm

SY

s=1

pms(ots)

b(ot)
. (14)

Similarly, the second term is maximized as

wmsg =

X

t∈T (O,s,g)

ξ′ts(m,g)

GsX

l=1

X

t∈T (O,s,l)

ξ′ts(m, l)

, (15)

where ξts(m, g) is the posterior probability of being in the g-th
space of stream s in the m-th mixture component at time t:

ξts(m, g) = P (it = m, lts = g | O, λ)

= P (it = m | O, λ)P (lts = g | it = m,O, λ)

= γt(m)
wmsgNDsg

msg (xts)

pms(ots)
. (16)

The third term is maximized by solving following equations:

∂

∂�msg

X

t∈T (O,s,g)

P (it = m, lts = g | O, λ′)

· logNDsg
msg (xts) = 0, (17)

∂

∂Σ−1
msg

X

t∈T (O,s,g)

P (it = m, lts = g | O, λ′)

· logNDsg
msg (xts) = 0, (18)

resulting in

�msg =

X

t∈T (O,s,g)

ξ′ts(m, g)xts

GsX

l=1

X

t∈T (O,s,l)

ξ′ts(m, l)

, (19)

Σmsg =

X

t∈T (O,s,g)

ξ′ts(m, g)(xts − �msg)(xts − �msg)�

GsX

l=1

X

t∈T (O,s,l)

ξ′ts(m, l)

.

(20)

The re-estimation is repeated iteratively using λ in place of λ′

and the final result is an ML estimation of the MSD-GMM.

4. EXPERIMENTAL EVALUATION

4.1. Experimental Conditions

First, a speaker identification experiment was carried out using
the ATR Japanese speech database. We used word data spoken by
80 speakers (40 males and 40 females). Phonetically-balanced
216 words are used for training each speaker model, and 520
common words per speaker are used for testing. The number of
tests was 41600 in total.

Second, to evaluate the robustness of the MSD-GMM speaker
model against inter-session variability, we also conducted a speaker
identification experiment using the NTT database. The database
consists of sentence data uttered by 35 Japanese speakers (22
males and 13 females) on five sessions over ten months (Aug.,
Sept., Dec. 1990, Mar., June 1991). In each session, 15 sen-
tences were recorded for each speaker. Ten sentences are com-
mon to all speakers and all sessions (A-set), and five sentences
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Fig. 4. Comparison of MSD-GMM speaker models with con-
ventional GMM and two-separate GMM speaker models.

are different for each speaker and each session (B-set). The dura-
tion of each sentence is approximately four second. We used 15
sentences (A-set + B-set from the first session) per speaker for
training, and 20 sentences (B-set from the other four sessions)
per speaker for testing. The number of tests was 700 in total.

The speech data were down-sampled to 10 kHz, windowed
at a 10-ms frame rate with a 25.6-ms Blackman window, and pa-
rameterized into 13 mel-cepstral coefficients using a mel-cepstral
estimation technique [9]. The 12 static parameters excluding the
zero-th coefficient were used as a spectral feature. Fundamen-
tal frequencies (F0) were estimated at a 10-ms frame rate using
the RAPT method [10] with a 7.5-ms correlation window, and
log F0 for the voiced frames and discrete symbols for unvoiced
frames were used as a pitch feature. Speakers were modeled by
GMMs or multi-stream MSD-GMMs with diagonal covariances.

4.2. Experimental Results

The MSD-GMM speaker identification system was compared
with three kinds of conventional systems. Figure 4 shows speaker
identification error rates with 95 % confidence intervals (CIs)
when using 32 and 64 component speaker models. The left and
right halves of the figure correspond to the results for the ATR
and NTT databases, respectively. In the figure, “GMM” denotes
a conventional GMM speaker model using a spectral feature
alone. “S+P-GMMs” represents a speaker model consisting of
two GMMs for spectra and pitch. “V+UV-GMMs” is a speaker
model consisting of two GMMs for voiced (V) and unvoiced
(UV) parts [7] with the optimum numbers of mixture compo-
nents for the V-GMM and the UV-GMM, i.e., 24 (V)+8 (UV) or
48 (V)+16 (UV), and a linear combination parameter α = 0.5
(α is the weight for the likelihood of the UV-GMM). “MSD-
GMM” denotes the proposed model based on the multi-stream
MSD-GMM.

As shown in the figure, the additional use of pitch infor-
mation significantly improved the system performance, and the
three systems using both spectral and pitch features gave much

better performance than the conventional GMM system using
a spectral feature alone. Among the three systems, the MSD-
GMM system gave the best results, and achieved 16 % and 18 %
error reductions (for the ATR database) and 38 % and 51 % error
reductions (for the NTT database) over the GMM system when
using 32 and 64 mixture models, respectively. It is also noted
that the MSD-GMM system requires no combination parameter
(such as α) which has to be chosen or tuned heuristically.

5. CONCLUSION

This paper has introduced a new technique for modeling speakers
based on MSD-GMM for text-independent speaker identification.
The MSD-GMM can model continuous pitch values of voiced
frames and discrete symbols representing “unvoiced” in a unified
framework. Spectral and pitch features can be jointly modeled
by a multi-stream MSD-GMM. We derived the ML estimation
formulae for the MSD-GMM parameters and evaluated the MSD-
GMM speaker models for text-independent speaker identification
tasks. The experimental results demonstrated the high utility of
the MSD-GMM speaker model and also proved its robustness
against the inter-session variability.

Introduction of stream weights to the multi-stream MSD-
GMM and application of this framework to speaker verification
systems will be subjects for future works.
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